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Abstract. The development of data science, the increase of computational pow-
er, the availability of the internet infrastructure for data exchange and the ur-
gency for an understanding of complex systems require a responsible and ethi-
cal use of computational models in science, communication and decision-
making. Starting with a discussion of the width of different purposes of compu-
tational models, we first investigate the process of model construction as an in-
terplay of theory and experimentation. We emphasise the different aspects of 
the tension between model variables and experimentally measurable observa-
bles. The resolution of this tension is a prerequisite for the responsible use of 
models and an instrumental part of using models in the scientific processes. We 
then discuss the impact of models and the responsibility that results from the 
fact that models support and may also guide experimentation. Further, we in-
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vestigate the difference between computational modelling in an interdiscipli-
nary science project and computational models as tools in transdisciplinary de-
cision support.  

We regard the communication of model structures and modelling results as 
essential; however, this communication cannot happen in a technical manner, 
but model structures and modelling results must be translated into a “narrative.” 
We discuss the role of concepts from disciplines such as literary theory, com-
munication science, and cultural studies and the potential gains that a broader 
approach can obtain. Considering concepts from the liberal arts, we conclude 
that there is, besides the responsibility of the model author, also a responsibility 
of the user/reader of the modelling results.  

Keywords: Ethics, Computational Modelling, Transdisciplinarity. 

1 Introduction 

This article deals with the responsible and ethical use of computational models in 
science, communication and decision-making. We intend to report experiences we 
collected over the last couple of years and a focussed discussion during a workshop at 
the WIVACE  2021 conference, held in Winterthur, Switzerland from Sep 15 to Sep 
17, 20211. A systematic treatment is given e.g. in [1] or earlier [2]; for a recent dis-
cussion based on case studies see [3], and an overview with a focus on philosophy see 
[4]. The societal role of artificial life has been a central topic at the ALIFE 2019 con-
ference in Newcastle, UK; various articles on the topic can be found in [5]. Computa-
tional modelling still increases its importance in science and, as we have seen during 
the COVID-19 pandemics, is recognised as a central supportive tool in political deci-
sion–making processes. We, as modellers, realised the necessity for embedding and 
relating our work into a framework that also includes ethical considerations. In this 
work, we report on our findings, mainly derived not from theoretical work but our 
daily practice.  

This report has been made possible by the joint efforts of different research pro-
jects. The leading role is thereby with the EU-funded project ACDC (Artificial Cells 
with Distributed Cores to Decipher Protein Function, funded by the European Union’s 
Horizon 2020 research and innovation programme, https://acdch2020.eu/). The work-
shop was organised in an open format but initiated and supported by ACDC.  We 
deliberately have chosen to collect examples from different fields to achieve generali-
ty and not restrict ourselves to specific research areas. Together with the open nature 
of the workshop at WIVACE 2021, this fact justifies the rather long list of co-authors. 
The first author takes the principal responsibility for the paper, the contributing co – 
authors are listed in alphabetical order. An extended version of this paper will be the 
base of a report to the EU as a deliverable for the ACDC project.  

This article focuses on computational models and not on theory in general. In our 
view, computational models are a subclass of general models. A general model may 
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define the terms of discourse; a computational model adds quantifiable relations be-
tween these terms (or, as we will define it later, uses variables subject to computa-
tion). These quantifiable relations are the basis for the implementation of a simula-
tion.  A further note on computational models and machine learning: We wrote this 
report with a somewhat “physics-oriented” interpretation of the term “computational 
model.” Roughly said, we discuss models in which the model variables have an inter-
pretation/ a semantics right from the start and do not acquire this interpretation 
throughout a training phase. We compare this to machine learning, say, an artificial 
neural net. The weights attributed to connections of neurons in a neural net have no 
interpretation before the network’s training. Furthermore, even after the training,  
relating these weights to observables after the training phase is a complicated and 
only partially understood task. However, we point out that almost everything we write 
in this article applies to models with variables with direct semantics as well as struc-
tures such as artificial neural networks. We do not discuss the issue of the semantics 
of internal variables further, but we emphasise its importance and point out that it has 
many layers. For an eloquently written discussion of the “symbol grounding” – prob-
lem, i.e. the question of how internal variables are related to objects in the internal 
world, see [6]. Note, for example, that symbol grounding can become very intricate if 
one deals with a model that works with variables with a probabilistic interpretation.  

Computational models have always been of importance. However, confluent trends 
of the last couple of years have increased the role of models in science and the rela-
tion between science and society. It is a sign of hope and the reason for optimism that 
recently, powerful youth movements and responsible politicians recommended and 
even demanded to unite behind the sciences. As scientists, we should welcome this 
trust. However, we are obligated to reflect on how we can justify this trust and how 
we have to communicate the results of computational models to avoid misunderstand-
ings and prohibit misuse.  

The responsible and ethical use of models is the main topic of this report. We dis-
cuss different aspects of the question of responsibility and ethics. Responsible use is 
closely related to several recurring requests R1-R3: 

• R1: A clarification of the differences between computational models as tools in 
science and computational models that are part of decision support processes that 
go far beyond the social context of science itself. 

• R2: A better understanding of interface processes. Models and simulations are 
powerful instruments for linking different fields of human expertise and establish-
ing a relation between the real world and different abstractions of it. First, this link-
ing between reality and abstraction requires the construction of interfaces. The 
presence of interfaces usually implies some form of translation processes, which in 
general leads to systematic information loss (because a model only represents a 
part of reality) as well as different types of translation errors (which, for example, 
can be the result of the limited precision of measurements). Second, models can 
help to connect different (abstract) universes of discourse (to use the term from 
computer science) or languages specific to social groups. As scientists, we are used 
to working within some more or less well-defined area of discourse in which a 
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common language exists, and the discussion participants share an implicit under-
standing of boundary conditions, interpretation rules, and the like. As soon as one 
uses the results of scientific discourse as input for a more general and interdiscipli-
nary decision support process, one must not take this implicit understanding for 
granted.  Scientists have to prepare the output of a computational model in a way 
that is digestible by actors outside the field in which the model has been set up. 

• R3: Not only those developing and using computational models in order to produce 
output have a responsibility. There is also a responsibility of the reader. By the 
term “reader,” we mean those who take up the result of a computational model but 
may not have area-specific knowledge to interpret these results as it is standard by 
those who are within the area of expertise. The scientists have to require the reader 
to be aware of (probably area-specific) limitations of computational models but al-
so have to explain these limitations in a form that the reader can understand. 

In the communication with the public and members from scientific fields not di-
rectly connected to computational modelling or natural science, it became clear that 
(at least) two main issues need to be addressed: the purpose of models and the relation 
of theory and data science.  

The first issue (purpose of models) is a very fundamental one. Many people believe 
that a model is always a tool for setting up predictive simulations. We summarise this 
idea of a computational model in Fig. 1. The figure illustrates the model-based control 
of a robot as a predictive tool for controlling the robot’s dynamics. The critical aspect 
is that the simulation produces a sufficiently faithful analogue of the dynamics in the 
real world in an appropriately designed mathematical representation. The term “suffi-
ciently” refers to the quality of the control of the robot. Somewhat loosely expressed, 
sufficient means that the control ensures that the robot reaches a given set of goals. 
One can draw a similar picture of a simulation for weather forecasts. Also, the simula-
tion result should give a sufficiently accurate prediction of reality in that context.  

 

 
Fig. 1. Computational models as tool for the control of a robot. The computational model 
serves as a tool for predicting the dynamics of a technical system in a non-trivial environment.  

Prediction is an obvious goal of a simulation but certainly not the only one. A non 
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• Check the understanding of the past: By comparing model output and measured 
data, one can check whether the model explains what has happened or whether the  
model is insufficient and must be extended.   

• Optimise the present: This applies to static or stationary situations with parame-
ters. If one has an optimisation goal, in silico experiments can help find optimal 
values for these parameters.  

• Predict the future if one knows the present and has a reliable model of the dy-
namics: Ideally, a model allows one to predict the future, given sufficient 
knowledge of the initial conditions. However, even if the initial conditions are 
known, the prediction of the future may still be imprecise, partly because models 
most often only approximate the actual dynamics, partly because many models 
contain stochastic components. We point out that even if the latter is not the case, 
i.e., the dynamics of the model is entirely deterministic, the future may still be dif-
ficult to predict, mainly if the dynamics of the model exhibits chaotic components. 

• Estimate the future if one only guesses the present. Most often, one has only lim-
ited knowledge about initial conditions. In that case, either one estimates the initial 
conditions by statistical means (including the values of the parameters determining 
the dynamics) or constructs initial conditions based on plausible assumptions. 

• Explain what we see: A model can help to give meaning to data2 in the sense that 
the dynamics or a state can be explained by referring to the model's variables (see 
below the discussion of Fig. 2). We point out that the purpose of “giving meaning 
to data” is probably the one in which a restriction of the discussion to computation-
al models is least necessary. Models as tools for explanation do not necessarily 
need to produce computational results but can serve as platforms for defining con-
cepts and interactions qualitatively. Furthermore, note that an explanation of the 
behavior of variables (e.g. by showing correlations) differs from the first item in 
the list, which refers to the question whether the model can reproduce what has 
been observed.  

