

www.embedded-world.eu

Dynamic Approach to IoT Security

 A new security solution for IoT

Tobias Schläpfer
IoThentix

Rickenbach b. Will, Switzerland
tobias.schlaepfer@iothentix.ch

David Lorenz, Simon Künzli
Zurich University of Applied Science (ZHAW)
Institute of Embedded Systems (InES)

Winterthur, Switzerland
david.lorenz@zhaw.ch, simon.kuenzli@zhaw.ch

Abstract— Today's security solutions for IoT applications
remain static in an ever-changing environment, making
applications insecure and vulnerable to ever-growing cyber
threats. The static solutions make credential life-cycle
management difficult and lack proper protection of APIs.
Overall, they weaken the security of not only the IoT devices but
all components involved. A more dynamic approach to the
security of IoT applications is required. IoThentix has
developed a token-based approach to device authentication that
not only allows IoT devices to access protected APIs according
to state-of-the-art standards but also enables dynamic
management of device credentials. As a result, it significantly
improves the credential life-cycle management and the security
of the entire IoT application.

Keywords— IoT security, dynamic security, token-based
authentication, OAuth 2.0 for IoT

I. INTRODUCTION
Internet of Things (IoT), Industrial IoT (IIoT), and

Operational Technology (OT) applications are omnipresent
and add value to a wide variety of industries. Today, IoT
applications are closely integrated into processes and
infrastructures, with many different interfaces that form
complex systems. Furthermore, IoT applications are often
distributed over large areas and are composed of a large
number of devices. On the one hand, being a crucial part of
larger systems that generate high value naturally attracts the
attention of cybercriminals. On the other hand, IoT
applications often only provide weak security, not only
weakening the security of the IoT applications themselves but
also the systems they connect to. Especially, the interfaces,
i.e., APIs, where IoT devices connect and interact with
systems are at risk since IoT devices lack the capability to
interact in the same secure and standardized manner IT
systems are used to. The buzzword in that regard is "Zero
Trust". The missing capabilities result from the use of static,
outdated security practices, such as the use of certificate-
based authentication solutions.

Certificate-based authentication solutions have several
drawbacks, which are outlined in the following section. The

paper then introduces the new dynamic, token-based
authentication approach developed by IoThentix as a viable
solution to address the drawbacks introduced by certificate-
based solutions. Section four outlines in detail how the
security of the token-based approach is guaranteed. The paper
closes with appropriate conclusions.

II. STATIC SECURITY SOLUTIONS
As outlined in the previous section, IoT applications

today often use static security solutions that are not fit for
purpose. The following drawbacks are highlighted in this
section:

• Credential management
• Static device credentials
• Not built to scale
• No authorization

The weaknesses are explained using a static certificate-based
authentication solution as a reference, but any security
solution not able to address the outlined drawbacks exposes
similar issues as a static security solution.

A. Credential management
Credential management is a cumbersome process in all

life-cycle stages of any IoT device, especially for certificate-
based solutions, as certificates need to be created, signed, and
installed on each device individually. Since the certificates
also expire at some point in time, the whole process
eventually needs to be repeated.

B. Static device credentials
As a result of the cumbersome credentials management

process, companies tend to create device certificates that have
lifetimes of five years or even longer in order to avoid the
process of renewing the device certificates over the lifetime
of the IoT device. Long-living security credentials pose a
significant threat to any application relying on them.

C. Not built to scale
IoT applications typically are composed of a large volume

of devices that may be distributed over a wide area. For that
reason, a complex or manual process is required to provision
and update device credentials, resulting in a tremendous
amount of effort and time, if it is possible at all.

D. No authorization
The sole purpose of certificates is to authenticate devices.

As a result, certificate-based solutions do not provide any
means of authorization. However, authorization is of the
same importance as authentication, as system operators not
only want to know which device is connecting to the API but
also if the device is authorized to access the resource in
question. To overcome this shortcoming, certificate-based
solutions often introduce customized means of authorization
that enable only a single use case which is not standardized
and is inherently insecure.

III. DYNAMIC SECURITY SOLUTION
A more dynamic approach will significantly benefit all

types of IoT applications as well as their application
interfaces. One of the state-of-the-art standards used in IT to
protect APIs is OAuth 2.0 [1]. OAuth 2.0 defines a token-
based approach to protect application interfaces. The benefits
of a token-based approach are:

• Tokens have a short lifetime
• Trust is established, not preconditioned
• Provide a framework for authorization

1 OAuth 2.0 only provides a framework for authorization, to also
provide authentication the OIDC [10] standard must be applied. The
OIDC standard is built on top of the OAuth 2.0 standard.

