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Abstract— Research and development of electroen-
cephalogram (EEG) based brain-computer interfaces (BCIs)
have advanced rapidly, partly due to deeper understanding
of the brain and wide adoption of sophisticated machine
learning approaches for decoding the EEG signals. How-
ever, recent studies have shown that machine learning
algorithms are vulnerable to adversarial attacks. This
paper proposes to use narrow period pulse for poisoning
attack of EEG-based BCIs, which makes adversarial attacks
much easier to implement. One can create dangerous
backdoors in the machine learning model by injecting
poisoning samples into the training set. Test samples with
the backdoor key will then be classified into the target
class specified by the attacker. What most distinguishes
our approach from previous ones is that the backdoor
key does not need to be synchronized with the EEG
trials, making it very easy to implement. The effectiveness
and robustness of the backdoor attack approach is
demonstrated, highlighting a critical security concern
for EEG-based BCIs and calling for urgent attention to
address it.
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I. INTRODUCTION

ABRAIN-COMPUTER interface (BCI) [1] enables the
user to communicate with or control an external device

(computer, wheelchair, robot, etc.) directly using the brain.
Non-invasive BCIs [2], which usually use electroencephalo-
gram (EEG) as the input, may be the most popular type of
BCIs, due to their convenience and low cost. A closed-loop
EEG-based BCI system is illustrated in Fig. 1(a). It has been
widely used in neurological rehabilitation [3], spellers [4],
awareness evaluation/detection [5], and robotic device
control [6].

Machine learning has been extensively employed in EEG-
based BCIs to extract informative features [7], [8] and
to build high-performance classification/regression models
[9], [10]. Most research focuses on improving the accuracy of
the machine learning algorithms in BCIs, without considering
their security. However, recent studies [11], [12] have
shown that machine learning models, particularly deep
learning models, are subject to adversarial attacks. There
are at least two types of adversarial attacks. The first
is evasion attack [12], which adds deliberately designed
tiny perturbations to a benign test sample to mislead the
machine learning model. The second is poisoning attack [13],
which creates backdoors in the machine learning model by
adding contaminated samples to the training set. Adversarial
attacks represent a crucial security concern in deploying
machine learning models in safety-critical applications, such
as medical imaging [14], electrocardiogram-based arrhythmia
detection [15], and autonomous driving [16].

Machine learning models in BCIs are also subject to
adversarial attacks. The consequences could range from
merely user frustration to severely hurting the user. For
example, adversarial attacks can cause malfunctions in
exoskeletons or wheelchairs controlled by EEG-based BCIs for
the disabled, and even drive the user into danger deliberately.
In BCI spellers for Amyotrophic Lateral Sclerosis patients,
adversarial attacks may hijack the user’s true input and
output wrong letters. The user’s intention may be manipulated,
or the user may feel too frustrated to use the BCI speller,
losing his/her only way to communicate with others. In BCI-
based driver drowsiness estimation [9], adversarial attacks may
manipulate the output of the BCI system and increase the risk
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Fig. 1. Poisoning attack to EEG-based BCIs. (a) A closed-loop
EEG-based BCI system; (b) the proposed poisoning attack approach
in EEG-based BCIs. Narrow period pulses can be added to EEG trials
during signal acquisition.

of accidents. In EEG-based awareness evaluation/detection
for disorder of consciousness patients [5], adversarial attacks
may disturb the true responses of the patients and lead to
misdiagnosis.

Zhang and Wu [17] were the first to point out that
adversarial examples exist in EEG-based BCIs. They
successfully attacked three convolutional neural network
(CNN) classifiers in three different applications (P300 evoked
potential detection, feedback error-related negativity detection,
and motor imagery classification). Meng et al. [18] further
confirmed the existence of adversarial examples in two EEG-
based BCI regression problems (driver fatigue estimation, and
reaction time estimation in the psychomotor vigilance task),
which successfully changed the regression model’s prediction
by a user-specified amount. More recently, Zhang et al. [19]
also showed that P300 and steady-state visual evoked potential
based BCI spellers can be easily attacked: a tiny perturbation
to the EEG trial can mislead the speller to output any character
the attacker wants.