• Analyse the dynamics: it is a fact that human beings are pretty good at under-
standing equilibrium states but are quite often surprised by the consequences of 
feedback processes, second-round effects, stochasticity (the consequences of fluc-
tuations), or non-linear dynamics in general. This is an ideal application for models 
and simulations: with the help of simulations, one can get “a feeling” for the dy-
namics of a model and explore relevant settings by trying out the consequences of 
changes in inputs, variations in parameters and the like.  

• Detect emergent dynamics and structures: Quite often, systems exhibit emergent 
phenomena. There are many examples in which a model sheds light on the under-
lying processes by showing that a specific mechanism leads to an observed emer-
gent phenomenon.  However, we point out that a model may well give a plausible 
explanation for certain emergent phenomena; this plausibility must not be confused 
with evidence. 

• Explain system behaviour from more fundamental dynamics. A model may 
explain the behaviour of a specific system from the fundamental properties of its 

 
2 This has been pointed out by Marcello Pellilo from the University Ca’Foscari, Venice.  
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constituents. In engineering, a material model (i.e. a model taking material con-
stants and fundamental physical laws as input) may explain a whole family of sys-
tems, such as FEM – models in civil engineering or the study of biological matter 
using molecular dynamics simulations.  

• Decision Support: Even if, because of lack of data about initial conditions, a mod-
el cannot give sufficiently reliable information about the future development of the 
system under consideration, it may still help to evaluate the range of possibilities 
via scenario analysis. Such an analysis contains reasonable best and worst cases 
and a quantitative evaluation of the sensitivity of parameters. Especially studies of 
parameter sensitivity may help allocate potentially limited resources to determine 
those parameters that influence and output in a critical manner.  

• Models as platforms for discussion: Models can serve as platforms for discus-
sions (between modellers and experts or even between experts with domain 
knowledge with the modellers as moderators) of assumptions, parameter depend-
encies and qualitative aspects of system behaviour. 

• Virtualisation: A sufficiently precise model of reality may enable “in silico” ex-
perimentation. Besides benefits concerning costs and speed, virtual experiments 
enable the study of seemingly unphysical situations, e.g., by turning off selected 
physical mechanisms. Such “knockout experiments” shed light on the actual physi-
cal circumstances' importance.  

• Produce data and train modern controllers (e.g., deep neural nets): various 
types of artificial intelligence and, more generally, machine learning are now part 
of the modeler’s toolbox. Many of these algorithms require vast amounts of data 
for training, often much more than experiments can provide. One can train neural 
nets with simulated data, comparable to the training of pilots in a flight simulator.  

• … 

The second main issue relates to the role of data. In 2008, Chris Anderson wrote an 
article in Wired titled “The End of Theory: The Data Deluge Makes the Scientific 
Method Obsolete.”, [7]. Although the article’s content was much more nuanced, the 
upcoming of data science and the broad availability of data brought some people to 
conclude that models and theories are unnecessary. We agree that the availability of 
cheap sensors, the possibility to transfer data from the sensors to some data pro-
cessing unit without the need to install complicated hardware, and the ease with 
which the vast amounts of data can be analysed changes science in a deep sense. 
However, we still think that models are of relevance. We point out that the amount of 
data needed to replace a model or theory is often underestimated (particularly in the 
social sciences). The need for large amounts of data means that even if it were possi-
ble in a fundamental sense to dispense with models and only rely on data, it may still 
not be practical. In addition, one may discuss whether data can replace models in all 
circumstances. If one used computational approaches only for prediction or scenario 
building, something like the “Master Algorithm” envisioned, e.g., in [8], could, in 
principle, do the job. However, other model purposes, such as giving meaning to data, 
are hard to conceive without a model based on variables with semantics. We also 
point out that data-driven approaches usually perform poorly in generalisations, at 
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least in the present situation. One may well predict a specific system's behaviour us-
ing a data-driven approach, but this ability for prediction is usually challenging to 
transfer to a different system. In contrast, a system modelling platform based on a 
fundamental material model relating variables with physical interpretation predicts the 
behaviour of large classes of structures and systems. The tension between purely da-
ta–driven approaches and semantics lies at the heart of the discussion about “explain-
able AI”, see e.g. [9] and with emphasis on medicine, [10].   

It goes without saying that in this article, we do not claim to give final answers to 
the request R1-R3; our experiences over the last couple of years in various disciplines 
enable us to report some of our findings and some generalisations distilled out of 
these findings over the last couple of months. Thereby we span modelling of evolu-
tionary processes, statistical physics, modelling of cellular processes, model-based 
therapy optimisation, traffic simulations, applications of AI in medicine and control of 
large industrial entities, to give some examples. 

We point out the importance of the last two years. All the contributors to this arti-
cle have worked for decades in various applied and fundamental sciences fields, al-
ways using or developing computational models. In addition, some of us are now 
serving in the decision support for the Swiss government concerning the Covid 19 – 
pandemics. The change from publishing results in peer-reviewed journals to more 
direct decision support gave us (sometimes for the first time) the experience of sci-
ence that has a short-term impact. However, it also made us reflect on the responsibil-
ity of developing and using computational models. In addition, it became clear that 
there is a considerable difference between scientific modelling for science itself and 
the use of scientific models as tools in a broader, nonscientific (or not exclusively 
scientific) but rational context.  

This report does not focus on the necessity of quality control and standard operat-
ing procedures but more on aspects of communication. Also of crucial importance is 
that scientists being part of decision support processes should reflect on their role. 
Our experiences led to establishing a network of scientists and decision-makers dis-
cussing the role of computational models based on our recent research activities, rang-
ing from purely scientific activities in EU-funded projects to decision-support. Our 
goal is to study and describe the difficulties of computational modelling in a broader 
context and in a permanent manner that includes publications and network activities.  

The article is organised as follows: Sec. 2 discusses our perspective on models, 
model building, and implementation. The section defines a couple of terms and pre-
sents our view of the process of model building. Sec. 3 discusses the use of models in 
science, which exhibits relevant differences to the use of models in decision–making. 
The latter involves a full transdisciplinary mode of communication and is treated in 
Sec. 4. The interaction of science with stakeholders outside the scientific discourse 
requires the use of according means of communication (which we call narratives). In 
Sec. 5, we postulate a responsibility on the narrator's side as well as on the side of the 
reader. We emphasise the potential for science and science communication to learn 
from the vast body of literary theory, for the practice of communication, but also its 
conceptualisation. In the conclusions (Sec. 6), we relate our findings to the current 
status of modelling in society.  



8 

2 The Process Of Modelling 

There is a broad discussion of what exactly one understands by the term “model.” 
This discussion ranges from literary theory over philosophy to the foundations of 
mathematics and logic (where mathematical structures such as the natural numbers 
serve as “models” for sets of axioms, e.g., the Peano axioms). In order to reduce mis-
understandings that may occur if one speaks about a concept that appears in many 
different branches of science, we start with defining some basic terminology that we 
will use in this article: 

• A model establishes relations between different classes of objects (which we will 
call fundamental terms). These relations can be static but also consist of rules and 
descriptions of the dynamics of these objects. Importantly, we require a model to 
be based on a rational description of the objects and their interactions. Thereby, we 
understand by the term “rational description” a language-based, sufficiently inter-
subjective formulation that a sufficiently knowledgeable group of experts can un-
derstand.  

• A theory describes the fundamental terms and interactions of the model in a con-
text that may well go beyond the scope of the model. To give an example here: rel-
ativistic quantum field theory is a theory in the sense of a framework, and the 
standard model of particle physics is a model that one builds within the framework 
of this theory. 

• A fundamental term is an object of consideration in its broadest sense. In other 
words: the fundamental terms of the model are the objects the model is dealing 
with and talking about.  

• A variable in a model is a numerical representation of such a fundamental term. 
We use the term variable in a loose sense as it can be either a single number, a list 
of numbers, or an instance of a more complicated class object. 

• A parameter is a number that characterizes some aspects of the interaction or 
processing of the variables. The difference between parameters and variables may 
depend on context and is often somewhat arbitrary.   

• A computational model is a model expressed in variables that can be subject to 
data processing.   

• An observable in an experiment is a quantity for which a feasible measurement 
process exists.  

• A representation of reality (or briefly representation) is a relation between ob-
servables and variables of the model. Ideally, there is a one-to-one correspondence 
between variables in a model and observables in an experiment. In any case, there 
should be some relation between observables and model variables in order to con-
stitute a relationship between the model and the reality. 

• An implementation of a model is some software that translates a computational 
model in operations on some hardware. 

• If we execute an implementation of a model with some input variables, we call this 
run a simulation. 
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The focus on computational models has at least two direct consequences:  

1. Since we usually work in an interdisciplinary context, we have to use software im-
plementations and data formats that are widespread and easy to handle. In practice, 
we are restricted to data that can be expressed in the form of real or integer num-
bers. If the fundamental terms of the model are not generically numbers (e.g., in 
the case of sentiment analysis or image analysis), we must be aware that we need a 
mapping from the non-numerical terms to some sort of numerical representation. 
Such a mapping comes with its difficulties and is usually the source of various er-
rors, some of which are systematic. Although the development of artificial intelli-
gence probably will enable the classification of more complex data, e.g., the analy-
sis of graphs, these methods are not yet widely available or easy to use outside of 
relatively narrow contexts. The range of problems one encounters if one deals with 
non-numerical data is broad: It starts with the fact that the translation of non-
numerical into numerical data usually requires some classification. The classifica-
tion criteria themselves are often chosen in an ad hoc manner and do not rely on a 
clear scientific strategy. The criteria reflect expert knowledge but lack proper ra-
tionalisation. 