While OAuth 2.0 is primarily used in IT to authenticate1 and
authorizes human users, it can also be used in machine-to-
machine applications, hence also for IoT applications.

IoThentix has adopted the token-based approach to fit the
specific requirements of IoT applications, enabling IoT
devices to utilize the benefits of token-based solutions and
making their authentication and authorization process more
dynamic and secure. Furthermore, the token-based approach
simplifies credential management during the entire life cycle
of the devices.

A. Token-based authentication & authorization
The core of a token-based solution is the identity provider

(IdP). The primary function of the IdP is to identify and
authenticate IoT devices. Upon successful authentication, the
IdP issues a short-lived access token to the IoT device. The
IoT device can then use this access token to authenticate itself
to any protected API, e.g., to an IoT platform. The IoT
platform then has to verify the access token with the IdP
before excepting any data or request sent by the IoT device.

The process of utilizing the token-based approach for IoT
applications is divided into four main steps. First, the devices
have to be registered with the IdP. Once the devices are
operational, they need to identify themselves with the IdP. As
a result, the devices then get a short-lived token they can use
to authenticate themselves to a target system, e.g., an IoT
platform. Finally, the platform verifies the token with the IdP
and grants the IoT device access to the authorized resources.

Figure 1: Overview token-based authentication flow

www.embedded-world.eu

1) Register: To register an IoT device, the device first has
to generate a key pair. Then the public key, along with a
unique device ID, is registered with the identity provider.
There are two main observations to make here. First, the
private key is generated on the IoT device and never leaves
the device. Second, the information stored with the IdP is of
public nature. Hence the IdP does not store any sensitive
information about the IoT device.

2) Identify: For an IoT device to identify and authenticate

itself, it must provide a so-called private key JSON Web
Token (JWT) [2]. A private key JWT is a base64 encoded
JSON object composed of three main parts, a header, a
payload, and a signature. The header and the payload contain
information (claims) to identify the device and protect the
JWT from replay attacks. The signature is generated using
the private key corresponding to the device's registered public
key, ensuring the token's integrity, and allowing the IdP to
authenticate the device. The following table displays an
example of an encoded private key JWT and its decoded
information.

Private key JWT
Encoded Decoded

eyJhbGciOiJFUzI1NiIsInR5cC
I6IkpXVCIsImtpZCI6ImRlbW8
uZGV2aWNlLjAxIn0.eyJzdWIi
OiJkZW1vLmRldmljZS4wMSIsI
mp0aSI6IkRFNjVBNEIwMDhF
N0IyNzg2MkFENUE0QjFDQj
E2MzZDIn0.R7OWvQzNSbeE
OhFRMmRUDBY9zLNUFf-
i2Un5YLAP8QqTXGdUGBr8m
14olyFmXy29VwUTnhLAhvGZ

nqxAyMWzqQ

{
 “alg”: “ES256”,
 “typ”: “JWT”,
 “kid”: “demo.device.01”
}

{
 “sub”: “demo.device.01”,
 “jti”:
“DE65A4B008E7B27862AD5A4B
1CB1636C”
}

Table 1: Private key JWT example

Upon successful validation of the private key JWT, the IdP
issues an access token (AT) to the IoT device. The access
token is a so-called opaque token, which is a ~100-byte long
random string that only the IdP that has issued the AT can
verify. The following is an example of an opaque access
token,

Iz2oXZIqaGGEtkWUBmtL77d0cS-
_lbf1Zs02vNJBBtY.UzoqH2LuVk0tuZfceosaYfZ3VsSDYtAM
GIJ8yIBhtJA

The AT contains several claims, such as the device ID, the
requested scope, the issuer of the token, and the lifetime of
the token. The lifetime of the AT can be defined according to
the application requirements. The IdP may provide the
information in the AT claims upon successful validation in
step 4 to the IoT platform. The AT must be securely stored
and may be used to authenticate the IoT device against any
protected API.