However, these attack strategies were mostly theoretical.
There are several limitations in applying them to real-
world BCIs: 1) the adversarial perturbations are very
complex to generate; 2) the attacker needs to craft different
adversarial perturbations for different EEG channels and trials;
and, 3) the attacker needs to obtain the complete EEG
signal of a trial and its precise starting time in advance
to compute an adversarial perturbation. Liu et al. [20]
demonstrated ways to overcome some of these limita-
tions, but it still requires the attacker to know the start
time of a trial in advance to achieve the best attack
performance.

This paper reports a novel approach that is more
implementable in practice. It belongs to the poisoning attack
framework, which consists of two steps:

1) Data poisoning in model training (backdoor1 creation):
We assume the attacker can stealthily inject a small
number of poisoning samples into the training set,
to create a backdoor in the trained model. This can be
achieved easily when the attacker is the person who is
involved in data collection, data processing, or classifier
development. Or, the attacker can share the poisoning
dataset publicly and wait for others to use it (usually
users need to register to download such datasets, so the
attacker can track the users’ identities). Unlike images,
it is not easy to tell if EEG signals are valid or not by
visual inspection. Users usually do not look at the raw
EEG signals directly. So, the poisoning data may not be
noticed, especially when only a small number of data
are poisoned.

2) Data poisoning in actual attacks (backdoor addition): To
perform an attack, the attacker adds the backdoor key
to any benign EEG trial, which then would be classified
as the target class specified by the attacker. Any benign
EEG trial without the backdoor key would be classified
normally by the poisoned model.

We consider narrow period pulse (NPP) as the backdoor key
in this paper. NPP is common interference noise, which can
be added to EEG signals during data acquisition, as shown in
Fig. 1(b). This may be achieved by applying electromagnetic
interferences around the electrodes, similar to the well-known
fact that the powerline can introduce a 50/60 Hz interference
to EEG signals.

Our main contributions are:
1) We show that poisoning attacks can be performed for

EEG-based BCIs. Almost all previous studies considered
only evasion attacks using adversarial perturbations for
EEG-based BCIs.

2) We propose a practically realizable backdoor key, NPP,
for EEG signals, which can be directly inserted into
original EEG signals, to demonstrate how poisoning
attack can fool EEG-based BCIs.

3) We demonstrate the effectiveness of the proposed attack
approach, under the challenging and realistic scenario
that the attacker does not know any information about
the test EEG trial, including its start time. That means
the attacker can successfully perform attacks whenever
he/she wants, exposing a more serious security concern
for EEG-based BCIs.

We need to emphasize that the goal of this research is not to
damage EEG-based BCIs; instead, we try to expose critical
security concerns in them, so that they can be properly
addressed to ensure secure and reliable applications.

II. METHOD

This section introduces the details of the poisoning attack
strategy and backdoor key.

1A backdoor attack to a classifier creates a backdoor that allows any input
sample with the backdoor key to be classified into an attacker pre-specified
class [21]. The backdoor key is usually a specific perturbation or pattern.
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A. Poisoning Attack Strategy
Assume the model designer has a labeled training set

D = {(xi , yi )}
N
i=1 with N samples, which cannot be obtained

by the attacker. The attacker has some basic information about
D (e.g., the dimensionality, sampling frequency and amplitude
of the EEG signal x, and the definition of the labels), and can
generate some similar benign samples {a j }

M
j=1, where a and

x have the same dimensionality, and usually M ≪ N .
The attacker wants to design a backdoor key k, and a

function g(a j , k) which adds k to a j to form a poisoning
sample. The attacker then adds {(g(a j , k), y)}M

j=1 to D, where
y is the target class specified by the attacker, i.e., he/she wants
any test sample with the backdoor key k to be classified into
class y.

The model designer trains a classifier on the poisoned
training set D′

= D ∪ {(g(a j , k), y)}M
j=1, using whatever

classifier he/she wants, e.g., traditional machine learning or
deep learning. The backdoor is automatically embedded into
the model.

During the attack, the attacker can add k to any benign test
sample x to open the backdoor and force the model to classify
x to the target class y. When k is not added, the BCI system
just operates normally.

