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A B S T R A C T

Managed futures funds are predominantly trend-followers. By analyzing positioning data, we
provide novel evidence for this claim and estimate signals applied by these funds. We write
trend-followers aggregate position as a weighted sum of past daily returns and use a generalized
ridge regression for regularization and parameter estimation. This procedure prevents overfitting
but remains flexible enough to capture various patterns. For the 23 commodities considered,
trend-following can explain speculators’ position changes with an average R2 of more than
40%. Finally, we document that producers act as contrarians in a way that closely mirrors the
behavior of momentum traders.

1. Introduction

Trend-following is the most common investment strategy in the futures markets. It is the investment style of systematic global
acro funds and also the predominant input factor of many commodity funds. The popularity of trend and momentum signals is
ue to their consistent and well-documented long-term performance and their potential for diversification (Erb and Harvey, 2006;
Gorton and Rouwenhorst, 2006; Miffre and Rallis, 2007).

While many systematic macro funds are classified as trend-followers, details on the trading strategy and the explicit construction
of the signals are kept as proprietary knowledge. Funds, for example, do not reveal the interval length used for trend estimation
(which we refer to as the look-back period). Also, the way the trend signal is constructed is not made public. It is not known whether
a fund uses basic momentum, moving-average crossover, or another more exotic trend signal. Finally, portfolio construction can
be very different: A time series approach analyzes an asset just on its own price history (Szakmary et al., 2010; Moskowitz et al.,
2012). A positive trend results in a long position, while a negative trend leads to a short position, and there is no interdependence
between assets. Cross-sectional approaches focus on relative performance (Jegadeesh and Titman, 1993; Erb and Harvey, 2006).
he assets with the strongest trend form a long basket and those with the weakest trend are shorted.
In this paper, we provide new evidence that commodity speculators1 do indeed predominantly use trend signals. This is not a

ovelty by itself as previous studies document the strong link between trend-following and hedge funds. For example Hurst et al.
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(2013) provide a detailed analysis of managed futures and show that their returns can be explained by simple trend-following
strategies. Our analysis differs, however, substantially from theirs. Firstly, we do not conjecture that certain signals are relevant
for speculative trading; rather, we estimate them. More precisely, we estimate a representative trading signal used by the average
hedge fund and reveal the most popular look-back periods.

Secondly, our analysis does not explain returns but rather the exposure held by hedge funds and their trading activities. Similar
o Lehecka (2013), we analyze to what extent the positioning of non-commercial traders published in the Commitment of Traders
eport (CoT) released by the Commodity Futures Trading Commission (CFTC) can be explained with past returns. More precisely,
e show that trend and momentum signals explain more than 40% of the commodity position changes of large hedge funds. To the
est of our knowledge, this is the first paper to reveal such detailed evidence about the link between the positioning of speculative
raders and trend-following.
We also study other signals known to explain commodity return, specifically the basis and basis-momentum (e.g., Szymanowsky

et al., 2014; Bakshi et al., 2019; Boons and Prado, 2019). However, somewhat surprisingly given their relevance in the literature,
the inclusion of these variables in our model did not significantly increase its forecasting ability, in neither a time series nor in a
cross-sectional specification.

Our findings on momentum are remarkably consistent across the 23 commodity futures we examine. Over the entire sample
(January 1998 till the end of December 2019), every single market is predictable and only three subperiods display a negative R2.
Natural gas, the most volatile market, is the only commodity with an unstable pattern. Moreover, we find a consistent hump-shaped
pattern in the signal’s weighting of returns, which indicates that there are short-term and long-term traders in the market and that
implementation is delayed in some way. Results are robust out-of-sample for different tuning parameters and for different maximum
look-back periods.

