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Abstract

In many medical applications, interpretable models with high prediction performance

are sought. Often, those models are required to handle semi-structured data like tab-

ular and image data. We show how to apply deep transformation models (DTMs) for

distributional regression which fulfill these requirements. DTMs allow the data analyst

to specify (deep) neural networks for different input modalities making them applicable

to various research questions. Like statistical models, DTMs can provide interpretable

effect estimates while achieving the state-of-the-art prediction performance of deep neu-

ral networks. In addition, the construction of ensembles of DTMs that retain model

structure and interpretability allows quantifying epistemic and aleatoric uncertainty. In

this study, we compare several DTMs, including baseline-adjusted models, trained on a

semi-structured data set of 407 stroke patients with the aim to predict ordinal functional

outcome three months after stroke. We follow statistical principles of model-building to

achieve an adequate trade-off between interpretability and flexibility while assessing the

relative importance of the involved data modalities. We evaluate the models for an ordinal

and dichotomized version of the outcome as used in clinical practice. We show that both,

tabular clinical and brain imaging data, are useful for functional outcome prediction, while

models based on tabular data only outperform those based on imaging data only. There

is no substantial evidence for improved prediction when combining both data modalities.

Overall, we highlight that DTMs provide a powerful, interpretable approach to analyzing

semi-structured data and that they have the potential to support clinical decision making.
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1 Introduction

Although prevention, diagnosis and treatment of stroke have improved largely, it remains one

of the leading causes of long term disability and death worldwide (Benjamine et al., 2019).

Each year, approximately 15 million people experience a stroke, 40% die and 30% suffer lasting

functional disability. To achieve the best possible outcome, patients have to be treated as fast

as possible and decisions for or against different treatment options have to be made under

immense time pressure. For clinical studies, the patient’s functional outcome three months

after hospital admission is primarily used to assess treatment success. Functional outcome

is quantified on the modified Rankin Scale (mRS), an ordinal score comprising seven levels

ranging between no symptoms at all (mRS of 0) and death (mRS of 6, Quinn et al., 2009).

Often, neurologists are not directly interested in predicting the exact class of the mRS but

rather in stratifying the chances of a patient having a favorable (mRS of 0–2) vs. unfavorable

(mRS of 3–6) functional outcome (Weisscher et al., 2008).

Semi-structured data comprise the basis for various decisions in medicine (e.g., in stroke

and cancer, Ebisu et al., 1997; Jafari et al., 2018). For instance, when predicting functional

outcome in stroke patients, unstructured data such as brain images resulting from Computed

Tomography (CT) or Magnetic Resonance Imaging (MRI) are as important as structured data,

like tabular patient and clinical characteristics (Copen et al., 2011). Different brain imaging

modalities provide insight into the extent of tissue injury, the exact location of the stroke lesion

as well as previous brain infarcts. While in clinical practice, information from brain imaging

is frequently used for difficult clinical decisions, functional outcome prediction is limited with

current image analysis strategies (see Section 1.1). It is currently an open question to what

extent the imaging data and tabular data help in reliably predicting functional outcome.

In a previous study, Hamann & Herzog et al. (2021) found no additional benefit for stroke

outcome prediction when adding expert-derived image features alongside clinical features.

Trustworthy models for outcome prediction relying on data of both modalities are lacking but

of high interest to the neurologist to assess the vast amount of complex medical data under

immense time pressure.

Recently, machine learning (ML) and deep learning (DL) models in particular, have proven

outstanding prediction results on unstructured data like images. The models are fast, precise

and reproducible when it comes to analyzing the large amount of data appearing in daily

clinical practice (e.g., Campanella et al., 2019). Nonetheless, there is often distrust in ML

derived predictions, which is mainly due to their “black-box” character (Rudin, 2019). Ques-

tions like “How does the model come to its prediction?”, “How certain is the model about the

prediction?”, or “What is the impact of different patient features on the prediction” have to

be answered, in order for medical experts to trust the model. Therefore, ML models should

not only focus on achieving the most accurate predictions but also on interpretability and

uncertainty, i.e., the models should be tailored to provide a distributional outcome prediction
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instead of a point prediction.

We present deep transformation models (DTMs) to analyze semi-structured data. DTMs

unite classical statistical models with (deep) neural networks, provide distributional outcome

predictions, and achieve interpretable model parameters without sacrificing the high predic-

tion performance of deep learning models. We demonstrate the use of DTMs on data of

patients admitted to the hospital due to stroke symptoms. In particular, we present models

for predicting a patient’s functional outcome measured by the ordinal mRS three months

after hospital admission that rely on tabular data, brain imaging or a combination of both.

We apply DTMs on a semi-structured data set of 407 stroke patients to model the condi-

tional distribution of a patient’s functional outcome three months after hospital admission.

We describe briefly how DTMs can be used to model continuous or censored outcomes, like

time-to-event data, which makes them applicable to many different research questions. We

discuss how DTMs yield interpretable effect estimates of the different input modalities and

how the model arrives at its predictions. Moreover, we highlight baseline-adjusted DTMs

conditioning on a patient’s pre-stroke mRS, which is expected to be strongly predictive of

outcome. Baseline-adjusted DTMs for un- and semi-structured data are novel and of high

interest to data analysts working in medical research, in which integrating baseline variables

for outcome prediction is a common requirement.

1.1 Related work

In the following, we describe work related to semi-structured distributional regression ap-

proaches as DTMs.

Classical regression models Classical regression models like logistic regression or Cox

proportional hazard models are the standard when analysing structured data (e.g., tabular

features) in medical applications. They are considered highly trustworthy because they are

transparent, interpretable and provide uncertainty measures (e.g., Steyerberg, 2019). How-

ever, unstructured data like images or text cannot directly be analyzed with such models.

