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Abstract. Within the scope of the European Horizon 2020 project ACDC
– Artificial Cells with Distributed Cores to Decipher Protein Function,
we aim at the development of a chemical compiler governing the three-
dimensional arrangement of droplets, which are filled with various chem-
icals. Neighboring droplets form bilayers containing pores through which
chemicals can move from one droplet to its neighbors. When achieving a
desired three-dimensional configuration of droplets, we can thus enable
gradual biochemical reaction schemes for various purposes, e.g., for the
production of some desired macromolecules for pharmaceutical purposes.
In this paper, we focus on geometric restrictions to possible arrangements
of droplets. We present analytic results for the buttercup problem and
a heuristic optimization method for the kissing number problem, which
we then apply to find (quasi) optimum values for a bidisperse kissing
number problem, in which the center sphere exhibits a larger radius.

Keywords: agglomeration · droplet · buttercup problem · kissing num-
ber · threshold accepting

1 Introduction

Over the last decades, huge progress has been made in discovering the properties
and functionalities of the various constituents of cells [2]. In the new field of syn-
thetic biology [7], this knowledge is used to produce some desired macromolecules
by altering or replacing the DNA. Within the scope of the European Horizon
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2020 project ACDC – Artificial Cells with Distributed Cores to Decipher Protein
Function, we follow a different approach: We use droplets containing some fluid
and being surrounded by another fluid as simplified models of cell-like struc-
tures. Droplets touching each other can form bilayers with pores through which
chemicals can be exchanged. Thus, an agglomeration of droplets filled with var-
ious chemicals can form a bilayer network, allowing a gradual chemical reaction
process. Our aim is to create a specific agglomeration of droplets in order to
generate a desired gradual chemical reaction process for some purpose, like the
generation of some desired macromolecule [18,17]. In order to reach this goal,
we need to study the dynamics and outcome of agglomeration processes [20],
but also to develop a chemical compiler [6,23], creating a plan of how to design
an experiment leading to an appropriate agglomeration for a bilayer network for
the desired gradual reaction processes.

Besides, we are also interested in the origin of life [15]. One of the open
questions in this field is the huge difference between the time needed for a to-
tally random evolutionary process, starting from the primordial soup and finally
leading to life of larger complexity, up to human beings, and the age of the
earth, which is too small to allow such an entirely random evolutionary pro-
cess performed at a constant rate, such that faster rates in the past have to be
assumed [10]. But if we replace the primordial soup at least partially with an
agglomeration of droplets [27], the production of the first complex molecules of
life might become likelier and thus faster, as the compartimentalization of semi-
stable molecules within small droplets instead of within the overall primordial
soup might stabilize these educts [11], thus increase the probability for the pro-
duction of such complex molecules [15], and in turn shorten the time for some
initial steps of the evolutionary process.

For both of these problems we want to deal with, the basic question arises
which molecules could be created by an agglomeration of droplets and the re-
sulting bilayer network. And vice versa, one could ask which agglomeration was
needed to produce a specific desired molecule. But here an additional problem
arises: Even if a bilayer network for the creation of that molecule can be deter-
mined theoretically, still the question remains whether this bilayer network can
indeed be realized with an agglomeration of droplets filled with various chemi-
cals. Geometric restrictions may form the most prominent obstacles towards the
realizations of such bilayer networks.

In this paper, we restrict ourselves to the case that the droplets can be
modeled as hard spheres, i.e., we consider the case of large surface tensions,
such that the droplets have in general a spherical shape, and of small bilayers,
such that the droplets only touch slightly each other and stay spherical if a
bilayer is formed. Furthermore, we mostly restrict ourselves to the case of all
spheres exhibiting the same radius value R. In the following sections, we present
two examples of geometric restrictions of great importance for our underlying
problems, show how one of these problems can be solved analytically, develop
a heuristic optimization algorithm for finding (quasi) optimum solutions for the
other problem, and present results obtained with that algorithm.
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2 The buttercup problem

2.1 Description

Fig. 1. Solutions for the buttercup problem for N = 2, N = 3, N = 4, and N = 5,
(top row from left to right) unit spheres on a ring (printed in red), with all of them
touching one further unit sphere (printed in blue), with a glossy sphere encapsulating
them and touching all of them. For N = 6, such a configuration is already impossible
for a finite radius of the surrounding hull, such that we print here the configuration
with the smallest hull sphere encapsulating a ring of 6 unit spheres (bottom).