Because there are so many different trading signals and parameters for these signals, we need an elaborate empirical design
to reveal aggregate behavior. While our approach is primarily data-driven, we make the constraining assumption that the cross-
sectional approach is largely irrelevant to explain the aggregate behavior. This restriction allows us to focus on the time series
approach and therefore to analyze each market individually. Next, we use the representations derived in Levine and Pedersen (2016).
They show that a large class of trend signals, including momentum and moving average crossing, can equivalently be represented
as a weighted sum of past returns. Assuming a maximum look-back period of one year, this transformation reduces the number
of trading signals to 260. We further reduce the degrees of freedom through a generalized Tikhonov regularization, also known as
ridge regression, as introduced by Phillips (1962) and Tikhonov (1963). Instead of shrinking outright parameters as in the standard
version, we penalize weight changes between consecutive lags of past returns. This design imposes smoothness on the weighting
function of past returns. Given typical trading signals, this is a well-justified assumption. Moreover, the aim of traders to reduce
turnover will inevitably lead to smoothly varying weights.

In this paper, we focus on commodities because the majority of speculative trading in these markets takes place with futures.
Futures positions are therefore a very accurate proxy for the overall speculative exposure. This is not the case for the other large
asset classes: Foreign exchange speculation is dominated by OTC forwards and many duration bets are implemented through swaps.
While futures are the preferred instrument of macro traders, with equities there are different alternatives to implementing a trade
efficiently. Another reason for the restriction on commodities is that the long history of positioning data is almost exclusively
available for U.S. instruments. As the commodity market is dominated by U.S. futures, we can obtain an almost complete picture in
this sector. Equity and fixed income trading is geographically more diverse and any evidence will only be fragmentary solely due
to the lack of appropriate positioning data.

The focus on commodities also allows us to analyze commercial traders, who inevitably mirror the trading behavior of
speculators. We investigate whether producers, users, or swap dealers take the opposite side of the speculators’ trade and thus
act as contrarians. In line with Cheng and Xiong (2014), we find that producers react strongly to price changes. We contribute to
this strand of literature, by generalizing their results to a much broader set of commodities. In addition, we quantify the behavior
of producers and show that they act in a way that closely mirrors the behavior of momentum traders.

The remainder of this paper is organized as follows: In Section 2, we describe the transformation of the trend-following strategies
into the return space, the fitting algorithm, and the estimation approach. In Section 3, we document empirically that speculators
are indeed trend-followers by predicting their position changes with trend signals, prove the models robustness, and point out the
evolution of the empirical return signature plots. Section 4 contains the analysis of basis and basis-momentum strategies. Section 5
provides an analysis of other trading groups and reveals their trading pattern. Finally, in Section 6 we conclude the paper.

2. Methodology

2.1. Trend-following signals

Momentum, or the return over the past 𝑛 days, is the most elementary trend-following signal. Using log returns, we can write
the momentum mom𝑡(𝑛) as the sum of daily returns:

mom𝑡(𝑛) = 𝑟𝑡−𝑛,𝑡 =
𝑛−1
∑

𝑟𝑡−𝑖. (1)
2

𝑖=0
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Fig. 1. Return signature plots of popular strategies.
Note: Weights on past daily returns for different momentum indicators (left) and for moving average based trend signals (right). All weights are normalized and
sum up to 1.

Following Levine and Pedersen (2016), this indicator can be generalized by allowing returns with different lags to have different
eights:

trend𝑡(𝒃, 𝑛) =
𝑛−1
∑

𝑖=0
𝑏𝑖𝑟𝑡−𝑖. (2)

straightforward example is the combination of momentum signals of different lengths, but this representation is far more general.
n fact, all linear trend signals can be written in Eq. (2), as outlined by Levine and Pedersen (2016). They also derive coefficients
𝑖, which they call ‘‘return signature plots’’, for many popular strategies. Fig. 1 illustrates the most common examples.
The two solid lines in the left panel of Fig. 1 represent simple momentum signals. They give equal weight to returns on each day

f the lookback period of 50 or 120 days, respectively. The dotted line in the same panel presents a stylized example of a momentum
trategy with a partial rebalancing rule (𝑠𝑚𝑜𝑚(60, 5)). The implementation of the 60-day momentum signal is split over five days,
hich leads to a trapezoidal shape of the return signature.
Trend signals based on moving averages are shown on the right-hand side of Fig. 1. The simple moving average (𝑚𝑎(100)) is
linear function that decreases from an initial value to zero at the end of the look-back period. The moving average crossing

𝑚𝑎𝑐(5, 60)) linearly increases until the end of the shorter look-back period of five days and then linearly declines to zero at the end
f the longer moving average (60 days). The exponentially weighted moving average crossing (𝑥𝑚𝑎𝑐) has a hump-shaped form that
onverges to zero. Similar to the unweighted moving average crossing, it assigns the most importance to intermediate price changes
nd lesser weight to the most recent price changes and to very old returns.