First, tabular features have to be extracted from the unstructured data to be subsequently

analyzed in a regression model – potentially together with other tabular data (e.g., Thiran

and Macq, 1996). Yet, this features engineering step is disconnected from optimizing the

model parameters and necessarily discards information, which makes it difficult to know if

the engineered features reflect relevant information in the original data well enough.

Deep neural networks (Deep) neural networks (DNNs), on the other hand, learn relevant

features for a task at hand as a part of the model fitting process and therefore omit the

feature engineering step while they can be trained on structured data, unstructured data or

a combination of both (Goodfellow et al., 2016). For instance, previous work has focused on
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analyzing combinations of image and tabular data to predict stroke patient outcomes with

DNNs. Pinto et al. (2018) used a model consisting of a convolutional neural network (CNN)

for the image data where they attach tabular data to the feature vector in the dense part

of the CNN. This enables interactions between image and tabular data. Another pilot study

for stroke outcome prediction used a combination of a CNN and a dense NN for integrating

image and tabular data into one model (Bacchi et al., 2020). However, like the majority of

the DNNs, the existing approaches are black box models which do not quantify uncertainty.

They lack interpretable model parameters and estimate point predictions like the conditional

mean rather than a conditional outcome distribution.

Distributional regression Distributional regression focuses on estimating an entire condi-

tional distribution rather than the first conditional moment(s) (Kneib et al., 2021). Therefore,

when fitted by empirically optimizing a proper score like the negative log likelihood, a dis-

tributional regression model directly quantifies aleatoric uncertainty inherent in the data. To

achieve a well fitting distributional regression model, a complex conditional outcome distri-

bution might be required. Generalized linear models (GLM) are based on members of the

exponential family, defined by the first two moments, for modeling the conditional outcome

distribution while they provide interpretable model parameters. Generalized Additive Models

for Location, Scale and Shape (GAMLSS) extend GLMs by allowing to specify all parameters

of the assumed outcome (Stasinopoulos and Rigby, 2007). A GAMLSS implementation with

flexible specification of the conditional moments of PY |X=x using deep neural networks is, for

example, presented in (Rügamer et al., 2020). However, these models still require the choice

of a parametric family of conditional outcome distributions.

Transformation models for distributional regression Transformation models (TMs)

are a more recent method for distributional regression, which do not require to pre-specify

the family of the outcome distribution (Hothorn et al., 2014, 2018). In TMs the condi-

tional outcome distribution is decomposed into a simple, parameter free, target distribution

FZ (e.g., normal or logistic) and a conditional transformation function h(y|x), such that

FY |X=x(y) = FZ(h(y|x)). More details are given in Section 2. Independent of TMs, normal-

izing flows were developed in the deep learning community (Rezende and Mohamed, 2015),

which are based on the same idea as TMs. But while normalizing flows solely aim at pre-

dicting a flexible (conditional) distribution and constructing the transformation function as a

chain of simple transformations, TMs are tailored for interpretable distributional regression

models. The construction of the transformation function and the choice of the simple distri-

bution FZ give rise to extremely flexible TMs for conditional distributions. For instance, Sick

et al. (2021) and Baumann et al. (2021) use FZ = Φ and predict different outcome distri-

butions with variously flexible transformation functions on commonly used benchmark data

sets in deep learning and demonstrate state-of-the-art prediction performances. Rügamer
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et al. (2021) use DTMs for time series data by including auto-regressive components in the

transformation function.

(Deep) transformation models for ordinal outcomes The main application of this ar-

ticle features an ordinal outcome (mRS). Models for the conditional distribution of an ordinal

outcome given covariates like the proportional odds logistic regression model have been stud-

ies in statistics for several decades (McCullagh, 1980). Baseline-adjusted proportional odds

models have been described from a transformation-model perspective in Buri et al. (2020).

However, only recently a special DTM, focusing on ordinal neural network transformation

models (ontrams) has been developed in deep learning and applied to several publicly avail-

able (non-medical) data sets (Kook & Herzog et al., 2022b). However, DTMs were not yet

applied in the context of stroke.

Transformation ensembles Ensembling in terms of aggregating the predictions of multi-

ple models to improve prediction performance is commonly seen in practical applications. In

the field of deep learning, ensembling often means aggregating the predicted probabilities of a

few DNNs that possess the same architecture and are trained on the same data after random

initialization Lakshminarayanan et al. (2017). These deep ensembles are not only used to

achieve more accurate predictions but also to quantify epistemic uncertainty by means of the

variation of the different predictions. However, the special structure and the interpretability

of deep TMs are in general lost after aggregating them via deep ensembling. Kook et al.

(2022a) recently developed transformation ensembles which aggregate DTMs on the scale of

the transformation function preserving structure and interpretability (see Section 2).

This article is organized as follows. Section 2 presents detailed background on distri-

butional regression models with semi-structured data and the experimental setup including

model evaluation. Results are presented in Section 3. We end with a discussion of the various

types of questions that may be answered by deep distributional regression models like DTMs

in Section 4.

2 Methods

In the following, we briefly introduce TMs which are used to integrate semi-structured data,

model highly flexible conditional outcome distributions, and provide interpretable model pa-

rameters. Since our application features an ordinal outcome, we will pay special attention to

this case.

2.1 Distributional regression with transformation models

In TMs the problem of estimating the potentially complex conditional outcome distribution

of (Y |X = x) is approached by learning a parameterized monotone transformation h(y|x;θ)
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which maps between the distributions of (Y |X = x) and the latent variable Z. The distribu-

tion of the latent variable Z (with log-concave density) has to be defined a priori. Usually, a

parameter-free distribution, such as the standard Gaussian or logistic distribution, is chosen

(see Fig. 1).
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Figure 1: TMs for continuous (a) or ordinal categorical outcome (b). The lower right part of
each panel shows the conditional density of Y given x, which is mapped onto the density of the
latent variable Z (see upper left part in each panel). The transformation is done via a monotone
transformation function h (upper right part). This transformation function, can be continuous (a)
or discrete (b).