2. If the first restriction results from the request that the fundamental terms of the 
model are expressable as numbers (or sets of numbers), the second is about the 
simulations we perform with these numbers. Simulations are only helpful if one 
can efficiently do them. That means algorithms and hardware must allow perform-
ing the necessary computation within a timescale that is compatible with the needs 
of those who take the model outputs bases for decision making. 

Based on these considerations, one must be aware that the construction and imple-
mentation of the model is a process that requires several tightly connected steps. Fig. 
2 gives an illustration of the process as we see it. 

 

 
Fig. 2. The process of modelling. 
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area of expertise and the methods one uses. These standards include scientific aspects 
and standard operating procedures in managing complex processes such as software 
development. We will not discuss this first set of standards in detail here. They are, 
again depending on the field, developed to a high level of sophistication, sometimes 
even formulated in terms of norms. Instead, we focus on two aspects that seem to be 
obvious but are nevertheless not intensively discussed and, in our experience, the 
source of problems in many projects that include computational models, namely mod-
elling as a systemic task and the difference between implicit and explicit knowledge.  

2.1  Modelling Is A Systemic Task 

The most important lesson one has to learn in modelling is that a model is not an 
entity independent of the user and the experimental input (by the term “user,” we 
understand those taking the results from a simulation but not necessarily involved in 
the technical aspects of model building). From the project management point of view, 
it turns out to be a significant challenge to orchestrate the interaction between users, 
data providers/experimentalists, and those developing and implementing a model: 

• The users must be well informed about what they can expect from a model and 
outside its scope. Whereas a model may be suitable for, say, the purpose of formu-
lating scenarios or making the qualitative aspects of the system's dynamics trans-
parent, it may not be able to produce reliable predictions. Different reasons may 
cause this: for example, the input data cannot be given with sufficiently high preci-
sion.  Alternatively, the model itself bases on assumptions that may not be appro-
priate in the situation under consideration. Responsible project management must 
clarify what the different partners can expect from each other.  

• The modellers often have a solution that seeks a problem (in practice: one aims to 
transfer software developed for the simulation of one type of system to another 
one). The project manager is obliged to raise sufficient awareness to ensure that a 
model matches a given problem without too much need for reinterpretation of the 
model’s initial semantics. We point out the responsibility of project management: 
One should not assume that the modellers have the necessary domain knowledge 
and experts in the domain are usually not familiar with the technical details of sim-
ulation software. The project probably is not either but has to initiate the necessary 
discussion process.  

• Taking up the previous point, but in more generality: Project management must not 
expect the individual actors for the different tasks in Fig. 2 to act without guidance. 
This means that people in simulation and experimental science are certainly ex-
perts in their respective fields. Nevertheless, this does not imply that they see how 
their joint efforts result in a benefit. In other words: Bringing together competen-
cies and orchestrating their results such that a benefit emerges is a competence on 
its own. Project management must recognise opportunities for the emergence and 
exploitation of synergies between modelling, simulation, and experiments.  

A specific but frequent challenge emerges at the boundary of pure science and ap-
plication.  In pure science, one often wors with so-called “toy models.” Their purpose 
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is to elucidate the mathematical structure of the model and to study qualitative fea-
tures of the emerging dynamics of a given system. Sometimes, such models are sur-
prisingly powerful, despite their deliberate simplicity (see, e.g., the Ising-model in the 
study of phase transitions of magnetic systems. There is a temptation to transfer such 
models from a qualitative into a quantitative, real-world context. A well-known ex-
ample that illustrates the situation in our view quite well is Schelling’s segregation 
model. The Schelling model shows how micro-motives can transparently lead to mac-
ro behaviour. Although one can learn an important lesson from this model and its 
simulations, it is certainly not a tool that one should use in urban planning, and it is 
certainly too simple to represent and explain actual social dynamics; for a very illus-
trative discussion see [11].  

2.2 Modelling Requires Turning Implicit Into Explicit Knowledge 

What one can model and simulate depends on the knowledge that can be injected 
into the model-building process in Fig. 2. In what follows, we distinguish implicit and 
explicit knowledge. By the term explicit knowledge, we understand the knowledge 
that 

• is well-defined and can be expressed in some reasonably general language such 
that it can be communicated to sufficiently well-informed non-experts outside the 
domain of expertise on the consideration, 

•  is sufficiently formalised (quantitative and qualitative) that one can translate it into 
some algorithm. 

In comparison, implicit knowledge consists of unwritten but (within the domain of 
expertise) generally accepted assumptions and standard operating procedures. In the 
context of science, this difference is quite often well understood, in the sense that we 
may know from experiments that a particular procedure works but not always why 
this is the case. However, even if we lack this knowledge, we are in science usually 
aware of this fact, and various practices have been established to deal with this situa-
tion (e.g., phenomenological models and explanations).   

The situation is different if one uses models for decision support. Many historically 
grown social and economic structures are not well understood, even though they are 
working in a very stable manner (one may argue that it is precisely that stability that 
made a detailed analysis unnecessary). To give a famous example of a seemingly 
simple consumer good: shoelaces (we learned about this example in a televised inter-
view with the German economist Hans Werner Sinn, who brought it up to illustrate a 
similar point). It is probably possible to get shoelaces in almost all locations world-
wide, provided a certain standard of living has been achieved. It is reasonable to as-
sume that there is probably no single human being who understands all aspects of the 
production and distribution of shoelaces in all detail. Nevertheless, the supply of 
shoelaces seems to be a self-organised process without any plan (or any underlying 
model). Shoelaces are a simple product; today's technology and politics give exam-
ples on all levels of sophistication (the information flow in a medium-sized enterprise 
usually differs from what one reads on the organigram, and the resilience of supply 
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chains in a globalised economy is a very recent and intricate topic).  In the situations 
described, one is not even capable of formulating a phenomenological model; not 
only does one not know how the system's components interact, but the components 
themselves also may not be known. Whereas experimentalists in a scientific project 
may not know everything about the system they analyse, they usually have a good 
understanding of what they do not know. In contrast, the actors in a social system may 
not even know that the system exists.  

Self-organisation is ubiquitous in human societies, and deliberately so, at least in 
liberal ones. At first glance, it may look reasonable to analyse socioeconomic pro-
cesses in sufficient detail such that a model of that process can be set up. In a very 
optimistic worldview, turning implicit into explicit knowledge is a process that is 
worth it on its own. We adhere to this position in the context of science but point out 
some issues that one needs to consider, particularly if one applies models in a broader 
context:  

• A model may shift established balances of power. If a predictive model existed of a 
sufficiently large part of society, those who have access to this model would have 
considerable power. Modelling enables control, and control implies power, which 
can be misused.    

• Applied to socio-economical and socio-technological systems, a model (particular-
ly but not exclusively a successful one) seduces to centralise process control. This 
may be sensible, especially for cost-effectiveness, but may hinder the self-
organisation of processes. Self-organised processes have specific advantages (e.g., 
usually they are resilient), which is not always the case for centralised processes. 
One has to evaluate carefully whether one wants to give up the benefits of self-
organisation, and the first step on this path is the construction of a model.   

The consequence of these considerations is by no means a request for less model-
ling. Nevertheless, if models result in power, we should enforce and guarantee trans-
parency and equal or, at least, democratically controlled access to the models; for the 
importance of transparency, see, e.g. [1]. This holds for models guiding political pro-
cesses and, as well, models in science (the term “democratic” then refers to the scien-
tists involved in the project and the standards and practices of their respective fields).     

2.3  Models Can Enable Thinking But May Also Set Up Limitations 

In science, the problem of models that are (mis-)used for exercising power seems 
to be of minor relevance. This is because, in science, the role of models is usually not 
the control of processes but insight. Nevertheless, if a computational model turns out 
to be supportive of experiments, a sort of feedback may start to take effect. In prac-
tice, models are not complete. And even if they were, there would undoubtedly be 
settings that are easier to simulate than others for technical reasons. Then, there is a 
tendency to do what can be calculated and not necessarily what is most interesting 
from a pure domain-specific perspective. This may be perfectly reasonable, but one 
should bear in mind that the question of whether a process can be simulated is some-
what extrinsic to the process itself.  
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This aspect becomes apparent in teaching, where models play an important role. 
One often discusses simplifications and idealisations such as frictionless movements 
or perfect crystals. One tends to choose examples because they result in equations that 
can be solved with the mathematical means available to the students in the context of 
the applied model. But: Whether or not a process is easy to calculate does not neces-
sarily say something about its relevance to nature; this is a deep issue, see [12]. Re-
stricting the analysis of processes to that one can compute may be reasonable, espe-
cially in teaching. However, one should always keep in mind that there are phenome-
na outside the somewhat artificial boundaries imposed by requesting computable 
models. 