.2. Aggregation and portfolio construction

For the portfolio construction, we make two presumptions: Firstly, in line with Hurst et al. (2013), we assume that time series
momentum is prevalent. This conjecture is underpinned by Schmid and Wirth (2021), who examine the optimal combination of
ross-sectional and time series momentum in a pure trend-following strategy and find that the average optimal allocation to time
eries momentum is around 80% compared to a mere 20% in relative trend. Assuming a pure time series approach on one hand
implifies the model, by looking at each commodity on its own, and further allows us to capture the differences of the participants
nd dynamics for each market (Bosch and Smimou, 2022).
Secondly, we suppose that the average trend-follower increases the exposure proportionally to the signal.2 Then, the aggregate

osition can be written in the same linear form as the signal (2). Moreover, the linear relationship between exposure and past
aily returns preserves its form when aggregated across traders. Consequently, under these assumptions we can write the aggregate

2 This is not true for individual traders. For example, going long a fixed exposure when the trend is up and short the same exposure when the trend is down
s a widespread approach, which explains the returns of managed futures fairly well (Hurst et al., 2013). Also, transforming the signal with an S-shaped (or
igmoid) function, like the logistic function or arctan, to limit the risk of an instrument is common practice (e.g., Schmid and Wirth, 2021). Even interpreting
ery strong momentum as ‘‘overbought’’, therefore reducing the weight, is not uncommon. Moreover, thresholds can be applied.
3
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position of trend-followers in a specific commodity 𝑐∗𝑡 as3:

𝑐∗𝑡 =
𝑛−1
∑

𝑖=0
𝛽𝑖𝑟𝑡−𝑖. (3)

2.3. Model-fitting

Dividing the aggregate positions of a group of traders (𝑐𝑡) into trend-followers and other traders (𝑒𝑡), i.e. 𝑐𝑡 = 𝑐∗𝑡 + 𝑒𝑡, Eq. (3) can
e turned into an estimable model as follows:

𝑐𝑡 =
𝑛−1
∑

𝑖=0
𝛽𝑖𝑟𝑡−𝑖 + 𝑒𝑡, (4)

here 𝑒𝑡 can also be interpreted as an error term.
Both sides of Eq. (4) show strong positive autocorrelation. For the observable traders’ position on the left-hand side of the

quation, this is just an empirical property stating that funds do not turn over their portfolio every week. For the right-hand
ide autocorrelation results because the 𝛽s are smooth, a property that we further discuss at the end of this section. Therefore,
s illustrated by Granger et al. (2001), direct estimation of (4) can suffer from spurious regression. The standard solution to the
roblem is taking the first difference on both sides:

𝛥𝑐𝑡 =
𝑛−1
∑

𝑖=0
𝛽𝑖𝛥𝑟𝑡−𝑖 + 𝜀𝑡, (5)

here 𝛥𝑐𝑡 = 𝑐𝑡 − 𝑐𝑡−5 is the weekly change of the position and 𝛥𝑟𝑡 = 𝑟𝑡 − 𝑟𝑡−5, is the difference between two daily returns that are a
eek apart.
While Eq. (5) results naturally from a standard statistical procedure, relating changes in positions to changes in returns is hard

o interpret economically. We can bring it into a more intuitive form by rearranging coefficients:

𝛥𝑐𝑡 =
4
∑

𝑖=0
𝛽𝑖𝑟𝑡−𝑖

⏟⏞⏟⏞⏟
𝑛𝑒𝑤𝑠

+
𝑛−6
∑

𝑖=5

(

𝛽𝑖 − 𝛽𝑖+5
)