The parameters θ in h(y|x; θ) determine the functional form of the transformation function

and thus the corresponding conditional outcome distribution (we drop θ in the following to

simplify notation). The parameters are fitted via maximum likelihood, i.e., by minimizing

NLL = − 1

n

n∑
i=1

`i(θ), (1)

where `i is the log-likelihood contribution of the i-th training observation.

In case of a continuous outcome, the likelihood contribution of an exact observation (y,x)

is given by the value of the conditional density at the observed outcome fY |X=x(y) which

can be determined via fZ and h by using the change of variables formula fY |X=x(y) =

fZ(h(y|x)) · h′(y|x). The transformation function h is a smooth function (see Fig. 1a) which

can be modeled via a basis expansion with basis functions a(·), yielding a(y)>θ. A common

choice for a(·) are polynomials in Bernstein form aBs,P (y) of order P . Here the required

monotonicity of h can be easily guaranteed via linear constraints on the parameters θ (Hothorn

et al., 2018). Complex dependence on the input x can be achieved by controlling θ(x) via a

deep NN.

If a continuous observation is censored, which occurs especially often in survival data, the

outcome is measured as an interval y ∈ (
¯
y, ȳ] and the likelihood contribution can be derived

from the cumulative distribution function, as FZ(h(ȳ|x))− FZ(h(
¯
y|x)).
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For an ordered categorical outcome, the discrete monotone increasing transformation func-

tion h maps the observed outcome classes (yk,x) to the conditional cut points h(yk|x), k =

1, . . . ,K − 1 of the latent variable Z, as illustrated in Fig. 1b. This allows to view the ordinal

outcome as result of an underlying continuous latent variable Z with interval-censored ob-

servations. The likelihood contribution of an observation (yk,x), given by the probability pk

for the observed class yk, can correspondingly be determined by the area under fZ between

the cut points h(yk|x) and h(yk−1|x) and is computed as pk = FZ(h(yk|x))−FZ(h(yk−1|x)).

If dummy-encoding is used for yk, i.e., the class k is encoded by a vector a(y) of length K

which holds a one at position k and zeros elsewhere, then h is given by h(yk|x) = a(y)>θ(x)

with θ(x) being constrained to θ1(x) ≤ θ2(x) ≤ · · · ≤ θK(x) = +∞.

2.1.1 Interpretability in transformation models

To achieve the same interpretability as in commonly used regression models, such as propor-

tional hazard or proportional odds models, the flexibility of h needs to be restricted. This can

be done by decomposing h in a baseline transformation (intercept function) h0 which does

not depend on the input data and one or several shift terms h(y|x) = h0(y) − shift(x). In

such a shift model, h0 determines the shape of the transformation function h and only the

shift terms depend on x, moving h up and down (see Fig. 1). A particularly simple example

is a linear shift model of some tabular input data xj , j ∈ 1, . . . , J , which looks as follows

for a continuous outcome h(y|x) = h0(y) − x>β. Depending on the chosen distribution for

Z the parameters β have a straightforward interpretation. A summary of commonly used

distributions for FZ and the corresponding interpretational scales is given in Siegfried and

Hothorn (2020).

When choosing e.g., the minimum extreme value distribution for Z, i.e., FZ(z) = 1 −
exp(− exp(z)), the parameters βj , j = 1, . . . , J can be interpreted as log hazard-ratios. A

well-known example is the proportional hazard model that is often used for survival analysis,

where the bounded continuous outcome is a survival time. Survival analysis poses additional

challenges. For instance, usually not all patients experience the event of interest during follow-

up, leading to (right-) censoring with y ∈ (
¯
y,+∞), which can be easily handled in TMs, as

described above.

Semi-structured regression In semi-structured regression, the problem is to combine

both structured data, e.g., tabular features x, and unstructured data, e.g., images B, in one

single model. This can be realized with NNs, which take both structured and unstructured

data as input and control the parameters of h (see Fig. 2). Depending on the architecture of

the NNs, more or less flexible models can be described.

The most flexible model is achieved, if h depends in complex manner on all inputs corre-
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h(y|B,x) = a(y)>θ − η(B)− x>β

B η(B)

x1

x2
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x>β

β1
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Figure 2: A SI-CSB-LSx DTM with simple intercepts, not depending on the input, a linear
shift term in the tabular input data x and a complex shift term in the images B. All additive
components of h are controlled by NNs, i.e., shallow dense NNs without hidden layer for SI and
LSx and a three-dimensional CNN for CSB, which are jointly fitted by minimizing the NLL via
stochastic gradient decent.

sponding to a complex intercept model with

h(y|B,x) = a(y)>θ(B,x), (2)

where a NN controls θ(·) depending on imaging data (B) and tabular data (x) and thus

potentially allowing for interactions between B and x. Without restricting θ(·) in any way

besides being monotone increasing, maximal flexibility is achieved. Most often in biostatistics,

a shift model is assumed for h (i.e., a proportionality assumption is made) and no interactions

between the input data are allowed. In this scenario, the model simplifies to

h(y|B,x) = a(y)>θ − η(B)− β(x), (3)

where β and η are controlled by two separate NNs and are interpretable, e.g., as log odds-

ratios if the logistic distribution FZ(z) = expit(z) = 1
1+exp(−z) is chosen. If a linear effect is

assumed for each tabular feature, and the effect of each feature should be interpretable as log

odds-ratio, then further simplifications have to be made by using a linear shift term for the

tabular data

h(y|B,x) = a(y)>θ − η(B)− x>β. (4)

Such a model with simple intercept a(y)>θ, linear shift x>β, and complex shift η(B) term is

8



depicted in Fig. 2 and referred to as SI-CSB-LSx in this work.

