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Introduction
In the last decades, NMR scientists have turned to deep learning to automatize the resonances characterization process of NMR spectra (1) to obtain a
higher level of robustness and reproducibility of the results, while speeding up the workflow. Here, we present a novel supervised deep learning method
to perform automatic detection and classification of multiplets in 1H NMR spectra. We show that an ensemble of deep convolutional neural networks is
able to effectively discriminate between non-overlapping and overlapping resonances while predicting the class of non-overlapping resonances.

Ensemble Learning Framework

Figure 1: The framework: the input spectrum is fed to 10 networks (2); the networks will give the
same output on multiplets represented in the training set, while they will produce arbitrary errors on unseen
multiplets due to the epistemic uncertainty of the model.

Input
• Training: 100000 synthetic spectra with

non-overlapping multiplets

• Testing: 10 experimental 1H NMR spec-
tra of small molecules

Networks Ensemble
• Networks’ architecture:

−→ Inception-like module with 1D
Convolutional layers

−→ Long Short Term Memory layer
−→ Softmax output

• Networks’ initialization:
−→ different weights from the same

distribution (He Normal)

• Networks’ training:
−→ different synthetic training set, with

same statistical properties

Variance Computation
The variance ∆ across networks’ outputs was
measured with the following expression (3):

∆ = −
nclasses∑

c=1
pc log (pc),

pc = 1
M

M∑
i=1

Softmax(fŴt(x)).

An optimal threshold t was found so that:

• if ∆ < t, the outputs are aggregated with
the majority voting criteria;

• if ∆ ≥ t, an out-of-distribution
resonance was detected.

Figure 2: Variance computation: segment of a
spectrum with class prediction (top) and the corre-
sponding variance values (bottom).

Results

Figure 3: Statistics on synthetic spectra:
Accuracy and F1 score (harmonic average of
Precision and Recall) of all multiplets classes are
displayed for each network (circles) with central
tendency (diamond).

Figure 4: Prediction on segments of experimen-
tal spectra.

Conclusions
• Our deep convolutional network is able to classify the multiplicity of basics isolated

multiplets, requiring as input only the real amplitudes of the NMR spectrum, without
any prior assumptions.

• Epistemic uncertainty can be effectively applied to discriminate non-overlapping and
overlapping resonances.

• Limitations: multiplets with higher-order couplings, low SINO.
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