The fact that models may impose limitations on scientific investigations is not re-
stricted to teaching. As an example, we point out that the notion of an “integrable 
system” in the theory of dynamical systems is a fundamental concept, somewhat 
loosely defined as systems with conserved quantities and therefore restricted to sub-
manifolds of the phase space under consideration. Chaotic behaviour is closely related 
to integrability, or better, its absence. Even though mathematics was already known in 
the 19th century that the behaviour of dynamical systems could be very complicated 
and unstable, in more general science, the notion of “chaos” came up only around 
1960, and somewhat as a surprise to scientists used to integrable models. Still today, 
at least in engineering, chaotic behaviour is often regarded as the exception (and not, 
as it is, in fact, the rule).  

As a side remark, engineering is an interesting case in that respect. One could 
claim that a large part of engineering consists of the attempt to construct systems so 
that they can be described and controlled by efficiently computable models.    

2.4  Interdisciplinary Work Is No Excuse for Diffusion Of Responsibility 

A more general issue concerns the convergence of experiments and models. The 
different tasks in Fig. 2 require several different fields of expertise. In practice, one 
observes the danger of a certain diffusion of responsibilities. This problem is well-
known in a single scientific project and may be avoided by project management. As 
soon as one starts to use models as tools for decision support and works in a broader 
setting, the problem of the diffusion of responsibilities becomes somewhat more pro-
nounced. 

On the one hand, modellers tend to complain about the “lack of data” and use this 
argument to justify the shortcomings of models. Project management must clarify that 
the limited availability of data may look like a bug but is actually a feature to deal 
with responsibly. That means: one must set up models in a manner that can get along 
with the available data.  

On the other hand, there is a specific danger that those using the output of models 
do that by regarding the models as black boxes and putting trust in them without scep-
ticism. The scepticism certainly includes the results produced by the model. A re-
sponsible and practical form of scepticism is constructing a broad range of plausibility 
checks. Those who use the model's output usually have a rather precise idea of what 
this output should look like, especially for some extreme choices of system parame-
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ters. Such checks can be pretty efficient, but one needs to organise them properly. 
Again, in the relatively narrow setting of a scientific research project, this practice is 
well established and can be implemented easily (probably because experimentalists 
are familiar with checking their setup by measuring some boundary cases). As soon as 
one uses models for general decision support, the employment of plausibility checks 
by extreme scenarios requires some management skills. Besides the fact that the 
communication between those implementing a model and those applying the results 
has to be organised (and is subject to limited resources, especially time), a psycholog-
ical barrier has to be passed. Project management must clarify that models usually do 
not work right from the start but require certain debugging and polishing. We repeat-
edly encountered considerable criticism from those using the results of models at the 
initial stage of implementation. The line of argument was: “If your model cannot deal 
with a straightforward situation, how can we trust its results in a more complicated 
setting?”. Responsible project management makes it transparent at an early stage that 
an iterative calibration and refinement process is an instrumental part of modelling.  

According to our experience, there is a potential misunderstanding about model-
ling: Sometimes, users are under the impression that modelling means implementing a 
small number of very fundamental relations and natural laws, which, if implemented 
correctly, will result in precise predictions in all possible settings of the input varia-
bles. There is a hidden danger in this optimistic perspective. If a model were omnipo-
tent (at least within the frame of the system simulated) framework for prediction, the 
task of posing appropriate questions would be trivial. Say it in other words: if the 
modellers can simulate everything, the users can ask anything. However, models are 
most often much more specialised in the sense that the range of questions they can 
answer reasonably is limited. For the design of a model and a simulation, it is essen-
tial to know what questions the users want to answer. Responsible use of models re-
quires carefully designing questions and being aware of the limitations of models. 
This holds especially if models are developed in a collaborative process of modellers 
and users. It is then the responsibility of the users to define in sufficient detail what 
types of results the model should be able to produce.  

We illustrate this with examples from science and decision support. Within a spe-
cific scientific discipline, for example, solid-state physics, the relation between exper-
imental observables, the model's variables, and the difference between qualitative and 
detailed quantitative statements are well understood by all partners. Discussions may 
still be necessary, but they build upon a tradition that is part of the discipline (see also 
Sec. 3.2). Again, the prototypic example is the Ising-model; see for example [13]. 
Interdisciplinary discussions are more demanding than intradisciplinary ones. A fa-
mous example is the application of Lotka-Volterra models on problems in ecology, 
e.g. the lynx – snow hare – cycle. A mathematical model can never predict in detail 
how populations develop, and it is also not possible to determine their exact size in 
the field. The question is then what one can learn from such model, i.e. what ques-
tions are answered by the model and what conclusions would be an overstatement. 
The discussion between modellers and ecologists should then focus on whether and 
how the model's output can be made helpful for ecological reasoning. Such discus-
sions become even more necessary in a transdisciplinary context (s. Sec 4.1). We 
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refer to epidemiology, where coarse-grained models get input data of somewhat lim-
ited quality (the data reported may be satisfactory for, say, influenza but do not match 
the needs for a novel disease because essential aspects are not analysed). Note well 
that there is a trade-off between the resolution of the model and the amount of input 
data necessary. A finer resolution would require even better data, see also the next 
section. For decision support during an ongoing pandemic, the modellers have to 
clarify that this trade-off exists and that predictions about, for example, the number of 
fatalities cannot be made (although giving bands is possible). In contrast, statements 
about, for example, the transition into an endemic state are possible with reasonable 
reliability.  

We emphasise the importance of this discussion. In decision support, the scientists 
and modellers must realise that their partners from, say, politics are not necessarily 
familiar with the do’s and do not’s of a specific scientific discipline. Nevertheless, 
these partners have to communicate science-based decisions. In our view, modellers 
must actively support this communication and in a way that reflects the specific chal-
lenges of communication with a general audience.  

2.5  Observables Are Not Variables 

It may sound relatively trivial, but it turns out to be a fundamental management 
challenge to bring model variables and experimentally measurable observables into a 
relation. Or, to state it differently: in a project that uses models, variables and observ-
ables must be chosen to be related efficiently and require tools available to those 
working on the project. This matching process is complicated.  

This complication results, first, from intrinsic reasons. Model users and modellers 
are not necessarily aware that variables and observables are linked by a process that 
includes several steps (for a still simplified overview, see Fig. 3). Here, 𝑆𝑆(𝑡𝑡) repre-
sents the system under consideration at the time 𝑡𝑡. We point out that by 𝑆𝑆, we don’t 
understand a number or some other data structure but an actual system. The down-
ward track represents experimentation. Some aspects of the physical system can be 
observed; these are the observables 𝑂𝑂(𝑡𝑡), which are still understood as physical phe-
nomena. The relation/mapping between system and observables is given by a relation 
𝑂𝑂(𝑡𝑡) = Θ�𝑆𝑆(𝑡𝑡)�. The observables can be measured, which produces signals 𝑀𝑀(𝑡𝑡) =
Γ(𝑂𝑂(𝑡𝑡)). The signals are assumed as data structures, e.g., time series of numbers or 
digital images. We point out that, for example, the production of a digital image is 
again a process that involves many steps, but most of them are standardised and/or 
their limitations are purely technical and do not involve the issues we are raising here. 
Going upwards from 𝑆𝑆 represents the modelling track. First, the real world has to be 
mapped to a mathematical model 𝑅𝑅(𝑡𝑡) = Φ(𝑆𝑆(𝑡𝑡)). 𝑅𝑅(𝑡𝑡) are mathematical objects of 
some kind. For obtaining a computable model, these mathematical objects need to be 
represented by some data structure 𝑁𝑁(𝑡𝑡) (which, at the end, is a finite bit string): 
𝑁𝑁(𝑡𝑡) = Ψ(𝑅𝑅(𝑡𝑡)). The data structures 𝑁𝑁(𝑡𝑡) are the model variables. We point out that 
this step requires some subtle considerations: The mathematical objects 𝑅𝑅(𝑡𝑡) need not 
to be conventional numbers but can be complex numbers, vector fields, manifolds, or 
other mathematical objects. The translation of, for example, a vector field into a data 
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structure is a step that poses its specific challenges (the choice of a coordinate system, 
for example).  Finally, model variables, by some processing, are transformed into data 
𝐶𝐶(𝑡𝑡) = Σ(𝑁𝑁(𝑡𝑡)), which one can compare (in a mathematical, means quantifiable 
sense) with the signals 𝑀𝑀(𝑡𝑡). The possibility for this comparison is instrumental for 
model validation and is the basis for model parameterisation. 

Second, modellers and experimentalists have somewhat different objectives. The 
more precisely one can describe an object, the better it is for the model, or to be pre-
cise, the easier modelling is, at least from a conceptual perspective. Relying on prob-
abilistic concepts or statistical quantities such as averages is done chiefly if enforced 
by limited computational power or memory space. However, data acquisition by ex-
periment requires specialised equipment, time, and staff. It sometimes is even impos-
sible (from a modelling perspective, in vivo data acquisition would be desirable for 
calibrating models of cellular processes, but the necessary experimental possibilities 
are still not always available). 

 

 
Fig. 3. Relating observables and variables. After comparison and model evaluation, the model 
and the experiments may be modified, s. Fig. 2. 

The task of responsible project management consists of finding a position that 
matches given experimental boundary conditions. This means setting up a permanent 
negotiation process between modellers and experimentalists oriented on the possible 
and not on the desirable. In a scientific context, this may be, if not easy, generally 
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accepted practice. As soon as one enters the realm of model-based decision support, 
the tension between available and desirable data can become considerable, with often 
only limited mutual understanding for, e.g., legal boundary conditions (to mention a 
non-technical limitation).  