In general, the primary goal is to develop a model with adequate prediction performance.

Usually, simpler (i.e., fewer parameter) and more interpretable models are preferred over

black boxes. Only if the more complex model yields a substantial improvement in terms of

prediction performance, the more complex model should be preferred. We investigate the

ramifications of model selection in Section 3.

Transformation ensembles We construct transformation ensembles of DTMs which are

fitted on the same data but with different random initialization. Transformation ensembles

average the predicted transformation functions of the DTMs, which preserves the model struc-

ture and interpretability, improves prediction performance, and allows to quantify epistemic

uncertainty (Kook et al., 2022a).

2.2 Data

Our cohort consists of 407 patients who are either diagnosed with ischemic stroke (295 pa-

tients) or transient ischemic attack (TIA, 112 patients). As opposed to stroke, TIA causes

only temporary stroke symptoms and no permanent brain damage. The cohort was collected

retrospectively. All patients were admitted to the University Hospital of Zurich between 2014

and 2018 and had MRI records in the acute phase. Ethical approval for the study was obtained

from the Cantonal Ethics Committee Zurich (KEK-ZH-No. 2014-0304).

In this study, we use the stroke patient’s brain imaging and tabular baseline data for func-

tional outcome prediction. Diffusion Weighted Images (DWIs) represent brain pathology in a

3D manner as ordered sequences of multiple 2D images per patient. On DWIs, stroke lesions

appear as hyper-intense signals, typically on multiple, subsequent images in the sequence (see

Fig. 3). They give valuable insight into stroke location and severity. TIA patients show no

visible lesion on DWIs. All collected DWIs were recorded within three days after hospital

admission. After preprocessing, each 3D image is of dimension 128×128×28 with zero mean

and unit variance (see Fig. 3). We consider baseline covariates, i.e., patient characteristics

including age and sex, risk factors including hypertension, prior stroke, smoking, atrial fib-

rillation, coronary heart disease (CHD), prior transient ischemic attack (TIA), diabetes and

hypercholesterolemia, the National Institutes of Health Stroke Scale at baseline (NIHSS at

BL) highlighting stroke symptom severity as an ordinal sum score with 42 levels, and the pre-

stroke mRS (mRS at BL) informing about the patient’s functional disability before stroke.

All factor variables are dummy encoded and all other tabular features are standardized to

make the magnitude of estimated parameters comparable.

The outcome of interest is the ordinal mRS, which consists of seven levels: 0 = no symp-

toms at all, 1 = no significant disability despite symptoms, 2 = slight disability, 3 = moderate

disability, 4 = moderately severe disability, 5 = severe disability, 6 = death (Grotta et al.,
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2016). In our cohort of 407 patients we observed the following nk, k = 1, . . . ,K for the K = 7

outcome classes: n0 = 184 (45.2%), n1 = 88 (21.6%), n2 = 60 (14.7%), n3 = 25 (6.1%),

n4 = 20 (4.9%), n5 = 5 (1.2%), n6 = 25 (6.1%). Fig. B1 in the Appendix shows the distribu-

tion of predictors stratified by the outcome among all 407 patients. Since in clinical practice,

the neurologists are often primarily interested in the patient’s chance for a favourable (mRS

≤ 2, nf = 332, 81.6%) vs. unfavourable (mRS > 2, nu = 75, 14.6%) outcome (Weisscher

et al., 2008), we additionally considered the binary mRS.

Figure 3: A pseudo 3D diffusion weighted image of an example stroke patient. 2D slices where
a stroke lesion is visible are labeled with a 1 and 0 otherwise. Each patient is represented by 28
diffusion weighted images (DWIs) after pre-processing. Ischemic stroke lesions appear as hyper-
intense signal on one or multiple images of a sequence.

2.3 Experimental setup

Models We compare models with varying degrees of interpretability and flexibility for or-

dinal mRS prediction (see Tab. 1). The goal is to obtain a model which achieves the highest

possible prediction power while being adequately interpretable. In all models we choose

FZ(z) = expit(z), such that shift parameters in h can be interpreted as log odds-ratios. By

comparing models based on tabular data, image data and a combination of both, we assess

if tabular and image data carry complementary information and which of the two contains

more information for outcome prediction. As a baseline benchmark, we consider performance

metrics of an unconditional model, which takes no input data and hence consists of a simple

intercept (SI) only. This model predicts the prevalence of each outcome class. To assess binary

mRS prediction, we consider the outcome as censored and sum up the predicted probabilities

of the respective ordinal model. The probability for a favorable outcome is the sum across

the probabilities for classes 0 to 2, the probability for unfavorable outcome is the sum across

the probabilities for classes 3 to 6.

We define an image-only model which is fitted using the binary mRS (CIB-Binary in

Tab. 1). This dichotomized version of the mRS can be viewed as a censored version of the
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Table 1: Summary of all models used for binary and ordinal functional outcome prediction in the
stroke data. If applicable, the transformation function is given. The model names are combinations
of the components (simple/complex intercept/shift), the subscript indicates which modality enters
which component, where e.g., LSx indicates that the tabular data is the input. SI: Simple intercept.
CI: Complex intercept. LS: Linear shift. CS: Complex shift. Note that LSx includes all predictors,
including pre-stroke mRS, whereas LSmRS contains pre-stroke mRS only.