B. Narrow Period Pulse (NPP)
NPP is a type of signal that can be easily generated.

A continuous NPP is determined by a period T , a duty cycle
d (the ratio between the pulse duration and the period), and
an amplitude a:

Nc(t) =

{
a, nT ≤ t < nT + dT
0, nT + dT ≤ t < (n + 1)T .

An example of continuous NPP is shown at the top of
Fig. 2(a).

A discrete NPP with sampling rate fs can be expressed as

Nd(i) =

{
a, nT fs ≤ i < (n + d)T fs

0, (n + d)T fs ≤ i < (n + 1)T fs .

This NPP is used as k when the attacker knows the precise
start time of the EEG trial.

Unfortunately, it’s difficult for the attacker to obtain the
exact start time of an EEG trial when the user is using a real-
world BCI system, which is usually away from the attacker.
This leads to an uncertain phase when the NPP is added.
To make the attack insensitive to the phase, a discrete NPP
with a random phase φ ∈ [0, T ] is used in poisoning:

Nd(i) =


0, nT fs ≤ i < (nT + φ) fs

a, (nT + φ) fs ≤ i < (nT + dT + φ) fs

0, (nT + dT + φ) fs ≤ i < (n + 1)T fs .

This NPP is used as k, and g(a j , k) = a j +k in obtaining the
results in Fig. 2.

III. EXPERIMENTAL SETTINGS

This section introduces the experimental settings for
validating the performance of our proposed NPP attack.

A. Datasets
The following three publicly available EEG datasets were

used in our experiments:
1) Feedback error-related negativity (ERN): The ERN

dataset was used in a BCI Challenge at the 2015 IEEE
Neural Engineering Conference, hosted by Kaggle [22].
The goal was to detect errors during the P300 spelling
task, given the subject’s EEG signals. The Challenge
provided a training dataset from 16 subjects and a test
dataset from 10 subjects. The training set (16 subjects)
was used in this paper. Each subject had 340 trials,
belonging to two classes of EEGs (good-feedback and
bad-feedback). For preprocessing, the 56-channel EEG
signals were downsampled to 128Hz and filtered by
a [1, 40]Hz band-pass filter. We extracted EEG trials
between [0, 1.3]s and standardized them using z-score
normalization.

2) Motor imagery (MI): The MI dataset was Dataset 2a
in BCI Competition IV [23]. It consisted of EEG
data from 9 subjects who performed four different
MI tasks (left hand, right hand, feet and tongue),
each task with 144 trials. The 22-channel EEG signals
were recorded at 250Hz. For preprocessing, we down-
sampled them to 128Hz and applied a [4, 40]Hz band-
pass filter to remove artifacts and DC drift. Next,
we extracted EEG trials between [0.5, 2.5]s after imag-
ination prompt, and standardized them using z-score
normalization.

3) P300 evoked potentials (P300): The P300 dataset was
first introduced by Hoffmann et al. [24]. Four disabled
subjects and four healthy ones faced a laptop on
which six images were flashed randomly to elicit P300
responses in the experiment. The goal was to classify
whether the image is target or non-target. The EEG
signals were recorded from 32 channels at 2048Hz.
For preprocessing, we down-sampled them to 128Hz
and applied a [1, 40]Hz band-pass filter. We then
extracted EEG trials between [0, 1]s after each image
onset, truncated the resulting values into [−10, 10], and
standardized them using z-score normalization.

B. Deep Learning Models
We used two state-of-the-art deep learning models,

EEGNet [25] and DeepCNN [26], for all three datasets.
EEGNet is a compact CNN architecture specifically

designed for EEG-based BCIs. It consists of two convolutional
blocks and a classification block. Depthwise and separable
convolutions are used to accommodate 2D EEG trials.

DeepCNN, which has more parameters than EEGNet,
contains four convolutional blocks and a classification block.
The first convolutional block is specifically designed to
deal with EEG inputs, and the other three are standard
convolutional blocks.