𝑟𝑡−𝑖 −
𝑛−1
∑

𝑖=𝑛−5
𝛽𝑖+5𝑟𝑡−𝑖

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑠𝑖𝑔𝑛𝑎𝑙 𝑛𝑜𝑖𝑠𝑒

+𝜀𝑡. (6)

he first term on the right-hand side is a weighted sum of daily returns over the period of position changes. It reflects how
ontemporaneous returns – or the incoming ‘‘news’’ – alter the signal and hence the position. This term is related to equation
5) in Cheng et al. (2015), equation (6) of Kang et al. (2020), and the results in Table 2 of Cheng and Xiong (2014) where position
hanges are also explained with contemporaneous returns. Compared to these approaches, our representation is more flexible
ecause daily returns can take on different coefficients within the period of position changes.
The other two terms on the right-hand side reflect how the date information in lagged returns is faded away. They largely

etermine how traders exit their position. Efficient trading must be dominated by the news term because trading on dated
nformation, which can be seen as some sort of ‘‘signal noise’’, would incorporate information at a speed that is very difficult
o reconcile with any reasonable level of market efficiency. Large traders trading on the signal noise term that is known in advance
ould also be vulnerable to front-running.
The variance of the second term in Eq. (6) is small if the coefficients of the return signature plots in Fig. 1 vary very little from

ne lag to the next, and the third term’s variance is small if the final coefficients converge to zero. Therefore, the return signature
lot must be smooth to curb trading based on the signal noise.4 This smoothness is an important characteristic of our estimation
trategy, therefore we highlight other reasons for the aggregate return signature plot to be smooth. Firstly, many of the popular
ignals shown in Fig. 1 are already smooth. Secondly, real-life traders will try to reduce trading and transaction costs. The split
omentum strategy (𝑠𝑚𝑜𝑚(60, 5)) in Fig. 1 is an example of how partial rebalancing leads to a smoother return signature plot.
dditional examples can be found in Appendix A. Thirdly, further smoothing is to be expected because funds might not rebalance
aily, wait for some sort of signal confirmation or split trades over several days. Discretionary managers often include momentum
ignals as one input but then trade less timely than systematic funds. Finally, practitioners use a variety of signals with substantial
ariation in the shape and the look-back period, which is smoothing out any discontinuities in the aggregate.

3 For simplicity of notation, we omit indicators for the group of traders and the specific commodity.
4 For the discontinuous standard momentum, the signal noise term, which reduces to the third term of Eq. (6) in this case, is in fact as large as the news

term. This unfavorable news-to-noise ratio of 1:1 is the reason why real-life traders, especially short-term traders, avoid using simple momentum. They prefer
4

smoother signals with a much better news-to-noise ratio, such as the moving averages on the right-hand side of Fig. 1.
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Fig. 2. Return signature plot of the panel regression.
Note: The graphs shows pooled and unregularized OLS estimates of the 𝛽s in Eq. (5) for a panel of all changes in the speculative pressure index (see Section 3.1)
for net non-commercials. The sample spans the entire time period (1993–2019) and all 23 commodities (29,618 observations).

2.4. Estimation approach

As a first attempt to estimate Eq. (5) or equivalently Eq. (6), we build a panel of all position changes for the group of net non-
commercials (total of 29,618 observations) stack them and run a pooled OLS regression to generate a common return signature plot.
Position data are made comparable across commodities through the use of the speculative pressure index as outlined in Section 3.1.
he adjusted R2 of the regression is 24.7 and 230 out of the 260 coefficients have a 𝑡−statistics larger than 2. The 𝛽 coefficients are
lotted in Fig. 2. It shows that pooled OLS fits the lowest lags quite smoothly, but coefficients start to become slightly unstable for
ags higher than 15 and then the returns signature plot turns into a sawtooth-like pattern for medium and higher lags. Apparently,
ven with pooled data, OLS cannot generate a stable and smooth return signature plot. On the other hand, the figure already shows
hump-shaped pattern, which we show is typical for the aggregate return signature plot.
Although this approach is not well-posed, it substantially outperforms other trend-following models that try to capture changes

n positions in terms of R2 using weekly returns. For example, our previous research follows Elaut and Erdős (2018) and finds
hat changes in momentum signals have a significant impact on the positioning. The results, however, are an order of magnitude
eaker than the results of the pooled OLS regression. Similarly, Kang et al. (2020) fit a panel of changes in the speculative pressure

index using weekly returns. They report a maximum R2 of 6.58% and conclude that by far the largest fraction of the variation in
position changes is unrelated to momentum. These comparisons show that the prediction of position changes can substantially be
improved by using daily instead of weekly returns. But to use daily returns, we need some parametrization or regularization to
prevent overfitting end to stabilize the return signature plot.