Outcome Input data Model name Transformation function

Binary mRS Images only CIB-Binary θ(B)

Ordinal mRS

None SI θk
Tabular only SI-LSx θk − x>β
Tabular only SI-CSage-LSx̃ θk − γ(xage)− x>−ageβ
Images only SI-CSB θk − η(B)
Images + tabular SI-CSB-LSx θk − η(B)− x>β
Images + pre-stroke mRS CIB-LSmRS θk(B)− x>mRSβ
Images + tabular CIB-LSx θk(B)− x>β

Tabular only GAM θk − γ(age)− x>−ageβ
Images only CIB

ordinal mRS and can therefore be directly compared to all models fitted on the ordinal scale

(see Tab. 1). We fit the CIB-Binary model primarily as a benchmark for the performance of

the models that are trained for the ordinal but evaluated for the binary mRS.

The most interpretable model for the ordinal mRS is a linear proportional odds model

based on all tabular features. It consists of a simple intercept and a linear shift in x (SI-

LSx). The SI-CSage-LSx̃ model allows the outcome to depend on age in a non-linear way by

estimating a potentially complex and continuous log odds-ratio function xage. We additionally

fit models depending on image data only (SI-CSB, CIB) and on a combination of image and

tabular data (SI-CSB-LSx and CIB-LSx models). Integrating the images as complex intercept

(CIB) rather than as complex shift term (CSB) allows to increase model complexity further.

In the image model CIB-LSmRS, we additionally adjust for the pre-stroke mRS to achieve a

fairer comparison between image-data-only and tabular-data-only.

Implementation Simple intercept and linear shift terms for tabular features are modelled

with fully connected NNs without hidden layers. A fully connected NN with multiple hidden

layers is used to integrate age as complex shift term. The complex intercept and complex

shift terms for the images are modelled with a 3D CNN. In all models, the number of output

nodes is equal to six (since the mRS has seven levels) in NNs for intercept terms and equal

to one in NNs for shift terms. The last layer activation is always linear and no bias terms are

used.

All models are trained by minimizing the negative log-likelihood (see Eq. 1) using the

Adam optimizer (Kingma and Ba, 2015) with a learning rate of 5 × 10−5 and a batch size of

six. Augmentation of the image data is used to prevent overfitting. In addition, we use early
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stopping, i.e., we select the model weights from the epoch which shows the smallest NLL

on the validation data. More details on NN architectures, hyperparameters, augmentation

procedure and software is given in Appendix A.

Training and evaluation We randomly split the data six times into a train (80%), valida-

tion (10%) and test set (10%). This results in six fits for each model type (see table 1) which

allows us to assess the variation of the achieved test performance (see for example Fig. 4 A).

For all models, that include the image data as input, we perform transformation ensembling

(Kook et al., 2022a). For that, we train five models on the same data in each split. CNNs

controlling the image term in the model are initialized randomly. Additional SI and LSx

terms are initialized with the corresponding parameters of the SI-LSx model fitted on the

same split. This results in an ensemble model (constructed from 5 members) in each of the

six splits for each model type.

Performance Measures All models are mainly evaluated with proper scoring rules (Gneit-

ing and Raftery, 2007). The score we consider primarily for model comparison is the test neg-

ative log-likelihood (NLL, Good, 1952, a.k.a. log-score). We further assess the Brier score for

the binary outcome. For the ordinal functional outcome, we calculate the ranked probability

score as an additional proper score (Bröcker and Smith, 2007). As measures of discriminatory

ability, we compute AUC and accuracy for binary outcomes and quadratic weighted Cohen’s κ

for the ordinal outcome (Steyerberg, 2019). We construct 95% bootstrap confidence intervals

by taking B = 1′000 bootstrap samples of size ntest of test predictions (e.g., NLL contribu-

tions) for each of the S = 6 random splits of the data, by computing the 2.5th, 50th, and

97.5th percentile of the B bootstrap metrics averaged over the S splits.

3 Results and discussion

We first present results for predicting and discriminating binary and ordinal mRS. Then, we

discuss how to interpret linear and non-linear model components.

Binary mRS prediction The test performance and calibration plots of all models from

Tab. 1 evaluated for the binary mRS are summarized in Fig. 4. We first compare models which

only include the image modality and only differ in the number of classes (CIB-Binary trained

with two vs. CIB trained with seven classes). The CIB-Binary model shows a worse average

performance and a higher variability in predictions across the six random splits compared to

the CIB. This highlights the importance for training with all available class levels rather than

with a dichotomized version of the outcome – whenever possible. The average performance

of the CIB-Binary is similar to that of the unconditional model (SI) indicating that the

model has primarily learned the class frequencies. Decreasing model complexity by modelling
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Figure 4: Test error (A) and calibration plots (B) of transformation ensembles (blue) and reference
models (grey) evaluated for the binary mRS outcome (mRS 0–2 vs. mRS 3–6). In A, the test
performance is quantified in terms of negative log-likelihood (NLL), Brier score, discrimination
error (1−AUC) and classification error (1−ACC). From the test performance in the six random
splits (indicated by different symbols) we consider the average test error and 95% bootstrap (B =
1′000) confidence intervals. For the calibration plots in B, the predicted probabilities are split at
the 0.25, 0.5 and 0.75 empirical quantiles to produce the four bins for which the average predicted
probabilities and the observed proportion of an unfavorable outcome are computed. The confidence
interval is plotted at the midpoint of the respective bin. Average calibration across all six random
splits are shown as thick line whereas the calibration of the single splits are shown as thin lines.

the image data with a complex shift (SI-CSB) rather than with a complex intercept (CIB)

leads to a comparable performance. Both models, SI-CSB and CIB, achieve a better average

prediction performance than the unconditional model (SI) indicating that the image data

contains information for mRS binary prediction.