C. Traditional Models
Additionally, some traditional signal processing and

machine learning models in EEG-based BCIs were also
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Fig. 2. EEG trial before (blue) and after (red) poisoning. Left: raw EEG trial without preprocessing; Right: EEG trial after preprocessing. (a) ERN;
(b) MI; and, (c) P300.

considered, i.e., xDAWN [27] spatial filtering and Logistic
Regression (LR) classifier for the ERN and P300 datasets, and

common spatial pattern (CSP) [28] filtering and LR classifier
for the MI dataset.



2228 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 31, 2023

D. Performance Metrics
The following two metrics were used to evaluate the

effectiveness of the proposed attack approaches:
1) Balanced classification accuracy (BCA), which is the

average of the per-class classification accuracy of the
model, trained with the poisoned data, on the clean
(without adding the backdoor key) test set. To ensure
the stealth of poisoning attack, BCA should be similar
to the test classification accuracy of the model trained
on the clean (unpoisoned) training set.

2) Attack success rate (ASR), which is the percentage
of poisoned test samples (with the backdoor key
added) being classified into the target class the attacker
specified. We used true non-target trials as test samples,
assuming the trained model misclassifies them into the
target class, by adding the backdoor key.

E. Experimental Settings
Since only a small number of poisoning samples were

needed, we divided each dataset into three parts: training set,
poisoning set, and test set. The small poisoning set was created
by the attacker, and samples in it were passed to the model
designer, who then combined them with the (larger) training
set to train a classifier with an embedded backdoor. Except
some basic information about the data format, the attacker
does not need to access the training dataset. The unmodified
test set was used to compute BCA, and the poisoned test set
was used to compute ASR.

Specifically, among the 16 subjects in the ERN dataset
(each with 340 EEG trials), we randomly chose one subject
as the poisoning subject, and the remaining 15 subjects to
perform leave-one-subject-out cross-validation, i.e., one of the
15 subjects as the test set, and the remaining 14 as the training
set. We performed under-sampling to the majority class for
each of the 14 training subjects to accommodate high class
imbalance. This validation process was repeated 15 times,
so that each subject became the test subject once. EEG trials,
whose number equaled 5% of the size of the training set from
the poisoning subject, were randomly selected and added the
backdoor key to form the poisoning set (to be combined with
the training samples). All poisoning samples were labeled
as ‘good-feedback’, as the attacker’s goal was to make the
classifier classify any test sample with the backdoor key to
‘good-feedback’ (target label), no matter what true class the
test sample belongs to. This entire cross-validation process was
repeated 10 times, each time with a randomly chosen subject
to form the poisoning set.

In summary, there were 15 × 10 = 150 runs on the
ERN dataset, each with ∼2, 750 clean training samples,
∼137 poisoning samples, and 340 test samples. The mean
BCAs and ASRs of these 150 runs were computed and
reported.

Similarly, among the 9 subjects in the MI dataset, one
was randomly chosen to be the poisoning subject, and the
remaining 8 subjects to perform leave-one-subject-out cross-
validation. EEG trials whose number equaled 5% of the
training set size from the poisoning subject were used to form

the poisoning set and labeled as ‘right hand’. The entire cross-
validation process was repeated 10 times.

In summary, there were 8 × 10 = 80 runs on the MI
dataset, each with 7 × 576 = 4, 032 clean training samples,
202 poisoning samples, and 576 test samples. The mean BCAs
and ASRs of these 80 runs were computed and reported.

Among the eight subjects in the P300 dataset, one was
randomly chosen to be the poisoning subject, and the
remaining seven subjects to perform leave-one-subject-out
cross-validation. We also performed under-sampling to the
majority class to balance the training set. EEG trials, whose
number equaled 5% of the size of the training set, from
the poisoning subject were randomly chosen to construct the
poisoning set, all of which were labeled as ‘target’. The entire
cross-validation process was repeated 10 times.

In summary, there were 7 × 10 = 70 runs on the
P300 dataset, each with ∼7, 250 clean training samples,
∼363 poisoning samples, and ∼3, 300 test samples. The mean
BCAs and ASRs of these 70 runs were computed and reported.

IV. RESULTS

This section validates the effectiveness and robustness of
our proposed NPP attack.

A. Baseline Performance
First, we trained models on the clean training set without

any poisoning samples, and tested whether injecting the
backdoor key into test samples can cause any classification
performance degradation.