As a general observation, we note that model building tends to be output-oriented 
in the sense that modellers want to produce optimal results but often do not care suffi-
ciently about the necessary input. In part, this is a reasonable practice because there is 
a historically grown division of labour between those developing methods and those 
applying the tools based on these methods. The developers tend to work with assump-
tions or “toy data” often generated based on assumptions. Responsible modelling 
requires balancing the desire for maximal output with the realities of the available 
input. We illustrate this with a recent example. Modelling the COVID -19 pandemics 
was an important challenge in the last two years. Modelling pandemics is a prototypi-
cal example for applying agent-based models. However, agent-based models consti-
tute only a small part of all simulations in epidemiology [14]. Besides the fact that 
agent-based simulations are rather time-consuming, one must consider a fundamental 
problem. Agent-based models allow, in principle, to model very precisely the behav-
iour of representative batches of the population. But this precision comes at a price: 
one has to provide the according input data, say contact structures in a population. As 
it turns out, simpler, less data-hungry models may give a more reliable picture of the 
potential scenarios than models that would provide a very detailed picture if only fed 
with appropriate but, in practice, not available data.  

3 Models In Science 

There is a vast literature about the role of models in science; for a short and well-
written overview, see, for example [15]. In our practice, two categorisations are of 
particular relevance for ethical considerations. First, one can use models for pre- and 
post-processing of data. The two uses pose different challenges concerning responsi-
bility. Second, one can classify computational models in those trying to virtualise a 
given situation as precisely as possible (we call these models complete) and minimal 
models. The focus of minimal models is generality; one looks for general mechanisms 
and strips them from the details of specific systems. One explores those aspects of the 
dynamics independent of the details of this implementation.  

3.1 Pre- And Post-processing Data 

One can roughly categorise the role of computational models in science into two 
classes: Pre- and post-processing data of an experiment (whereby pre-processing in-
cludes those cases where one does not perform an experiment at all).  

Post-processing happens in cases where one pursues one or several of the purposes 
discussed in the introduction. “Understanding the past” and “Giving meaning to data” 
are undoubtedly important cases, whereby meaning includes the transformation of 
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sensory signals into measurements, s. Fig. 3, but also includes the support of the in-
terpretation of data.  

Pre-processing experimental data encompasses virtual testing, scenario building, 
and prediction. For example, microscopic models can relate fundamental properties of 
a system to some macroscopic observables. From a scientific perspective, such micro-
scopic models are crucial for the reductionist program.  For engineering, material 
models enabling virtual construction are vital tools in modern design processes.  

From an ethical perspective, the distinction between post- and pre-processing is 
relevant insofar as in post-processing, the further use of outputs of an experiment 
stays in focus, whereas pre-processing may guide the implementation of the experi-
ment itself. One could think that, because the experiment already happened, post-
processing data is of minor ethical relevance. This is, of course, not true. For example, 
in most industrialised countries, the regulations for animal testing require ethical bal-
ancing, which means a justification of animal suffering compared to human benefit 
(see e.g. European directive 2010/63/EU3). The use of models can do both, enhance 
the benefit of data from an experiment, and change the type or reduce the amount of 
experimentation for the same benefit.  

Somewhat colloquially said, the challenge of pre-processing lies in the fact that 
models start to guide experiments. Using models as guidance can be misleading in 
various ways: A system may seem to work in theory or in silico, but does not in reali-
ty (It is only slightly polemic to say that this is not a real problem but what experi-
mentalists expect from modellers). Another danger is that a model may show some-
thing to be unfeasible, which some clever engineering can implement nevertheless. 
Even if we assume that the modelling has been done with all precautions established 
in the field or reasonably possible: All modelling is based on assumptions that are 
sometimes by no means obvious, and one tends to disregard them. In our experience, 
only a permanent and maximally transparent discussion of assumptions between all 
involved parties in a project can reduce the problem of (mis-) guidance. Again, we 
point out that this process is by no means easy and an actual intellectual task (One 
needs to pass the boundaries between different fields of expertise).     

3.2 Minimal And Complete Models 

Again, we discriminate models into two large classes, whereby we are aware that a 
continuous spectrum would be more appropriate. By a minimal model, we understand 
a model that is as simple as possible and contains only those variables of primary 
interest. In a minimal model, one deliberately simplifies external effects, environmen-
tal conditions, and complicated details of the interaction between the parts of the sys-
tem under consideration. Such models turned out to be of enormous value to science. 
As examples, we note the Ising model in statistical physics or the Schelling model in 
the study of segregation processes (by the way, the mathematics behind these two 
models are closely related). Minimal models can shed light on qualitative aspects of 
the system's dynamics and, despite their seeming simplicity, can show rich emergent 

 
3 https://eur-lex.europa.eu/eli/dir/2010/63/2019-06-26 

https://eur-lex.europa.eu/eli/dir/2010/63/2019-06-26
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behaviour. However, the purpose and scope of the model needs to be clarified as soon 
as minimal models are used outside a narrow range of scientific investigation. Results 
produced by minimal models are often easy to interpret, mainly because the relation 
between cause and effect is transparent. The problem with minimal models is that it is 
difficult to transfer their results into real-world situations. What seems to be a plausi-
ble cause and effect relationship in a minimal model needs not be one in the real 
world.  

Complete models try to represent as much of reality as is possible or necessary. Put 
costs aside, this seems to be a reasonable approach. However, such models contain a 
lot of parameters and turn out to be difficult to calibrate. The main difficulty of cali-
bration is that if there are various parameters, their respective values may be underde-
termined regarding the available data. At this point, one usually quotes John von 
Neumann, who is said to have said: “With four parameters I can fit an elephant, and 
with five, I can make him wiggle his trunk”. Today, partially caused by machine 
learning development, science developed several sophisticated procedures to cope 
with underdetermination. In our view, the problem with complete models is that the 
preparation of input becomes a highly complex task. This is first because the input 
tends to be large. Second, some types of input data are easier to get than others in 
reality, which leads to biases. Systems in which one couples different processes, some 
that one can parameterise by laboratory experiments and some that cannot be isolated 
(e.g. socio-technological systems, for which the technological processes are usually 
easier to parameterise than the social components) pose a particular problem. The 
more input parameters one has, the more difficult it becomes to evaluate the quality of 
the output because whether or not the limited precision of an input parameter has a 
relevant effect depends on the size of the statistical uncertainty and the influence of 
that parameter. Robustness analysis is often only of limited help because biases in 
input parameters, mainly if one deals with social systems, tend to be correlated. 

We emphasise that phenomena observed in minimal models are generic in that they 
are not the result of some, potentially very special, circumstances of a specific situa-
tion. From this perspective, minimal models are general models.   

4 Models In Decision Support 

Models have a well-established and continually refined role in science, with a de-
velopment based on practical experiences and theoretical studies. Especially with the 
growing digitalisation but also the awareness for data science, models get an essential 
role in decision support, be it in an emergency such as COVID-19 pandemics or be it 
in planning, e.g., in an economic or urban context.  

One may argue that decision support is somewhat outside the boundaries of sci-
ence, and one should not mix up scientific and nonscientific applications of models. 
However, we advocate that the distinction between scientific and nonscientific uses is 
somewhat artificial and neither beneficial for the goals of science nor modelling as a 
scientific field. First, the boundary between science and non-science is challenging to 
draw. In our experience, the discussion of what belongs to science rarely leads to a 
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sensible conclusion and most often ends in a somewhat sterile dispute about defini-
tions.  

We see a considerable benefit in the broader use of models. First of all, we believe 
that models can contribute to decision-making. In addition, if there is bidirectional 
communication between users and modellers, confronting a model with reality can 
promote science by adding novel questions and initiating developments that have the 
advantage of dealing with testable scenarios. Often, external questions can promote 
interesting internal scientific developments. If at all, the distinction between pure and 
applied science can be characterised by the notion that pure science studies the inter-
nal workings of the system in deliberately simplified boundary conditions (the labora-
tory conditions), whereas applied science asks for what can be said scientifically 
about a system immersed into a complex real-world environment. Note well that in 
this reading, applied science is not just about applying the results of science. Applied 
science also aspires to do science outside the laboratory.  

Understood in the manner described above, the authors are all involved in applied 
sciences, particularly science applied to decision support. This includes applications 
of modelling in purely scientific projects such as ACDC, in which a sophisticated 
interaction between modellers and experimentalists is a key project objective. This 
involvement also includes decision support in processes that include the whole socie-
ty.  

We investigate two large clusters of problems, the first one relating to the position 
of science in society and the second addressing some hidden aspects of optimisation. 
We conclude with some general observations, which we realised as being important.  

4.1 Transdisciplinarity 

We distinguish inter- and transdisciplinarity by assuming interdisciplinarity as 
communication and collaboration over the borders of different branches of sciences 
but within the general context of science. We understand transdisciplinarity as the 
interaction between the actors inside and outside science. For a detailed discussion of 
these concepts, see [16] or [17]. 

Science is a cultural practice with its own rules, language, codes of conduct, and 
signaling systems. As a scientist, one must accept that communication with the non-
scientific sphere requires finding common grounds and using a common language. 
There are several challenges, which we will address in what follows.  