The most interpretable model based on tabular features only (SI-LSx) shows a better

prediction performance than all models based on image data only (CIB, CIB-Binary, SI-CSB)

in terms of NLL and Brier Score. Like the models based on image data only, the SI-LSx

outperforms the unconditional model (SI, Fig. 4). This indicates that not only image but also
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tabular data is useful for binary mRS prediction. For a fairer comparison of image-data-only

vs. tabular-data-only, we adjust for pre-stroke mRS in the most flexible image model. In this

comparison, the baseline adjusted model (CIB-LSmRS) shows a performance similar to the

unadjusted model (CIB).

The semi-structured models incorporating both image and tabular data (CIB-LSxand SI-

CSB-LSx) achieve a similar or slightly better average performance than the model including

tabular data only (SI-LSx, see Fig. 4). CIB-LSxdoes not assume proportional odds for the

image modality and outperforms SI-CSB-LSxon some splits. The latter assumes proportional

odds for both tabular and image data. Overall, there is no convincing evidence that combining

tabular and imaging data in a CIB-LSxmodel improves binary mRS prediction. The added

image information increases variability in prediction performance.

Scores highlighting discriminatory ability of the models (AUC and accuracy) show similar

results. Slight differences in the ranking of models are possible because these measures are

improper scoring rules (Gneiting and Raftery, 2007). Note that SI has no discriminatory

ability (AUC = 0.5) because it always predicts the most frequent class (mRS 0). The relative

test performance to the benchmark SI-LSx model (i.e., the differences in performance within

splits) can be found in Appendix B.2.

Well-calibrated predictions are hard to achieve for highly imbalanced outcomes. The

calibration plots in Fig. 4 show no substantial evidence for miscalibration. However, all models

seem to slightly over-predict the probability for an unfavorable outcome. This effect is most

pronounced in the models based on image data only (CIB, CIB-Binary). The semi-structured

and tabular data-only models show a slightly better calibration.

Ordinal mRS prediction Fig. 5 summarizes the test performance and calibration plots

for all models in Tab. 1 trained and evaluated for the ordinal mRS. As in the binary case, the

models based on image (CIB, SI-CSB) and tabular data only (SI-LSx) show better average

prediction performances in terms of NLL, RPS and QWK than the unconditional model (SI).

And again, the most interpretable model based on tabular data only (SI-LSx) outperforms

the more flexible black box image-only models, indicating that tabular features contain more

information for ordinal mRS prediction than the images (at the available sample with only

407 patients). As in the binary case, we find no substantial evidence that using tabular

and image data together in a semi-structured model (CIB-LSx, CIB-LSmRS or SI-CSB-LSx)

improves average test performance compared to SI-LSx (see Fig. B3).

In terms of calibration (Fig. 5B) we again observe that all models over-predicted the

probability for an unfavorable outcome.

Overall, we can not draw a definitive conclusion about which data modality (tabular or im-

age data) is more useful for functional outcome prediction and if adding image to tabular data

aids mRS prediction. The confidence intervals overlap largely and average test performance

is similar. In particular, this can be attributed to the small sample size. In Appendix B.3, we
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Figure 5: Test error (A) and calibration plots (B) of transformation ensembles (blue) and reference
models (grey) evaluated for the ordinal mRS outcome. In A, test error is quantified in terms of
negative log-likelihood (NLL), ranked probability score (RPS), and discrimination error (1−QWK).
The average test error and 95% bootstrap (B = 1′000) confidence intervals are depicted for six
random splits of the data (indicated by the different symbols). For the calibration plots in B, the
predicted probabilities are split at the 0.25, 0.5 and 0.75 empirical quantiles to produce the four
bins for which the average predicted probabilities and the observed proportion of an unfavorable
outcome are computed. The confidence interval is plotted at the midpoint of the respective bin.
Average calibration across all six random splits is shown as thick line whereas the calibration of
the single splits is shown as thin lines. 95% confidence intervals are averaged across classes and
splits.

conclude that collecting more data could further enhance performance. When we artificially

reduce sample size via sub-sampling and refit all models, we find no evidence of plateau-

ing prediction performance. However, no differential increase in prediction performance is

observed for the tabular-data-only model compared to the most complex DTM.

Interpretation of model parameters Fig. 6 visualizes the effect sizes of the tabular

features in the linear shift terms LSx of different models. Because the logistic distribution is

chosen for Z, the coefficients β in the linear shift term are interpretable as log odds-ratios.

Comparing tabular-data-only models with semi-structured models shows that adjusting for
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Figure 6: Pooled log odds-ratios (β̂) across all six random splits and 95% bootstrap (B = 1′000)
confidence intervals for all models with linearly included tabular features (see Section 2.2). With
the exception of age and NIHSS, all features are categorical and the plot shows log odds-ratios with
respect to the reference level (note that the largest observed pre-stroke mRS is 4). The coefficients
are based on standardized features and sorted with respect to an increasing order.

the images (in CIB-LSx or SI-CSB-LSx) changes the β̂ estimates only slightly. The log odds-

ratios are comparable across all variables because the variables are standardized. Thus, the

effect sizes reflect a change in log-odds of a worse outcome for a one standard deviation

increase in the respective variable. Accordingly, Fig. 6 shows that the strongest prognostic

factors are the pre-stroke mRS and NIHSS on admission. This is expected when predicting

three months mRS. The pre-stroke mRS captures functional disability of a patient before

stroke while NIHSS measures stroke severity on admission. This additionally emphasizes the

importance for being able to adjust for pre-stroke mRS.

Similar to both linear and complex shift terms, complex intercepts of categorical predictors

are directly interpretable. Here, cumulative baseline log-odds of the outcome are estimated for

each stratum of the predictor. Thus, differences in the complex intercepts can be interpreted

as class-specific log-odds ratios (Buri et al., 2020). For continuous predictors or images, this

simple interpretation is lost to an extent which depends on the complexity of the neural

network component that is modelling the complex intercept term.