These baseline BCAs and ASRs of different classifiers on
different datasets are shown in Table I. The baseline BCAs
were fairly high, considering the fact that they were evaluated
on subjects different from those in the training set. The
baseline ASRs were very small, indicating models that have
not been embedded backdoor during training cannot be easily
fooled by the samples with backdoor key in test.

B. Attack Performance
NPP backdoor keys with period T = 0.2s, duty cycle

d = 10% and three different amplitudes were used for
each dataset: 10%/20%/30% of the mean channel-wise
standard deviation of the EEG amplitude for the ERN dataset,
30%/40%/50% for the MI dataset, and 0.5%/1.0%/1.5% for
the P300 dataset. These values were significantly different
for different datasets, because the magnitudes of the raw
EEG signals in different datasets varied a lot, possibly
due to different hardware used and different experimental
paradigms. We assume the attacker knows the typical EEG
signal amplitude of each dataset and can adjust the NPP
amplitude accordingly.

When the same NPP backdoor key was added to the
poisoning samples and/or test samples, the attack perfor-
mances are shown in the ‘NPP Attack’ panel of Table I. The
BCAs were very close to those in the ‘NPP Baseline’ panel,
indicating that adding poisoning samples did not significantly
change the classification accuracy, when the test samples did
not contain the backdoor key. However, the ASRs in the
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TABLE I
BASELINE AND NPP ATTACK PERFORMANCE WITH DIFFERENT AMPLITUDE RATIOS. NPP BASELINE: NPPS WERE USED IN TEST BUT NOT

TRAINING; NPP ATTACK: NPPS WERE USED IN BOTH TRAINING AND TEST. LOW AMP.: 10%/30%/0.5% OF THE MEAN CHANNEL-WISE

STANDARD DEVIATION OF THE EEG AMPLITUDE FOR ERN/MI/P300; MIDDLE AMP.: 20%/40%/1.0% FOR ERN/MI/P300; HIGH AMP.:
30%/50%/1.5% FOR ERN/MI/P300

Fig. 3. Poisoning attack ASRs of 10 repeats on the three datasets.

‘NPP Attack’ panel were much higher than the corresponding
baseline ASRs, indicating that these NPP backdoor attacks
were very successful. Intuitively, the last two column of ASRs
in the ‘NPP Attack’ panel were higher than those in the first
column, i.e., a larger NPP amplitude would lead to a higher
ASR. Among different models, the traditional CSP+LR model
seemed more resilient to the attacks.

Fig. 2 shows examples of the same EEG trial from
the different datasets before and after poisoning, with and
without preprocessing (down-sampling and bandpass filtering),
respectively. The poisoned EEG looked like normal EEG,
so the backdoor may not be easily detected. Additionally, these
typical preprocessing steps cannot eliminate the backdoor key.

C. Practical Considerations
In a realistic attack scenario, the attacker may not know the

exact start time of an EEG trial when the user is using a BCI
system. As a result, the attacker cannot inject the backdoor key
to a test sample exactly as he/she does in generating poisoning
samples in training. So, a successful attack approach should
not be sensitive to the start time of EEG trials.

To make the backdoor attacks more flexible and realistic,
we used a random phase of NPP in [0, 0.8]T (T is the period
of the NPP) for every poisoning sample. We then combined
these poisoning samples with the training set, and repeated the
training and evaluations in the previous subsection, hoping that

the learned classifier would be less sensitive to the exact time
when the backdoor key was added.

The attack results of the approach on the three models and
three datasets are shown Fig. 3. NPP obtained much higher
ASRs on different models and datasets than the baselines,
indicating that the proposed NPP attack approach is insensitive
to the start of EEG trials.

D. Influence of the Number of Poisoning Samples
Fig. 4(a) shows the BCAs and ASRs of NPP attack to

EEGNet when the poisoning ratio (the number of poisoning
samples divided by the number of training samples) increased
from 1% to 10%. Results for DeepCNN and traditional models
are shown in Figs. 4(b) and 4(c), respectively.