We guide our choice of the estimation method by two observations. Firstly, as outlined above, there are strong reasons to assume
the return signature plot is smooth. Secondly, there is very little theoretical reasoning about the exact shape of the return signature
plot or the optimal look-back period. Momentum is usually justified by some cognitive or behavioral bias, such as the anchoring effect
of Barberis et al. (1998), the disposition effect of Barberis et al. (2001), or Hong and Stein’s (1999) unified theory of underreaction
nd overreaction. None of the above lead to a parametric form of the return signature plot or deliver guidance about its shape or
he length of the look-back period.
For these reasons, we implement a generalization of the ridge or Tikhonov (1963) regression described in Hoerl and Kennard

1970). This regularization approach imposes no parametrization, and no prior restriction on the shape of the return signature plot,
ut enforces its smoothness. It can be regarded as the 𝑙2 analogous to the fused Lasso5 estimator of Tibshirani et al. (2005). Because
f this analogy, we call it ‘‘fused ridge’’. It imposes smoothness by penalizing the differences of the adjacent 𝛽 coefficients of Eq. (5).
pecifically, we minimize:

min
∑

𝑡=1,6,…,𝑇
(𝛥𝑐𝑡 −

𝑛−1
∑

𝑖=0
𝛽𝑖𝛥𝑟𝑡−𝑖)2 +

𝑛−2
∑

𝑖=0
𝛾2𝑖 (𝛽𝑖 − 𝛽𝑖+1)2 + 𝛾2𝑛−1𝛽

2
𝑛−1 (7)

here the first term is the usual least squares loss function and the second term is an extra penalty for beta variation. As in the
tandard ridge, 𝛾𝑛−1 shrinks 𝛽𝑛−1 (the last coefficient that drops out of the look-back period the following day) towards zero. The 𝛾s
re hyperparameters determining the amount of smoothing imposed for different 𝑖s. In the base case, we impose uniform smoothing
y setting 𝛾𝑖 = �̄� for all 𝑖 < 𝑛 − 1.

5 We also experimented with fused Lasso. However, this design has not proven to be numerically stable.
5
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This approach is remarkably parsimonious and is able to regularize the problem with a minimum set of restrictions. It uses a
ingle hyperparameter �̄� besides the look-back period 𝑇 . Even more, �̄� is determined by the data as outlined in Appendix B.1 so that
there remains no discretion for our base case estimator beyond the definitions in Eq. (7). Another advantage of this approach is that
it is estimated using an augmented OLS regression (see Appendix B for the details) and thus additional (control) variables can be
easily added as in Section 4. We therefore clearly prefer this approach to other methods, such as piece-wise polynomial restrictions.

Eq. (7) cannot be based on Eq. (6) because the rearrangement of coefficients introduces discontinuities.6 Nevertheless, comparing
the two equations further motivates our choice of regularization. The second term in (7) punishes variation in the 𝛽s, which is exactly
hat we need to limit the first signal noise term in (6). Similarly, the third term in (7) shrinks the final coefficients, which is the
ther requirement to control the signal noise term in (6).7

.5. The shape of the smoothing function

In addition to our baseline model, we also look into specifications that allow the 𝛾s to vary. We conjecture that imposing more
smoothing for higher-order lags relative to lower-order lags improves the forecasting results. This is because a daily return that is
almost a year old should enter into the signals (2) and (3) with nearly the same weight as the return the day before or the day after.
owever, the weight might vary more for recent returns. To account for these considerations, we also present results for 𝛾𝑖 = �̄�

√

𝑖,
which we refer to as square root smoothing. The square root function imposes only limited smoothing for the first few observations.
Smoothing increases rapidly for the middle lags. At the end of the look-back period, smoothing becomes relatively homogeneous
while still increasing on a small scale. In both cases, the baseline model and the square root model, �̄� is determined by the data
using the leave-one-out cross-validation approach (LOOCV) as outlined in Appendix B.1. In Section 3.5, we show that imposing less
smoothing for lower lags helps the model to better learn the parameters.8