Arrogance: Science And Democracy.  
Science is undoubtedly one of the most successful collection of practices in human 

history. This fact is seducing. Scientists tend to justify the advantages of a scientific 
mindset and approach by the successes of science. Some conclude that because sci-
ence works well, not only those doing science but everybody should act and think like 
a scientist. There is a danger of going even further and regarding those unfamiliar 
with what scientists call a scientific discourse as unfit for a general discussion.  
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We regard this as a naïve position. Although we are thoroughly convinced of the 
value of science and its methods, we are aware that either the concept of a “scientific 
discourse” must be stretched until it contains all forms of rational discourses or essen-
tial questions, e.g. about moral values or inter-subjective impressions as they occur in 
art, are not regarded as part of the discussion.  For computational modelling, this 
means that even if one is convinced to have powerful tools that enable a well-
grounded insight into natural and social processes, these insights are not above demo-
cratic processes. The scientists must make these insights a part of democratic negotia-
tions that respect, for example, discussions about moral values. These discussions 
may still be rational but are not necessarily following what one usually regards as 
integral parts of the scientific method (evidence-based argumentation, falsifiability, 
etc.).  

Analogies, Metaphors And Speaking Plain English.  
Transdisciplinarity requires abstaining from jargon. We point out that this requires 

a lot of effort. In fact, “jargon” in science means the use of sophisticated formalised 
concepts, which in some cases require a level of abstraction that one can only master 
after intensive occupation with a specific topic and its formal apparatus. We empha-
sise the role of formalisation; often, the underlying idea of a concept is well accessi-
ble; the formalisation of the concept requires training and detailed knowledge about 
the formalisation itself (for a detailed discussion of this point in the context of the 
physical sciences, see [18].   

There is a real problem: One cannot explain complex formal abstractions “in a sen-
tence.” We see only three, partly connected, ways out of this:  

3. Speaking in analogies: One compares something unfamiliar with something more 
familiar to the audience. We emphasise that there are various aspects to consider. 
First, when explaining models, analogies most often focus on functions, structures 
and dynamic behaviour. Second, they are rarely faithful. That can be helpful be-
cause they enable highlighting relevant aspects and neglect those of lesser or no 
relevance. On the downside, one always has to keep in mind the danger of over-
straining analogies. Third, if A is an analogy of a process P, the audience may be 
familiar with A's formalisation but not with the one of P. This is a situation of par-
ticular interest because one can scrutinise the extent to which two formalisms are 
equivalent with some rigour, and one can state the limits of analogies. At the same 
time, one can profit from the power of formalised reasoning.  

4. Explanation: One tries to explain formalisations. As desirable as it would be, this is 
often unfeasible.  

5. Modularisation: One modularises the explanation of a complex process and makes 
the modules, their dynamics, and their interactions transparent. Thereby, the pro-
cesses taking place on the level of modules should be clear to all participants of a 
discussion but not necessarily the internal dynamics of the individual modules. An 
example is a recipe: The act of cooking requires the realisation of a series of bio-
chemical processes. The (evolved) practice of cooking modularised the process by 
using building blocks that are robust (small deviations of temperature, amount of 
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ingredients and the like lead to only small changes in the outcome; processes close 
to transitions such as caramelisation are for the advanced), standard cooking ware 
is employed, and there is usually no need to know about the chemistry or physics 
that takes place.  

We emphasise two further issues. First, the relation between concepts and formali-
sation is not unidirectional. The formalisation itself may lead to an extension of the 
initial concepts. A famous example is antimatter (or, to be precise, the anti-electron, 
now termed positron), which P. A. M. Dirac introduced on purely mathematical 
grounds. Such concepts, which originate not from experience or experiment but as a 
consequence of mathematical reasoning, are particularly hard to convey to an audi-
ence without formal background.  

Second, we point out the difference between analogies and metaphors. We quote 
H. U. Fuchs: “We all have access to abstract schemas that form through organism-
environment interactions. Understanding something (or making something under-
standable) means bringing a description/explanation back to these fundamental ab-
stractions/schemas (which are used in metaphors, and metaphorical webs, which, in 
turn, are used in narratives).”, see also [19]. In order to explain processes/structures, 
one uses metaphors; by analogies, one compares and relates processes/structures.   

A narrowed version of a metaphor is the idea of an abstract or conceptual data 
structure, say a vector. Vectors are inspired by the combined notion of length and 
direction. The concept of a vector is embedded in a network of other concepts, such as 
angles, rotations, parallelograms, dimensions, et cetera. Furthermore, our intuitive 
notion is complemented by a rigorous mathematical formalisation (which, in turn, 
inspired further concepts such as infinite-dimensional vectors for which we lack a 
complete intuition, see above). We discuss this example because it highlights a signif-
icant problem. The representation of a vector in a model (the respective model varia-
ble as it appears in Fig. 2) is usually an array of numbers. For communication, it is 
essential to understand the difference between the representation of a variable and the 
concept behind it. The representation carries much technical baggage, such as coordi-
nate systems, which bury the idea of a vector.  

In a communication, using the representation instead of the concept may be tempt-
ing for those familiar with the former; but it is usually not helpful for those lacking 
this technical familiarity. Where does the temptation come from? Speaking in plain 
English about representations is usually relatively easy (which is why we can “ex-
plain” representations even to computers using, from a linguistic perspective structur-
ally simple, programming languages), whereas verbalising concepts requires hard 
work and accurate language skills.  

 

Questions And Answers In Science.  
Much postmodern critique of science tries to show that science is a social con-

struct, and therefore, the scientific method has no privileged position for understand-
ing the world. We cannot enter this discussion on a broader level; concerning compu-
tational models, we have to address some questions and points of critique:  



23 

1. As natural scientists, we take the existence of an “objective reality” as a fundamen-
tal assumption. However, one must not misunderstand a model for this reality. It is 
at least a point to keep in mind that a computational model is defined and bounded 
by many constraints (some are economical and therefore structurally social).  

2. From the point of view of a natural scientist, the answers of science are at least ap-
proximations to objective truths; but the according questions are not. If one regards 
the development of science and particularly modelling in a transdisciplinary con-
text as an interplay between questions, answers, refined questions, and consequent-
ly the further development of methods, complex models do have socially con-
structed aspects.   

3. A computational model needs input data. As discussed in section 3.1, the input data 
can be subject to ethical evaluations. Since what one can compute is a function of 
the available input data, the ethical considerations concerning input data affect the 
possible modelling results.  

Even if one does not share postmodern positions, the points above show that com-
putational modelling, especially if applied in a context that includes partners from 
fields of expertise outside of science, is certainly affected by social and cultural pro-
cesses. 

4.2 Optimality: Give Options, Not Advice! 

Decision support often aims to find an optimal strategy or implementation of pro-
cedures for a given task. One major challenge if one works outside a strictly scientific 
context is finding a proper definition of optimality. The result of any attempt to find 
an optimal solution depends on what one regards as desirable. As shown in what fol-
lows, the discussion of how one defines optimality has some aspects and lies in our 
view at the core of the ethical aspects of modelling. The problem is multi-layered: 
Even if one has a quantifiable desirable goal, there may still be several additional 
boundary conditions that one has to observe to establish procedures that yield optimal 
results and do this in a fair manner.  

Optimality And Fairness.  
In a purely technical context, optimality is quite often easy to define. Even then, 

one must be aware that proper balancing may not be trivial if there are different crite-
ria for optimality (for example, efficiency and efficacy or quality and output in engi-
neering). This is also recognised in a business context [20], where the discussion 
about KPIs (key performance indicators) has reached a high level of sophistication.  

In a political context, optimality is most often a question about values. It is a hall-
mark of democracy that such questions have no general and definite answer (derived 
from some dogmatic set of principles) but are subject to permanent discussion in each 
case.  

Optimality becomes even more involved if resources are limited, and one includes 
criteria considering the fairness of distribution. Here, computational models can be 
beneficial. As an example, we mention [21], a study in which the distribution of a 
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limited number of defibrillators over different areas has been investigated. At first 
glance, optimality is easy to define and given by the number of saved lives. However, 
this would imply placing the defibrillators preferentially in urban areas, where many 
potential patients can profit from their presence. A fair distribution should not disad-
vantage those living in rural areas. In [21], a computational model was used to find a 
distribution pattern that maximises the number of saved lives and considers a fair 
distribution of resources. From the perspective of computational modelling, one has to 
quantify and combine two different criteria for optimality. The quantification makes 
implicit valuations explicit (compare with Sec. 2.2), and this itself poses non-trivial 
political challenges.  

Ethics And Second-Round Effects.  
The distribution pattern of defibrillators is an example of a static situation. Compu-

tational models are advantageous if they clarify ethical considerations in dynamic 
processes. Here, one has to distinguish between first-round effects and subsequent 
processes, which we summarise here by the term second-round effects (being aware 
that there are third-, and in general and nth-round effects). We illustrate this by a 
study [22] that used models to optimise the distribution of limited vaccines in influen-
za pandemics. A general goal is undoubtedly to maximise the number of saved lives. 
In the case of influenza, this implies that in general (there are exceptions, though) that 
the efforts should be focused on the most vulnerable. There are two different ways 
how the most vulnerable can be protected. First, they can get a vaccination. Second, 
they can be protected from infection by reducing the number of contacts with already 
infected ones. If one studies a “common influenza” and does not consider measures 
such as lockdowns or quarantines (which in 2017 looked outlandish), one can reduce 
the spread of the disease by vaccinating that part of the population first, which con-
tributes most to the distribution of the infection. In general, the group of the most 
vulnerable (in the case of influenza, usually the elderly) and the group of the most 
critical spreaders are not identical. Whether direct vaccination (the first-round effects) 
or protection by reducing the spread of the disease and vaccinating the spreaders first 
(a second-round effect) results in a maximal number of saved lives depends on vari-
ous parameters and can be studied by a computational model.  