Alongside interpretation, quantifying uncertainty in both predictions and parameters is

of high importance, but generally difficult to achieve in deep learning models (Wilson and

Izmailov, 2020). The use of transformation ensembles and random splits allows uncertainty
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quantification for the coefficient estimates in terms of bootstrap confidence intervals. This

way, both aleatoric and epistemic uncertainty are captured. Note, that the model coefficients

of the five (members) times six (splits) are repeatedly sampled and that the models are not

additionally refitted to obtain the 95% confidence intervals.

Figure 7: The smooth log-odds function for age fitted by a GAM (a generalized additive propor-
tional odds model using the mgcv package), depicted as blue solid line along with point-wise 95%
confidence band (dashed lines), and by a DTM (SI-LSx̃-CSage) fitted on 50 bootstrap samples,
depicted as grey lines. In addition, the linear effect of a SI-LSx is displayed (red line). Although
both models, GAM and DTM, allow for a non-linear effect in age, there is no evidence against a
linear effect of age.

To investigate if assuming a linear age effect is appropriate, we evaluate models including

the age effect with a flexible function, θk − γ(xage)− x>−ageβ. We show the results of a GAM

(a generalized additive proportional odds model) and a DTM (SI-LSx-CSage) which depict

the estimated age effect function as shown in Fig. 7. The GAM and the DTM agree in the

functional form of the effect, which is constant up to a standardized age of 0.5 (corresponding

to an age of 75 years) and then increases the odds for a worse outcome. However, there is

no evidence against a linear effect when we consider the point-wise confidence band for the

GAM. Note how the GAM enforces smoothness of the estimated function, whereas the neural

network produces a piece-wise linear estimate.

4 Summary and outlook

DTMs provide a novel and flexible way to integrate multi-modal data for interpretable pre-

diction models for various kinds of outcomes. We demonstrate the potential of DTMs on

a semi-structured data set with an ordinal outcome (mRS) describing the functional dis-
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ability of stroke patients three months after hospital admission. We discuss how the best

trade-off between interpretability and flexibility can be achieved. In essence, we follow the

top-down model approach to model building for TMs (Hothorn, 2018). By investigating the

interpretable model parameters, we judge the relative importance of the predictors and show

that in a baseline-adjusted DTMs, the base-line mRS is the variable with the most relevant

predictive effect. We also investigate the question, which input modality is most important

for functional outcome prediction and whether predictive performance in terms of NLL and

calibration can be improved by including both tabular and imaging data. While for binary

mRS prediction, models seemed to slightly benefit from the addition of brain imaging data,

this is not observed for ordinal mRS prediction. In general, a definitive judgement on whether

the images contain information to aid mRS prediction cannot be made. This is because, all

results have to be interpreted conditional on (i) the small sample size and (ii) limited com-

putation time for joint hyper-parameter tuning. When artificially increasing the sample size

up to the available 407 patients, there is no evidence for differential performance gain of the

semi-structured over tabular-data-only models. However, extrapolating these results to larger

sample sizes is in general extremely difficult.

In general, deep neural networks (including DTMs) are difficult to train with limited

sample size and require a carefully chosen optimization procedure. For instance, transfer

learning in terms of adapting the weights of a CNN that is already trained on a different data

set by re-training it with the data of interest potentially improves predictive performance

even with smaller sample sizes. However, methods for transferring the weights of well-known

2D CNN architectures to their 3D counterparts did not improve predictive performance in

our application (results not shown). In general, it is difficult to access weights of trained 3D

CNNs to then fine-tune the models.

For ordinal functional outcome prediction in our cohort, the model SI-LSx seemed to be

most appropriate when including tabular features only and modelling them as linear effects.

Here, classical statistical inference provides uncertainty measures (confidence intervals) and

the model is fully interpretable. Using semi-structured models, including tabular and brain

imaging data, improved binary mRS prediction to some extent. However, including images

as a complex intercept or complex shift reduced interpretability of the model and increased

variability.

TMs also work naturally for other kinds of outcomes, such as survival times, which often

feature censored observations (e.g., Hothorn et al., 2018). Because the dichotomized mRS

could be viewed as a censored version of the ordinal mRS, the very same models, trained on

ordinal outcomes, can also be used for different dichotimizations (or binnings) of the ordinal

outcome, without the need to re-fit the models on the binned outcome (Lohse et al., 2017).

In summary, being able to fit distributional regression models with complex outcome types

and multi-modal input data and following statistical principles for model building opens up

vast areas of applications. Especially in medicine, these models have the potential to aid
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decision making, because of their state-of-the-art prediction performance and transparency.
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tion models. In Machine Learning and Knowledge Discovery in Databases. Research Track,

pages 3–18. Springer International Publishing, 2021. doi: 10.1007/978-3-030-86523-8 1.

Emelia J. Benjamine, Paul Muntner, Alvaro Alonso, Marcio S. Bittencourt, Clifton W. Call-

away, April P. Carson, Alanna M. Chamberlain, Alexander R. Chang, Susan Cheng, et al.

Heart Disease and Stroke Statistics – 2019 Update: A Report From the American Heart

Association. Circulation, 139(10):56–528, 2019. doi: 10.1161/CIR.0000000000000659.
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A Computational details

For reproducibility, all code is made publicly available on GitHub https://www.github.com/

LucasKookUZH/dtm-usz-stroke.

Neural Network architectures The simple intercept terms are modelled with a fully

connected single-layer NN without hidden layers and linear activation. No bias term is used.

The number of output nodes is always equal to the number of classes minus one while the

input is a vector of ones.