The first problem we want to consider here has been named the buttercup
problem (see Fig. 1): N unit spheres (We use the term unit sphere throughout
this paper for a sphere with radius 1. But all results shown for these unit spheres
can be easily transferred to other systems with spheres having an other common
radius value R.) shall be placed around an additional N +1th center unit sphere
in their midst in the way

– that each of the N unit spheres touch the center unit sphere in their midst,
– that the N unit spheres form a ring, i.e., each of them touches only its left

and its right neighbor besides touching the center sphere and no further
connections are formed, and

– that the whole configuration is placed within a surrounding hull sphere of
radius R, with R being chosen in a way that the overall configuration is
stabilized without further ado, i.e., the surrounding hull touches each of the
N spheres on the ring and the center sphere.

From these conditions, it follows that the midpoints of the N unit spheres on a
ring lie in one plane. This structure is reminiscent to a buttercup flower with its
petals and center. It is important for our problem of generating specific agglom-
erations for some desired purposes, as the center sphere can serve as a control
sphere which governs e.g. the opening and closing of pores in the bilayers between
the petal spheres.
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2.2 Analytic solution

Now we have to determine the configurations for various N . Without restric-
tion, we place the midpoints of the N petal spheres in the xy-plane on a circle
with radius %, such that the midpoint of the petal sphere No. k has the coordi-
nates (% cos(2πk/N), % sin(2πk/N), 0). For symmetry reasons, the N+1th center
sphere has the coordinates (0, 0, zN+1) and the midpoint of the surrounding hull,
which has a radius value of R, lies at (0, 0, h). First we determine the radius %
with the condition

(% cos(2π/N)− %)2 + (% sin(2π/N))2 = 22, (1)

which resolves to

% =

√
2

1− cos(2π/N)
. (2)

There are of course also some more elegant ways to determine % for some specific
values of N . For example, for the case N = 5, one can make use of the properties

of the golden cut and finds % = 1
5

√
50 + 10

√
5. In the second step, we determine

zN+1 with the condition
z2N+1 = 4− %2. (3)

So far, the locations of the N + 1 spheres have already been determined. Now
we have to choose h and R in a way that the outer hull touches all N + 1
spheres, which is only the case if there is a common distance value D between
the midpoint of the surrounding hull and the midpoints of the N + 1 spheres.
For determining the two parameters h and R, we need two conditions:

h2 + %2 = D2

zN+1 − h = D
(4)

Please note that there are two cases: If the midpoints of the N + 1th sphere and
of the surrounding hull lie on opposite sides of the xy-plane, then h is negative,
as in the case N = 5. If they lie on the same side, then h is positive, as for
N ≤ 3. By eliminating D from Eq. (4), we get

h =
z2N+1 − %2

2zN+1
. (5)

The radius R can then easily be determined as

R = zN+1 − h+ 1. (6)

Table 1 provides the parameters of the buttercup problem for N = 2 to
N = 6. Please note that the configuration for N = 6 in Fig. 1 violates the
condition that the surrounding hull must touch all spheres, including the center
sphere. This is only possible in the limit R →∞. Instead the picture for N = 6
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Table 1. Approximate numeric values of the parameters (see text) of the solutions to
the buttercup problem for various numbers N of unit spheres in a ring. If the spheres
have a common radius value R different from 1, each of the numbers provided has to
be multiplied by R.

N % zN+1 h R
2 1 1.732 0.577 2.155
3 1.155 1.633 0.408 2.225
4 1.414 1.414 0 2.414
5 1.701 1.051 -0.851 2.902
6 2 0 −∞ ∞

depicts the case of the smallest surrounding sphere. But this configuration is not
stable, as the center sphere can move freely in the z-direction. The configurations
for N = 2, 3, and 4 are identical with the densest packings of 3, 4, and 5 spheres
in a sphere [26]. In the configuration for N = 4, even a further unit sphere can
be added symmetric to the N + 1th sphere at the other side of the xy-plane
without overlaps and without the need to enlarge R. Furthermore note that no
buttercup configurations can be created for N > 6 (see also the configurations
for the related problem of packing circles in a circle in [24]), if not at least one of
the conditions mentioned above is abandoned or the radius of the center sphere
enlarged.