3) Authenticate: Once the IoT device has received the
access token from the identity provider, it can start sending
its data/request to the IoT platform. The device establishes a
secure connection to the IoT platform, authenticating the IoT
platform through a (D)TLS connection. Then the device
passes the data along with the access token to the IoT
platform. The platform can now authenticate the IoT device
based on the provided access token with the identity provider
by calling the so-called introspection endpoint.

4) Verify: To verify the access token, the IoT platform

must call the introspection endpoint of the IdP and pass along
the provided access token of the IoT device. The IdP then
validates the access token for its claims, such as its scope,
expiration time, and issuer. Upon successful validation, the
IdP confirms the token’s authenticity to the IoT platform. The
following table displays a standard response of the IdP when
the introspection endpoint is called. The response confirms
the validity as well as the claims associated with the AT.

Introspection endpoint response
Successful Failed

{
 "active": true,
 "sub": "demo.device.01",
 "scope": "tenant.demo refresh.token temp",
 "exp": 1675581071,
 "iss": "https://iot-idp.demo.apps.iothentix.io/"
}

{
 "active": false
}

Table 2: Introspection endpoint response

Assuming the validation of the AT was successful, the IoT
platform can authorize or deny the request based on the
additional information of the AT, e.g., based on the scope
values or the identity of the IoT device in the “sub” claim.

By following the outlined process, the IoT devices are

able to use short-living, standardized access tokens allowing
them to interact with any protected API. As a result, creating
a highly dynamic and secure approach for IoT security.
Furthermore, the new dynamic approach also simplifies
device credential management, which is outlined in the next
section.

B. Device credential management
Managing device credentials is a crucial part of the

overall security of an IoT application. It should be dynamic
yet simple (automated). Both requirements can be achieved
with a token-based approach.

1) Initial creation: As outlined in the previous section,

the initial creation of the credentials is straightforward and
should be processed on the devices themselves. After that, an
authorized process (manual or automated) is responsible for
doing the initial registration.

2) Operation: Once the devices are operational, devices
should constantly update their security credentials, following
the principle “As short as possible, as long as necessary”.
During operation, there are two types of credentials the IoT
devices will have to manage, the AT issued by the IdP and
the device credentials to identify with the IdP.

a) Renew access tokens: The AT issued by the IdP will

only be valid for a short period of time, e.g., one day. As the
process of creating a JWT may be quite resource-draining for
resource-constrained IoT devices, the IdP offers an API to
receive a new access token based on a previously issued
access token. The detailed process of how this is achieved in
a secure and automated manner is outlined in Section 5.
Renewing access tokens based on previously issued access
tokens is undoubtedly less secure than through the whole
identification process outlined in the “Identify” step of the
previous section. However, depending on the requirements of
the IoT devices, such a procedure offers a feasible
compromise.

b) Update device credentials: The concept of short-
living security credentials is at the heart of the token-based
approach. This should also extend to the device credentials
that are used to authenticate the IoT devices to the IdP.
However, as this process is critical, the IoT devices must
authenticate with the IdP in the same manner as when
requesting an access token, with the addition that the integrity
of the new credentials must also be ensured. The detailed
process of how this is achieved in a secure and automated
manner is outlined in Section 5.

3) End of life: Once IoT devices have reached their end

of life, it is important that these devices are decommissioned
along with their credentials. Again, the token-based approach
is straightforward, as it can be achieved by simply removing
the registered credentials from the IdP. As a result, this will
prevent the IdP from issuing any new AT for
decommissioned devices. Furthermore, already issued AT
may either expire soon or can be revoked in the IdP.

IV. PROOF OF CONCEPT APPLICATION
A proof of concept was implemented to prove that the

suggested solution is viable for IoT. It consists of the IdP and
its APIs, a small IoT network, and a simulated IoT platform.
The network had the same topology as shown in Figure 1:
OverviewFigure 1.
The IdP offers the following APIs:

• Token API to request and renew access tokens.
• IdP API to introspect existing tokens and verify

their validity.
• Device API to update the device credentials.

For the IoT network, technologies and hardware had to be
chosen that are used in real-life applications and have

adequate resources to simulate a realistic scenario. For those
reasons, we decided to build a small OpenThread [3] network
with one end device and one border router. We used an
nrf52840 development kit for the end device from Nordic
Semiconductors [4]. On the MCU, we ran a simple
application that could consume all the APIs of the IdP and
send some dummy data to the simulated IoT platform. We
built the application using the Zephyr-RTOS, which provides
a module for OpenThread, and the mbedTLS crypto-library
for all needed crypto operations. See Figure 2 [3] [5] for an
overview of the layer stack of the application.