The linear shift terms for the tabular data are modelled with fully connected NNs without

hidden layers and a linear function as activation. No bias term is used. The number of input

units is equal to the number of tabular features while the number of units in the last layer is

equal to one.

The complex shift term for the variable age is modelled with a fully connected NN with

two hidden layers with 16 units each, ReLU activation function and L2 regularization. The

number of units in the last layer is equal to one and the activation function in this layer is

linear.

The complex intercept and complex shift terms for the image data are modelled with a 3D

CNN. The convolutional part of the 3D CNN consists of four convolutional blocks including a

convolutional layer with filter size 3×3×3 and a max pooling layer of size 2×2×2. The first

two layers use 32 filters, the following two use 64 filters. The subsequent fully connected part

consists of two fully connected layers with 128 filters each, that are separated by a dropout

layer with dropout rate 0.3. The activation function in all layers, expect the last one, is the

ReLU non-linearity. In case the image data is included as complex intercept term, the number

of units in the last layer is equal to the number of classes minus one, i.e., one when we predict

the binary mRS and 6 when we predict the ordinal mRS. When integrated as complex shift

term, the number of units in the last layer is equal to one. The activation function in the last

layer is linear.

Training All models are fitted with stochastic gradient descent using the Adam optimizer

(Kingma and Ba, 2015) with a learning rate of 5 × 10−5 and a batch size of six. We then

use the model with the best performance on the validation data in terms of NLL. For all

experiments, the 3D images were augmented in x- and y-direction prior to every epoch using

the parameters in Tab. A1.
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Table A1: Parameter values for augmentation.

Parameter Value

rotation range 20
width shift range 0.2
height shift range 0.2
shear range 0.15
zoom range 0.15
fill nearest

All models are implemented in R 4.1.2 (R Core Team, 2020). The models are written in

Keras based on TensorFlow backend using TensorFlow version 2.2.0 (Chollet et al., 2015;

Abadi et al., 2015) and trained on a GPU. Linear proportional odds models and general-

ized additive proportional odds models are fitted using tram::Polr (Hothorn, 2020) and

mgcv::gam (Wood, 2017), respectively.

B Additional results

Here, we present descriptive statistics and additional results.

B.1 Baseline characteristics

Fig. B1 shows the distribution of predictors stratified by the outcome (90 day mRS) in the

stroke data set.

B.2 Test errors relative to reference model

Figg. B2 and B3 show the test errors relative to the reference SI-LSx model evaluated on

the binary and ordinal mRS, respectively. After removing the between-split variance, none of

the semi-structured models improve significantly upon the performance of the SI-LSx model.

Since the SI-LSx performance was not bootstrapped (the constant split-wise mean was sub-

tracted within split) there is no variance in the average AUC and QWK (because the SImodel

does not have any discriminatory ability, i.e., AUC = 0.5 and QWK = 0) across splits for the

unconditional SI model.

B.3 Sample size

Deep learning typically requires thousands of training images to excel at prediction perfor-

mance over conventional statistical models (Goodfellow et al., 2016). However, our cohort,

like most medical data sets, contained much fewer observations (n = 407). To study if collect-

ing more data was a promising approach to enhance the model performance, we artificially
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Figure B1: Baseline characteristics stratified by 90 day mRS in the stroke data set.
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Figure B2: Test error of transformation ensemble models (blue) and reference model (grey)
evaluated for the binary mRS outcome (mRS 0–2 vs. mRS 3–6) relative to the test error of the
benchmark SI-LSx model (i.e., a difference of 0 indicates the same performance as the SI-LSx

model). The test error is quantified in terms of binary negative log-likelihood (NLL), Brier score,
1− area under the ROC curve (AUC) and classification error (1−ACC). The average test error and
95% bootstrap (B = 1′000) confidence intervals (CI) are depicted for six random splits (indicated
by different symbols). The CIs are calculated by substracting the fixed SI-LSx performance per
split.

reduced sample size by sub-sampling and refitted the models (see Fig. B4). In this experiment,

the sample size is artificially reduced via sub-sampling of varying sizes and then the predic-

tion performance was measured on a hold-out set of the reduced data set. Sub-sampling is

repeated for seven sample sizes and then 30 train/validation/test splits (with a ratio of 8:1:1)

are used for fitting and evaluating the semi-structured CIB-LSx and tabular-data-only model

SI-LSx. We observe that the prediction performance, i.e., the test NLL, improves for both
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Figure B3: Test error of transformation ensemble models (blue) and reference model (grey) eval-
uated for the ordinal mRS outcome relative to the test error of the benchmark SI-LSx model (i.e., a
difference of 0 indicates the same performance as the SI-LSx model). The test error is quantified
in terms of negative log-likelihood (NLL), ranked probability score (RPS) and discrimination error
(1 − QWK). The average test error and 95% bootstrap (B = 1′000) confidence intervals (CI)
are depicted for six random splits (indicated by different symbols). The CIs are calculated by
substracting the fixed SI-LSx performance per split.

Figure B4: Test performance versus sample size achieved by a subsampling experiment. The
semi-structured CIB-LSx model and the proportional odds model SI-LSx are compared. Both
models are fitted to 30 random sub-samples of seven different sample sizes of the original sample
size (n = 407) and the test NLL is recorded. Both models benefit from increasing sample size. The
right panel displays the differences in NLL within split for a given sample size (i.e., the negative
log-likelihood ratio NLLR).

models with increasing sample size, indicating that the performance may further increase with

increasing sample size (left panel of Fig. B4). Directly comparing the performance of both

models for the individual splits suggests no evidence that adding the image information to

the model that contained the tabular data as input improves prediction performance. The

negative log-likelihood ratio fluctuates around zero and no trend with increasing sample size

is observable (right panel in Fig. B4).
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