As we realised, the communication of such second-round effects is far from easy. 
We point out that whether one directly vaccinates the most vulnerable or protects 
them by stopping the spread of the disease always serves the same goal, namely the 
maximisation of the number of saved lives (which means the lives of the most vulner-
able). However, one must carefully explain why protection of the most vulnerable 
sometimes may be most effectively achieved by the prioritised vaccination of a dif-
ferent part of the population.  

That second-round effects occur can often be made clear with qualitative argu-
ments. However, whether or not they can become prominent, even dominant, is usual-
ly a quantitative question. A computational model helps to show first that there are 
settings in which second-round effects are relevant and second, which factors influ-
ence the extent of this relevance.  
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Optimality And Observables.  
In physics, a central principle states that the laws describing a process must be in-

dependent of the choice of coordinates one uses (That is an occasion where a subtle 
difference between models and simulations becomes apparent: one can formulate the 
physical laws describing the trajectory of an asteroid without referring to a specific set 
of coordinates. A simulation processes numbers and relies heavily on the choice of 
coordinates). Whereas one can firmly establish this principle in the natural sciences 
on mathematical grounds, the situation is much more complicated in socio-technical 
investigations.  

We explain this with an example. In order to account at least partially for the vari-
ability of society, the individual members of the population are grouped into cohorts. 
Especially in medical settings, this usually happens according to age and medical 
preconditions. The interactions in the population are then also formulated based on 
these cohorts. One could use a different grouping, leading to different interaction 
schemes. Different groupings may represent the variability of society differently for 
the phenomenon under investigation and with different statistical quality. Whether 
age or, say, socioeconomic status is the best descriptor in a given situation is not al-
ways apparent, and the choice of the descriptors may influence the outcome of com-
putation and the conclusions one draws from it. We emphasise that computational 
models that serve as tools for determining optimal solutions under consideration of 
ethical principles must be scrutinised for their dependence on the choice of input and 
model variables. 

One may now ask for a determination of the best way to describe the process as a 
prerequisite for any use of computational models for ethical purposes. As reasonable 
as this sounds, it is pretty often not feasible. The evaluation of socio-economical data 
is difficult and expensive. As a modeller in decision support, one may be confronted 
with the fact that one has to work with the available data, which is not necessarily the 
data that would be best suited. It is, in our view, the central responsibility of the mod-
eller always to point out that fact. 

4.3 The Role Of Experts 

In inter- or transdisciplinary projects, experts from different fields have to interact. 
Groups of experts, especially modellers, should carefully reflect their roles as soon as 
they become part of the decision-making process. We identified two main issues that 
we address in what follows.  

Groupthink.  
As pointed out in the introduction, one reason for using models is that they may 

help understand non-linear behaviour, emergent dynamics, and sometimes the appear-
ance of seemingly counterintuitive phenomena. The challenge is distinguishing be-
tween those phenomena that are hard to understand but are real and those resulting 
from some possibly wrong assumption underlying one of the various aspects of the 
modelling process. We repeatedly observed an interesting process that belongs to the 
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class of problems that one usually summarises by groupthink. The process works like 
this: a model gives a hard-to-understand result. The modellers, usually not experts in 
experimentation or observation, ask those familiar with the experimental aspects of 
the system on the consideration of whether or not the result of the model can be true. 
The experimentalists, not being familiar with the internal workings of the model, give 
a plausible explanation for what has been computed with the simulation belonging to 
the model. Such a line of argumentation that relies on incomplete knowledge may be 
the source of groupthink. Each member of the group regards his/her partial knowledge 
as justified by the partial knowledge of other experts. The problem thereby is not so 
much that all involved parties only have partial knowledge; this is unavoidable in 
interdisciplinary work. The problem is: What seems to be plausible in a discussion 
should be based on evidence or more detailed scrutiny. 

The Position Of Experts In Complex Decision Processes.  
In our view, the most critical problem of the use of models in decision support is 

the necessity of the experts to develop a proper understanding of their role in the deci-
sion-making process. Especially when models are used to evaluate or optimise ethical 
aspects in the decision process, experts tend to advise decision-makers. This advice is 
usually based on an already preselected set of simulation results. In our view, model-
lers must avoid this preselection in a proper decision-making process. The experts, 
especially the modellers, should understand their role as giving options for decision-
makers. These options are then used to achieve a proper decision and represent a 
range of possible further actions. The modelling results should show the consequenc-
es and costs of different potential courses of action but should avoid guiding the deci-
sion in a specific direction by imposing a value system that is not transparent to the 
other parties in the decision process. 

The other side of this is the potential tendency of decision-makers to diffuse re-
sponsibility by taking the results of modelling as such and not to apply a prioritisation 
or a valuation based on a transparent and ethically grounded evaluation scheme.  

To say it in one sentence: For maintaining the integrity and transparency of deci-
sion making, science gives options, and decision-makers value and select them. 

4.4  Computational Models As Tools For Discussion 

In 2.2, we pointed out that models require turning implicit into explicit knowledge. 
This process is necessary for model building but is also of use in decision support. 
The discussion of concrete model assumptions and the possibility of studying their 
influence at least in a semi-quantitative way (for example, whether specific output 
variables are positively or negatively coupled with some basic assumptions?) helps to 
understand the emergent mechanisms in complex processes. The discussion between 
the “users” with expertise and domain knowledge and the modellers who perform 
simulations (always in the context of a given model) can result in a better understand-
ing of the system as a whole and the emergent properties one observes (in reality and 
the model). In an ideal case, the interplay of experts (scientists or non – scientists) 
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who discuss their experiences and verbal descriptions with modellers who turn these 
statements into formalised algorithms can improve the levels of insight into complex 
systems.  

A further benefit is that an algorithmic description can be communicated in a way 
that is sometimes hard to achieve by prose. This communication is not only crucial for 
the interplay between modellers and other stakeholders; in our experience, the discus-
sion of a model and its algorithms can also be beneficial for the collaboration of dif-
ferent stakeholders. We then use the model as a tool for discussion, and modellers act 
as intermediaries.  

This function as a tool also applies to situations where one discusses qualitative as-
pects of system behaviour. For example, we take the question of tipping points, i.e. a 
qualitative change of system behaviour resulting from a small change in one or sever-
al parameters. A minimal model (s. Sec. 3.2) can help decide whether some generic 
dynamical properties are sufficient to produce such a tipping point. Knowing about 
such a tipping point is of value, even if we know that the numerical value at which the 
transition happens in a minimal model may differ considerably from the one in a spe-
cific and complete setting. This type of discussion is well known in physics (we again 
refer to the Ising – model, which is a minimal model of magnetism but shows some 
behaviours of phase transitions generically).  

5 Models And Narratives 

We focus the discussion on a central topic: The interpretation of results gained 
from models happens in a series of steps. This interpretation starts in the context of 
science, the place of production. Various methodologies, “best practices,” and cultural 
habits exist in this relatively narrow social environment. Later, various instances 
transfer these results into a language that suits broader, even public communication 
needs. The transfer is not a translation; transfer is not only a matter of using “plain 
language.” Instead, the communicator produces a “narrative” in which common anal-
ogies replace the system or process under consideration (see Sec. 4.1.2). We claim, 
however, that the scaffolds of narratives appear at an earlier stage in the process of 
model building.  

We start with a central hypothesis, from which we derive / on which we base sev-
eral questions. We cannot answer these questions in a definite manner, but we recog-
nised them as central for discussing the relation between models and narratives.  

5.1 Main Hypothesis On Models, Simulations, Storyworlds And Narratives 

Although models are based on quantitative or qualitative scientific reasoning, how 
they are perceived and used in a context broader than that of science should be ana-
lysed with a range of tools from communication, journalism, literary analysis, and 
critics. In the narrow context of science, a model is a basis for mathematical reason-
ing. The function of a model is broadened, as soon as models and their results become 
part of the thinking and acting in politics, administration, and the wider public. Be-
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sides mathematical arguments, the model sets the stage for narrative elements. Again, 
taking up an idea of H. U. Fuchs, the model gives a story world, and the simulation is 
the backbone of a concrete story.  

In what follows, we will use the term “narrative” instead of “story”. According to 
Collins dictionary, a narrative is “a story or an account of a series of events”, whereas 
a story is defined as “a description of imaginary people and events, which is written 
or told in order to entertain”.    

In such a broad setting, "Reading the results of a model" is a non–trivial process 
that can no longer rely on some scientific subdiscipline's established standards and 
rules. Understanding the role of models/story-worlds and simulations/narratives and 
putting it into a social and ethical context requires a discussion that raises awareness 
of the reader's role and his/her background.  