Figure 2: Layer stack of proof-of-concept application

The OpenThread border router was built on a Raspberry Pi
using the standard image provided by OpenThread. Thread
and therefore OpenThread are IPv6-based networking
protocols. The IdP, on the other hand, is a cloud application
running as an AWS cloud service and is IPv4 only as of now.
Thus, the border router must provide a NAT64 and DNS64
to do network translations between the two IP versions. We
used Tayga for the NAT64, which comes with the border-
router image and only has to be configured and activated.
More information on Tayga can be found in [6].

The IoT platform existed in two forms, running in the AWS
cloud along with the IdP and as an independent entity running
on a Raspberry Pi. It is a simple application which offers an
online resource where IoT devices can store data. The
OpenThread device sends the dummy data along with an
access token to the IoT platform, which validates the token
with the IdP, and stores the data if the validation is successful.

With this proof-of-concept implementation, we could show
that an IoT device can authenticate itself securely to an IoT
platform without the need for a device certificate. The
implementation was realized with remarkably simple, off-
the-shelf components, which are used extensively in the
industry [7] [8]. Further, our solution provides not only
secure and effortless device authentication but also the means
for a manageable and standardized authorization mechanism.

www.embedded-world.eu

V. SECURITY CONSIDERATIONS
This section outlines how the solution developed by

IoThentix ensures that only genuine IoT devices are able to
consume the APIs of the identity provider (IdP). Hence, the
measures further described below ensure the security of the
new token-based approach. Furthermore, this section
provides general recommendations regarding the
management of device credentials on an IoT device.

A. Device registration
Before an IoT device can consume the identity provider's

APIs, the device must be registered. It is important to note
that the IdP does not store any sensitive device data.

1) Public key: The registered public key has to

correspond to the private key on the IoT device that will be
used to sign the JSON Web Token (JWT), which is used to
identify and authenticate the IoT device with the identity
provider.

2) Device ID: The device ID has to be unique among all

registered devices of a particular client to ensure unique
identification of the device by the combination of the device
ID and public key.

B. Securely identify & authenticate IoT devices
The IoT device authenticates to the IdP using a JWT

before receiving an access token. Hence, the IdP must be able
to identify and authenticate eligible devices reliably. This is
achieved by a thorough validation of the JWT provided by
the IoT device. The validation includes the following.

1) Signature validation: The JWT signature is validated

using the registered public key for the device ID provided in
the “kid” header of the JWT.

2) Device ID validation: The JWT has to contain a “sub”

claim with the device ID that is the same as the kid in the
JWT header.

3) JWT identifier validation: Each JWT MUST contain a

JWT ID (“jti”) claim that represents a 16-byte random
number encoded as a hexadecimal string that has never been
used before by the same device. To prevent replay attacks,
the IdP will register all “jti” claims provided by each IoT
device.

4) JWT expiration: A JWT MAY contain an expiration

(“exp”) claim that indicates a time after which the JWT
should be considered invalid. However, this requires the IoT
device to be “time-aware”, which is often not the case. Hence,
the expiration claim is only optional, but if possible, the usage
of the “exp” claim is strongly recommended.

C. Securely renew access tokens
The following requirements apply to ensure that the

process of renewing an access token based on a previously
issued access token is secure.

1) Access token validation: The access token that is used

to request a new access token MUST not be expired.

2) Scopes validation: The access token that is used to

request a new access token MUST have the scope
“refresh.token”. Furthermore, the renewed access token can
only have the same scopes as the previously issued access
token.

3) Limit consecutive token renewals: To ensure that

devices have to authenticate using the JWT authentication
process from time to time, a limit on consecutive token
renewals is enforced. The number of consecutive renewals
can be customized to fit the application requirements.

D. Securely update device credentials
To ensure the security and integrity of the device

credential update process, the following parameters are
evaluated before the device credentials are updated.

1) Signature validation: The JWT signature is validated

using the registered public key for the device ID provided in
the “kid” header of the JWT. Furthermore, the JWT has to
contain a “public_key” claim that contains the new public key
that should be registered with the IdP. As a result, the
integrity of the new public key is ensured through the
signature of the JWT.

2) Device ID validation
3) JWT identifier validation
4) JWT expiration: The validation regarding the device

ID, the “jti” and “exp” claims is identical to the validation
when an IoT device is requesting an access token.