3 The kissing number problem

3.1 Description

Fig. 2. The kissing number problem in three dimensions

The second problem we want to study in this paper is the kissing number
problem [3,4]. It can be stated as follows: find the maximum number N of unit
spheres touching a further unit sphere in their midst without overlaps in D
dimensions [16]. This problem, which has been studied for centuries, can be
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trivially solved in one and two dimensions. In two dimensions, N = 6 unit disks
can be placed around a center disk. In one dimension, the kissing number is given
by N = 2. But in three dimensions, the exact value remained unknown for a long
time. Newton and Gregory debated about this problem, with Newton claiming
that the kissing number in three dimensions was N = 12, whereas Gregory
believed it was 13. Only in the 1950s, it was proved that Newton had been
right [22]. A configuration of an arrangement of spheres for this kissing number
problem in three dimensions is shown in Fig. 2, with the center sphere printed in
blue and the surrounding spheres printed in red. A glassy orb is drawn around
the configuration to better show that the surrounding spheres indeed touch the
center sphere in their midst. The kissing number problem is also considered in
higher dimensions, but only for some dimensions like D = 4 (N = 24), D = 8
(N = 240), and D = 24 (N = 196560), exact values of N have been determined.
For most dimensions, only lower and upper bounds to the kissing number are
known. A list of currently known values can be found in [25]. They indicate
that the kissing number N grows exponentially with the dimension D. In the
next step, we want to develop an optimization algorithm for the kissing number
problem.

3.2 A heuristic optimization algorithm for the kissing number
problem

Optimization algorithms can be divided in two classes, namely exact mathe-
matical algorithms, which return one solution and guarantee that this solution
is indeed optimal, and heuristic methods, which create one or several configu-
rations of good quality, hopefuly being even (quasi) optimum. These heuristic
methods can be subdivided in two subclasses, one of them being construction
heuristics, which start at a tabula rasa and gradually create a solution for the
overall problem, and the other one being iterative improvement heuristics, which
usually start at a randomly chosen configuration and iteratively apply changes
to the configuration in order to gradually increase the quality [21]. Mostly, one
follows the local search [1] path and applies only small changes which do not al-
ter a configuration very much. The simplest improvement heuristic is the greedy
algorithm: starting from a randomly chosen initial configuration σ0, it performs
a series of moves σi → σi+1 by successively applying small randomly chosen
changes to the configuration. A move is accepted with probability

p(σi → σi+1) =
{

1 if ∆H ≤ 0
0 otherwise

(7)

with the difference ∆H = H(σi+1) −H(σi) between the cost function values of
the current configuration σi and the tentative new configuration σi+1. In case of
rejection, one sets σi+1 := σi.

As the greedy algorithm does not accept any deteriorations, it often gets soon
stuck at local minima of mediocre quality. In contrast, simulated annealing [9],
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which uses the Metropolis criterion [12]

p(σi → σi+1) =

{
1 if ∆H ≤ 0
exp(−∆H/T ) otherwise

(8)

with the temperature T as acceptance criterion, also accepts deteriorations with
some probability, which is the smaller the larger the deterioration ∆H and the
smaller the temperature T is. Its deterministic variant [13], which is also called
threshold accepting [5], uses the transition probability

p(σi → σi+1) =
{

1 if ∆H ≤ T
0 otherwise

(9)

and thus accepts all improvements and all deteriorations up to a proposed thresh-
old value T . During the optimization run, T is gradually decreased from a large
initial value, at which the system to be optimized is in a high-energetic unordered
regime, towards a small vanishing value, at which the system gradually freezes
in a low-energetic ordered solution.

When applying threshold accepting to a specific optimization problem like
the kissing number problem, one thus has to define

– a routine for creating a random initial configuration,

– one or several move routines, which alter a configuration slightly, and

– a function for measuring the cost function value of a configuration.