As the poisoning ratio increased, BCAs did not change
much, whereas ASRs improved significantly. Generally, only
4% poisoning ratio on ERN and MI was enough to achieve
an average ASR of 60%, and 1% poisoning ratio on P300
achieved an average ASR of 80%. Compared with the large
number of samples in the training set, the number of poisoning
samples was very small, making the attacks very difficult to
detect.

E. Influence of the NPP Amplitude
The NPP amplitude also affects the ASRs. Fig. 5(a) shows

the ASRs of using NPPs with different amplitude ratios (the
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Fig. 4. Influence of the poisoning ratio on BCA and ASR. (a) EEGNet; (b) DeepCNN; (c) traditional models. The mean and standard deviations
were computed from 10 repeats.

NPP amplitude divided by the mean channel-wise standard
deviation of the EEG amplitude) in test for EEGNet. Results
for other models are shown in Figs. 5(b) and 5(c). As the
NPP amplitude ratio in test increased, the ASR also increased.
The ASR also increased when larger NPPs were used in the
poisoning set.

Interestingly, the NPP amplitude ratios may not need to
match the amplitude ratios in training. For example, NPPs
with amplitude ratio between 0.6% and 1.5% in test obtained
similar ASRs on P300. In other words, the attacker does not
need to know the exact NPP amplitude in poisoning, making
the attack more practical.

F. Influence of the NPP Period and Duty Cycle

Fig. 6(a) shows the ASRs of using nine NPPs with different
periods and duty cycles in training and test to attack EEGNet.
Results on other models are shown in Figs. 6(b) and 6(c).

Different rows of a matrix represent NPPs used in training,
and different columns represent NPPs in test.

When NPPs were used in both training and test (the first six
rows and six columns in Fig. 6), high ASRs can be achieved,
no matter whether the NPPs in training and test matched
exactly or not, indicating that NPP attacks are also resilient
to the NPP period and duty cycle. However, ASRs in the
last three rows and three columns on ERN and MI datasets
(Figs. 6(a) and 6(b)) were relatively low, suggesting that the
NPP parameters may impact ASRs in different BCI paradigms.

G. Accommodate Re-Referencing
We have demonstrated the effectiveness and robustness of

NPP attacks, without considering channel re-referencing [29],
which may have some impact on the attack performance. For
example, if we add identical NPPs to all EEG channels, then
an average re-referencing [29] would remove them completely,
and hence the attack cannot be performed.
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Fig. 5. Influence of the amplitude ratio on ASR. (a) EEGNet; (b) DeepCNN; (c) traditional models. The mean and standard deviations were
computed from 10 repeats.

TABLE II
ATTACK PERFORMANCES USING DIFFERENT NUMBER OF EEG CHANNELS

There are different solutions to this problem. If the
attacker knows exactly the reference channel, e.g., Cz or
mastoid, then NPPs can be added only to that channel. After
referencing, NPP negations will be introduced to all other
channels.

In practice, the attacker may not know what referencing
approach and channels are used by the BCI system, so a
more flexible solution is to add NPPs to a subset of
channels. If average re-referencing is not performed, then
NPPs in these channels are kept; otherwise, the NPP
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Fig. 6. ASRs when NPPs with different periods and duty cycles were used in training and test. (a) EEGNet; (b) DeepCNN; (c) traditional moels.
The NPPs were: (1) T = 0.1s and d = 15%; (2) T = 0.1s and d = 10%; (3) T = 0.1s and d = 5%; (4) T = 0.2 s and d = 15%; (5) T = 0.2s and
d = 10%; (6) T = 0.2 s and d = 5%; (7) T = 1s and d = 15%; (8) T = 1s and d = 10%; (9) T = 1s and d = 5%.

magnitudes in these channels are reduced but not completely
removed.

Table II shows the attack performance when NPPs were
added to 10%/20%/30% randomly selected EEG channels.
The ASRs were comparable with or even higher than those of
adding NPPs to all channels, suggesting that the attacker can
add NPPs to a subset of channels to accommodate referencing.

H. Attack With Arbitrary Target Class
All above experiments showed the effectiveness and

robustness of NPP attacks. However, the attack can only make
the poisoned model to misclassify the poisoned samples into
a pre-specified target class. This subsection uses different
backdoor keys to mislead the model to classify a test sample
into an arbitrary target class.