5) Proof of possession: As the final validation, the device

has to prove that it is in possession of the private key
corresponding to the public key it tries to update. For this, the
device has to provide a proof of Possession (PoP) object in
the request body. The PoP object is a base64 encoded
representation of the result of an ECDSA_SHA256 operation
on the JWT provided for the authentication in the request.
The IdP will use the public key provided in the “public_key”
claim in the JWT to validate the PoP confirming that the
device is in fact in possession of the corresponding private
key.

E. Securely manage device credentials
For the security of the token-based approach, the secure

management of the device's private key and the received
access token is essential. Ultimately, it is the responsibility of
the OEM to ensure the proper handling of the security
credentials. However, the following best practices should be
considered:

1) Security in transit: All communication with the IdP

should be encrypted, and the server certificate provided by
the IdP during the (D)TLS handshake SHOULD be validated.

2) Security at rest: To ensure the credentials are secure at

rest, the private key and access token should be stored in
dedicated secure storage, either ensured by software isolation
techniques or dedicated secure storage.

3) Credentials integrity: In case the IoT devices support

the use of Physical Unclonable Functions (PUF) credentials,
the keys to authenticate the IoT device against the IdP should
be derived using the PUF capabilities.

4) Lifetime: The lifetime of all security credentials should

follow the principle: "As short as possible, as long as
necessary".

VI. SUMMARY & OUTLOOK
In this paper, we presented a token-based authentication
approach and compared it to state-of-the-art static credential-
based security. The new dynamic approach adopts the widely
used OAuth 2.0 standard and the recently published RFC
9200, Authentication and Authorization for Constrained
Environments Using the OAuth 2.0 Framework [9], to fit the
special requirements of IoT applications. Its dynamic nature
supports the regular exchange of IoT device credentials,
enhancing the overall security of an IoT system. We showed
the applicability of the approach by a proof-of-concept
implementation and discussed several device security-related
use cases, including device identification and authentication.

Following up on the promising results with the functionally
correct prototype implementation, we will investigate the
non-functional properties of the proposed approach. We plan
to measure resource consumption on our proof-of-concept
implementation and compare the results with a common
static security approach. In addition, it will be interesting to
prove the applicability and scalability of the proposed
scenario for real applications.

ACKNOWLEDGMENT
The work presented in this paper has been partly funded

by Innosuisse – Swiss Innovation Agency as Innocheque
under grant number 61368.1 INNO-ICT.

VII. REFERENCES

[1] D. Hardt, RFC 6749, Internet Engineering Task Force
(IETF), 2012.

[2] J. B. N. S. M. Jones, RFC 7519, Internet Engineering
Task Force (IETF), 2015.

[3] Google, „OpenThread,“ Google, 2023. [Online].
Available: https://openthread.io/. [Accessed on
February 2023].

[4] Nordic Semiconductor, "nordicsemi.com," 21 02
2023. [Online]. Available:
https://www.nordicsemi.com/Products/Development-
hardware/nrf52840-dk. [Accessed February 2023].

[5] Zephyr Project, „Zephyr overview 2023 slide 8,“ 2 01
2023. [Online]. Available:
https://www.zephyrproject.org/wp-
content/uploads/sites/38/2023/01/Zephyr-Overview-
20230124.pdf. [Accessed February 2023].

[6] Google, „OpenThread/Tayga,“ 2023. [Online].
Available: https://github.com/openthread/tayga.
[Accessed February 2023].

[7] Nordic Semiconductor, „Quarterly Reports 2022 Q4,“
Nordic Semiconductor, Trondheim Norway, 2022.

[8] N. Flaherty, „ee News Europe,“ 1 09 2021. [Online].
Available:
https://www.eenewseurope.com/en/raspberry-pi-most-
popular-sbc-in-industrial-and-iot-applications/.
[Accessed February 2023].

[9] G. S. E. W. S. E. H. T. L. Seitz, Authentication and
Authorization for Constrained Environments Using
the OAuth 2.0 Framework (ACE-OAuth), Internet
Engineering Task Force (IETF), 2022.

[10] J. B. M. J. B. d. M. C. M. N. Sakimura, „OpenID
Connect 1.0,“ OpenID, November 2014. [Online].
Available: https://openid.net/specs/openid-connect-
core-1_0.html#JWT. [Accessed February 2023].