In our optimization apprach, we use threshold accepting, as its acceptance
criterion is better at avoiding small overlaps at the end of a simulation than
the Metropolis criterion. We work with a fixed number N of spheres, which
shall be placed in a way that all of them touch the center sphere and that
they do not overlap with each other. If a feasible configuration meeting these
constraints is found for a specific value of N , we increase N by 1 and perform a
new optimization run with this incremented value of N . We iterate this approach
until no feasible configuration can be found anymore for a specific Nmax, such
that the heuristic algorithm returns that the kissing number has the valueNmax−
1.

For the initialization process, we could randomly place the N spheres any-
where. However, we want to restrict the search space to configurations in which
the midpoints of the N spheres lie on a virtual sphere with radius 2, as this
condition must hold for any solution of the problem. For all initial coordinates
xi(j), j = 1, . . . , D of sphere i, we first randomly select a value from the in-
terval [−2, 2], such that the midpoints of the spheres are already placed in a
D-dimensional cube of side length 4, which is centered around the origin, at the
beginning. Then we calculate the distance

ri =

√√√√ D∑
j=1

xi(j)2 (10)
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of the midpoint of sphere i to the origin and renormalize the coordinates of the
midpoint of sphere i according to

xi(j) := 2× xi(j)/ri, (11)

thus placing the midpoint of sphere i on the virtual sphere of radius 2. Therefore,
the condition that each of the N spheres has to touch the sphere at the center
is already fulfilled.

Furthermore, we implemented three move routines in which one of the N
spheres is randomly chosen and transferred to a tentative new location:

– In the first of these three move routines, the new location of the chosen
sphere is determined as in the initialization process, i.e., first each of its
coordinates are randomly chosen in a way that its midpoint lies in a cube of
side length 4 centered around the origin, then they are renormalized using
Eq. 11, i.e., in the way that the midpoint lies again on the virtual sphere of
radius 2. Thus, the midpoint sphere can lie at an entirely new location on
this virtual sphere.

– In the second move routine, the tentative new location is created by adding
randomly chosen values from the interval [−1, 1] to the current coordinates of
sphere i, such that the midpoint of sphere i in the tentative new configuration
first lies in a cube of side length 2 centered around the current position. Then
the coordinates are renormalized as above, such that the midpoint lies on
the virtual sphere of radius 2 again. We chose this maximum value of 1
for shifting a coordinate, as this maximum value proved to provide superior
results for a formerly studied multidisperse disk packing problem [14,19].

– The third move routine is almost identical to the second move routine, except
that the interval from which the values to be added to the coordinates are
randomly chosen is not [−1, 1] but [−T, T ]. With decreasing threshold value
T , the amount by which the coordinates can be changed at a maximum
decreases during the optimization run, thus increasing the likelihood for
randomly selecting small changes with larger acceptance probability.

Each of these three move routines ensures that the N spheres touch the center
sphere as required, however, configurations can contain overlaps between pairs
of these surrounding spheres.

This brings us to the last point of our considerations of how to apply threshold
accepting to the kissing number problem. For the application of an optimization
algorithm like threshold accepting, a cost function H is needed which is to be
minimized. However, there is no such cost function for the kissing number prob-
lem in our approach with a fixed number N of surrounding spheres a priori,
one can only state whether a configuration is feasible because all constraints are
fulfilled or whether it is not feasible because at least one pair of surrounding
spheres overlaps. However, during the optimization run in the search of a feasi-
ble configuration, we can allow to accept non-feasible configurations as well, but
introduce penalties for the overlaps between pairs of spheres, which we sum up
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and thus get a cost function value. Therefore, we can define the cost function H
as

H(σ) =
N∑

i,j=1
i<j

∆(i, j)Θ(∆(i, j)) (12)

with

∆(i, j) = 2−

√√√√ D∑
k=1

(xi(k)− xj(k))2 (13)

and the Heaviside step function

Θ(a) =
{

1 if a ≥ 0
0 otherwise

. (14)

When a tentative new configuration is put to the decision whether to accept or
reject it, not its overall cost function value has to be calculated. When deter-
mining ∆H for an algorithm using local search moves as in our approach, it is
much faster only to sum up the differences between those addends which have
changed between the current and the tentative new configuration, i.e., one has
to check only for the sphere which is to be displaced whether there are overlaps
at its current position and whether there are at the tentative new position.