Specifically, on the ERN dataset, we used NPP as the
backdoor key for ‘good-feedback’ and sine wave for ‘bad-
feedback’. On the MI dataset, NPP, sawtooth wave, sine wave

and chirp wave were used as backdoor keys for ‘left hand’,
‘right hand’, ‘tongue’ and ‘feet’, respectively. On the P300
dataset, NPP was used as the backdoor key for ‘target’ and
sawtooth wave for ‘non-target’.

Table III shows the attack performance on each target class,
obtained by adding the corresponding backdoor key to the
test samples. Generally, the ASRs in the ‘Attack’ panel were
much higher than those in the ‘Baseline’ panel, suggesting the
effectiveness of all backdoor keys. Similar to the findings in
Section IV-B, the CSP+LR model showed strong resilience to
the attacks.

I. Accommodating More Sophisticated Preprocessing
This subsection explores the effectiveness of the proposed

attack under more sophisticated preprocessing.
Table IV shows the attack performances on EEGNet with

surface Laplacian [30], common average referencing [31],
and artifact subspace reconstruction [32]. These preprocessing
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TABLE III
ATTACK PERFORMANCES ON ARBITRARY TARGET CLASS USING DIFFERENT BACKDOOR KEYS

TABLE IV
ATTACK EFFECTIVENESS UNDER MORE SOPHISTICATED PREPROCESSING TECHNIQUES

TABLE V
DEFENSE STRATEGIES AGAINST NPP ATTACKS

techniques significantly improved the BCAs on the MI
dataset, but hardly improved the BCAs on the other two
datasets. In most cases, these preprocessing techniques had
little impact on the attack effectiveness. Artifact subspace
reconstruction reduced the ASRs on the ERN dataset, and all
these preprocessing techniques reduced the ASRs on the P300
dataset when chirp was used as the backdoor key.

J. Defense Strategies
This subsection discusses the defense strategies against NPP

attacks.
We evaluated the following two defense approaches:

1) fine-tuning [33], which used 10% of the test samples to
fine-tune the poisoned models; and, 2) stochastic activation

pruning [34], which randomly pruned 10% activations of each
layer, where the larger ones are more likely to be retained.

Table V shows the attack performances under the above
two defense strategies. Fine-tuning not only improved the
BCAs of the poisoned models, but also reduced the ASRs
of NPP attacks, suggesting that calibrating with a small
amount of target user data can simultaneously improve the
model accuracy and its robustness to NPP attacks. Stochastic
activation pruning decreased the ASRs without using any
additional data, but it also slightly reduced the BCAs.

In summary, fine-tuning showed some effectiveness against
NPP attacks, but it cannot completely block them. More
research on the defense strategies is needed.

V. CONCLUSION AND FUTURE RESEARCH

Adversarial attacks to EEG-based BCIs have been explored
in our previous studies [17], [18], [19], [35]. All of them were
evasion attacks. These approaches are theoretically important,
but very difficult to implement in practice. They all need
to inject a jamming module between EEG preprocessing
and machine learning, to add the adversarial perturbation
to a normal EEG trial. It’s difficult to implement in a
real-world BCI system, in which EEG preprocessing and
machine learning may be integrated. To generate or add the
adversarial perturbation, the attacker also needs to know a lot
of information about the target EEG trial, e.g., the start time
is needed to align it with the adversarial perturbation, but it
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is very difficult to know this. Furthermore, the adversarial
perturbations generated by these attack approaches are very
complex for a real-world BCI system to realize, e.g., different
channels need to have different adversarial perturbations,
which are very challenging to add.

Compared with previous approaches, the NPP backdoor
attack approach proposed in this paper is much easier to
implement, and hence represents a more significant security
concern to EEG-based BCI systems.

Our future research will improve the efficiency of the attack
(e.g., use fewer poisoning samples [36]) and the effectiveness
on traditional models (e.g., CSP+LR), and implement the
attacks using the principle of electromagnetic interference.
More importantly, we will develop strategies to defend against
such attacks, as the ultimate goal of our research is to increase
the security of BCI systems, instead of damaging them.
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