Good literature is more real than reality in the sense that a well-composed narrative 
contains "reality" in a more condensed and easier-to-follow form than just an account 
of what has happened where and when to whom. We probably all agree that writing a 
good narrative is a significant task. As soon as simulations are related to narratives, 
we strongly emphasise that communication profits from the inclusion of experts. 
However, we point out that one needs more than marketing (marketing is needed, but 
not only). One needs narrators and experts from literary studies who understand the 
complex relations between texts and readers.    

5.2 Questions And Topics Relating To Politics And Operationalisation  

Models And Novels  
We compare a good model to a good storyworld: The model sets the stage for a 

narrative that, in some respect, is a streamlined image of reality but contains, concern-
ing a specific set of topics, a sufficient representation of reality. Like a good novel, 
this narrative focuses on those parts of the dynamics relevant to the phenomena under 
consideration and neglects the others. As already explained in Sec. 4.2.3, socio-
medical models often subdivide the population according to age. That leads to a pic-
ture in which "the elderly," "boomers," and "the younger" appear as actors. This is 
often reasonable but sometimes hides the fact that a similar subdivision according to 
socioeconomic status could be employed, which leads (literally) to a different narra-
tive.  

When one equips a model with a narrative, one needs to ask about the opportunity 
costs of invoking one specific narrative: The choice of the narrative one tells automat-
ically implies that other narratives remain untold. Choosing a narrative (which hap-
pens already at an early stage in model-building when one chooses the model varia-
bles, see Fig. 2) must be done considering potential uses for ethical purposes later. 
Conversely, if one has a model and evaluates its use for ethical issues, one must ask 
whether the model is an appropriate stage for narratives that illustrate the ethical ques-
tion under consideration.  

Models, Narratives, And Communication Structures 
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In larger projects or organisations, models/storyworlds and simulations/narratives 
are embedded in communication structures. If one aspires to establish a smooth and 
correct interpretation of simulations in an organisation, a central question is: How can 
we avoid (maybe interest guided but probably more often unconscious) misinterpreta-
tions? The problem of misinterpretation is closely related to the “Give options, not 
advice!” – statement we discussed in Sec. 4.3.2. The narrative should inspire thinking 
and discussion but not predestine their outcome not justified by the facts.  

It is not only about misinterpretation but about interpretation in general. Note well: 
As soon as one accepts that models and simulations go together with narratives, we 
have to accept generic properties of the latter as a part of the whole process. To ex-
press this colloquially: The fact that narratives can have many interpretations is not a 
bug but a feature of literature.   

One further point is that how a narrative is understood depends on the culture in 
which that reading happens. If narratives transport/communicate the results of mod-
els, we should compose narratives with an awareness of the difficulty of writing sto-
ries in an intercultural context. 

Secondary Literature 
One usually values the primary texts higher than the secondary sources in literature 

and philosophy. This is different in the natural sciences, where almost nobody learns, 
for example, quantum mechanics via reading the original papers. This may be a pity 
in some specific cases where the original works are written by true masters of the 
field and contain deep insights. In general, however, the secondary literature clarifies 
basic concepts and uses a more accessible presentation and improved formalisation. 
Secondary literature in the natural sciences is quite often easier to understand and, 
therefore, more efficient in teaching sometimes rather technical ideas. One can ex-
plain this observation partly by considering that the authors of secondary literature 
have been in the same situation as the novice is when studying a new topic: One has 
to master an idea that one has not produced by oneself. We emphasise this, because, 
in our view, one must not regard the communicator as solely supportive. Those trans-
lating a model into a narrative contribute an essential part of knowledge in a transdis-
ciplinary process.  

5.3 The Role Of The Reader 

One big difference between narratives in literature and narratives derived from sci-
entific model-based simulations is the multiple authorship of the latter. Literary works 
with more than one author (not to speak of five, ten, or twenty) are almost non-
existent and, if at all, are certainly part of the experimental branch of literature. Con-
cerning ethical considerations, this raises important questions. What is the individual 
author's responsibility for the narrative produced from the simulation results?  

One can extend this question. If we compare the narratives related to models and 
simulations with other literary works, is there an ethics of literature that helps us un-
derstand how we can deal with models/simulations? On the one hand, there is the 
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freedom of artistic work (which is an essential aspect of art). On the other hand, narra-
tives/literature have a social effect. This means that the concept of a narrative may 
originate and primarily exist in the realm of art but can, as an intellectual object, be 
used outside art and, consequently, be subject to different standards than in the con-
text of art. The question is then: Can we apply the methods of literary criticism to 
narratives (an object initially in art) but use it outside art?  

Through the investigations of philosophers such as Roland Barthes, we know about 
the reader's role. One may or may not share the positions expressed in [23]; taking the 
reader’s role seriously means that there is a responsibility of the author(s) and one of 
the reader. From a (or at least some) modern point of view, the text exists for its own, 
and the reader may well go beyond what the author had in mind. Whereas this “going 
beyond original intentions” - approach is most fruitful in, say, reading poetry, it is 
more problematic in model interpretation. If modelling results are embedded into 
narratives, the storytellers and the reader must be aware that what they read is a narra-
tive, but the interpretation is not as free as in the case of a pure work of art. Whereas it 
is appropriate to take a piece of art as inspiration for own thoughts, ideas and emo-
tions, a narrative for simulation results must be regarded as a vehicle of content. In 
reading such a narration, the reader is required to scrutinize her or his interpretations 
and try reading the text in the author's sense. The authors have the obligation to make 
this sense transparent.  

The presentation of the results of a simulation in a scientific manner (means as ta-
bles and graphs) has its advantages insofar as the potential for misunderstandings is 
reduced. If modelling and simulation results are embedded into narratives, the reader 
or user of the simulation results shares the responsibility for correct reading and inter-
pretation. That means, for example, that users are responsible for knowing the differ-
ence between a scenario and a prediction. On a somewhat higher level, users must be 
aware that the quality of the input data determines the quality of the output data. In 
general, users of modelling results must understand their role not only as a receiving 
one but as, in various aspects, a critical part of modelling (“critical” in the sense of 
“important”, but also in the sense of offering critique to the modellers). This holds for 
individual readers but even more so for the media.  

6 Concluding Remarks 

In the introduction, we formulated three requests for responsible modelling. In the 
paper, we focussed the discussion on computational modelling.  

The first request addresses the users of models. Doing science and acting in the 
scientific community requires acquaintance with and acceptance of a specific set of 
social practices. If one acts in an interdisciplinary context but still within science, one 
can build on these practices. As soon as one enters decision-support, the involved 
partner may add different boundary conditions or potentialities that alter the extent 
and range of ethical considerations. The discussions in Sec. 2-5 contribute all to this 
discussion.     
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The second request, R2, postulates that one needs a process-oriented understanding 
of modelling. This holds for the development of models, discussed in Sec. 2. The 
interplay between model builders and experimentalists poses challenges for project 
management. In our view, it is crucial to understand that the existence of these chal-
lenges is not “a bug, but a feature.” Of course, experimentalists and modellers know 
about these difficulties. To overcome them is a part of the scientific process but needs 
some organisation; we need interfaces between different branches. It is relevant that 
one must not take the existence of these interfaces for granted, but their construction 
can be part of a project. The critical aspect is the relation between model variables 
and measurable observables. The potential tension between model variables and ob-
servables becomes even more critical if one works not only in an inter- but in a trans-
disciplinary context. Besides the fact that one can no longer rely on well-established 
conventions of scientific argumentation and practices, questions of language and 
communication become demanding tasks that may require using narratives as tools 
for conveying content. In Sec. 5, we discussed opportunities and potential problems 
one faces when working with narratives. It is crucial to realise an essential distinction 
between art and the natural sciences if one does so. Art inspires and conveys a mood, 
whereas the natural sciences explain and transport facts. The boundary between art 
and natural sciences is, at a closer inspection, quite blurry. Nevertheless, if one uses 
storytelling methods as part of complex decision support processes, one must keep in 
mind the different objectives of art and science.   

Finally, request R3 asks to clarify the responsibility of the reader. The systemic na-
ture of the use of models requires considering the different types of users, as dis-
cussed in Sec. 2 - 4. In Sec 5, we embedded these arguments in a discussion that em-
phasises the role of communication. Notably, the “responsibility of the reader” is a 
concept that, in the context of computational modelling, does not only apply to indi-
viduals but should also be extended to institutions, especially the media. Fortunately, 
responsible journalists (there are still many!) must criticise the results of computa-
tional models and develop an understanding of what a model can do.   

As stated in the introduction, computational modelling probably faces historical 
opportunities. There is some loud mistrust of science, but it is a minority of the popu-
lation that expresses it. The possibilities of data acquisition, computer technology, and 
a growing fundamental understanding of modelling offer the modellers the chance to 
have a tangible impact on society in fields ranging from personalised medicine over 
epidemiology and economic planning to climate change. However, the chance for 
impact brings the duty for responsible and ethical action. Acting responsible starts 
undoubtedly at the level of the individual scientist. In addition, we must implement 
social and administrative structures that allow the ethical use of computational models 
and actively promote them. In our view, it is crucial to recognise that such promotion 
must observe the lessons of transdisciplinarity and activate resources ranging from 
pure natural science over philosophy and cultural studies to art and politics.  
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