The threshold T is gradually decreased from an initial value of 10 by a cooling
factor of 0.999. In each of the 10000 temperature steps, one million MCS are
performed. An optimization run can be prematurely stopped when a feasible
configuration without overlaps is reached.

3.3 Computational results for the kissing number problem

Fig. 3. Two solutions each of our optimization program for the kissing number problem
in D = 4 dimensions with N = 24 surrounding spheres (left) and in D = 6 dimensions
with N = 72 surrounding spheres (right): Only the midpoints of the N surrounding
spheres are displayed at (xi(1), xi(2)). If surrounding spheres touch each other, their
midpoints are connected with edges. The central sphere is omitted for visibility reasons.

We applied the threshold accepting algorithm as described above and got
the solution shown in Fig. 2 for the kissing number problem in three dimen-
sions. But the kissing number problem does not provide much of a challenge in
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three dimensions, as the available space on the surface of the central sphere is
almost sufficient for a thirteenth sphere. In order to show the effectiveness of
our heuristic algorithm, we thus applied the algorithm to the kissing number
problem also in higher dimensions. In several optimization runs, we achieved
feasible solutions for the optimum number of N = 24 surrounding spheres in
D = 4 dimensions and for N = 72 surrounding spheres in D = 6 dimensions,
four of which are shown in Fig. 3. We also tried to find a feasible solution with
N = 73 surrounding spheres in D = 6 dimensions, but were unsuccessful. The
best solutions we achieved were configurations with a cost function value of 2,
i.e., in these solutions, the 73rd surrounding sphere is placed exactly where the
72nd surrounding sphere lies. Although having no exact proof by using threshold
accepting, we thus assume that the value of N = 72 is not only the lower bound
to the true kissing number in six dimensions but that it truely is the kissing
number in six dimensions.

3.4 Computational results for a bidisperse kissing number problem

Fig. 4. Solutions for a bidisperse kissing number problem with a center sphere with
larger radius R: N = 28 unit spheres can be placed around this larger center sphere
without overlaps for R = 2, N = 52 for R = 3, N = 83 for R = 4, and N = 120 for
R = 5 (from left to right).

Finally, we apply our optimization algorithm to a bidisperse variant of the
kissing number problem in which the center sphere has no longer a radius of R =
1 but a larger radius value, while the surrounding spheres are still unit spheres,
i.e., still have a radius of 1. For this problem, we have to alter our optimization
algorithm simply in the way that we have to ensure that the midpoints of the
surrounding spheres lie on a virtual sphere of radius R + 1, therefore Eq. (11)
has to be replaced by

xi(j) := (R+ 1)× xi(j)/ri. (15)

Otherwise, the optimization algorithm remains unchanged. We consider this al-
tered problem only in three dimensions. Figure 4 displays the best solutions
found for various radius values. The configurations are drawn as in Fig. 2. The
kissing number N increases with increasing radius R of the center sphere. Due
to the small problem sizes studied, we cannot generally state according to which
laws N will furthermore increase if we move on to even larger values of R.
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However, if considering that the surface of the center sphere is given by 4πR2,
we can construct an upper bound function to the kissing number N , which in-
creases ∝ R2, such that the kissing number itself cannot increase stronger than
with ∝ R2.

4 Conclusion and outlook

In this paper, we considered two problems which impose restrictions to our aim
of generating bilayer networks in agglomerations of droplets for the purpose of
producing specific macromolecules. In the buttercup problem, spheres have to
be placed like the petals of a buttercup around a center sphere while fulfilling
some constraints. In the kissing number problem, the largest number of spheres
being able to touch a further sphere in their midst without overlaps has to be
determined. We provided analytic results for the first problem and obtained
computational results from a heuristic optimization algorithm we had developed
for the second problem, achieving feasible configurations with optimum kissing
numbers in 3 and 4 dimensions and with the lower bound in 6 dimensions. Fur-
thermore, we provided results for a newly introduced bidisperse variant of the
kissing number problem. We will continue studying these problems and their
variants with additional constraints. We will also consider other such problems
related to our work, like the problem of sticky spheres [8], in which agglomera-
tions of spheres have to be found in a way that the number of bilayers between
them is maximum.

Acknowledgments
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