3. Predicting position changes

3.1. Data

Our analysis covers 23 commodity futures that are either eligible for inclusion in the Bloomberg Commodity Index or constituents
of the S&P GSCI (former Goldman Sachs Commodity Index) as of the end of 2019. This includes six energy futures (WTI crude oil,
gasoline, heating oil, natural gas, Brent crude oil, and low sulfur gas oil), six futures from the grains complex (corn, Chicago and
Kansas wheat, soybeans, soybean meal, and soybean oil), three livestock futures (lean hogs, live cattle, and feeder cattle), four softs
(sugar, coffee, cotton, and cocoa), and four metals (gold, silver, platinum, and copper). LME base metal futures are not included
because their positioning reports only go back to 2015.

Our positioning data are from the publicly available commitment of traders (CoT) reports. Per commodity, this report releases
the number of long and short contracts held by each group of traders, as well as the open interest, which is the total amount
of contracts outstanding. However, no details about specific expiry dates are disclosed.9 The CFTC publishes positions for futures
trading in the U.S. Brent crude oil and low sulfur gas oil are traded in London, and ICE Europe publishes their positioning data.
The classifications from the two regulators are identical (see ICE, 2021). Positioning of the traders are usually collected weekly on
Tuesday and publicly released three days later after the market closes on Friday (CFTC, 2021).

We regard the classification of commercials and non-commercials (or speculators) from the legacy report. From the disaggregated
oT reports, we use net positions for a series of subgroups: (1) managed money (also labeled as large speculators), consisting of
ommodity trading advisors, registered commodity pool operators, or unregistered funds; (2) swap dealers; and (3) other reportables
or small speculators). For traders in the subclass of producers/merchants/processors/users, we differ between the short position
olders and long position holders because we find that the two sides react very differently to price changes. As in Cheng and
iong (2014), somewhat simplifying, we refer to the short side as producers and the long traders as users. Further, through our
ecomposition, we are able to split the class of speculator into momentum traders and other speculators, which we treat as two
dditional subgroups. Finally, the residual group of non-reportables is also part of our analysis.
CFTC switched to weekly CoT reports in 1993 and started the disaggregated CoT on June 20, 2006. Therefore, our data spans

anuary 1993 to December 2019 for non-commercial traders and June 2006 to December 2019 for the subgroups. Some commodities
ave a shorter data history. The Table 1 provides an overview of the available positioning data history, commodities’ sectors, names,
ickers, and exchanges.
The remainder of the data – prices, returns, and contract sizes (multipliers) – are provided by Bloomberg Finance L.P. Throughout

he paper, we ignore the cash or collateral return and we only consider excess returns. They are calculated using the active futures10
rom Bloomberg.

6 It is possible to build a regularization based on (6) but this would involve more hyperparameters to account for the discontinuity.
7 This analogy would even be stronger if we were to observe daily position changes. In this case, Eq. (6) becomes 𝛥𝑐𝑡 = 𝛽0𝑟𝑡+

∑𝑛−2
𝑖=1

(

𝛽𝑖 − 𝛽𝑖+1
)

𝑟𝑡−𝑖−𝛽𝑛−1𝑟𝑡−𝑛−1+𝜀𝑡.
8 We also examine other smoothing functions, such as functions based on arctan or on the logarithm. They yield similar results as long as they impose

ubstantially less smoothing at the front end. More general specifications have also not proven to enhance the out-of-sample predictability. Even simple
ombinations, such as the square root plus a constant result in unstable hyperparameters and, as so often found with more complex designs, their out-of-sample
erformance lags behind the simpler models.
9 For agricultural commodities, the number of contracts held in the current (old) crop year are also released.
10 The active futures is the contract with the highest open interest, usually the front contract.
6
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Table 1
Data overview.
Sector Name BB-Ticker Exchange Start date

Legacy report Disaggregated report

Energy WTI CL NYMEX 5/01/1993 20/06/2006
Gasoline XB NYMEX 14/02/2006 20/06/2006
Heating oil HO NYMEX 5/01/1993 20/06/2006
Natural gas NG NYMEX 5/01/1993 20/06/2006
Brent CO ICE Europe 5/01/2011 11/01/2011
Gas oil QS ICE Europe 5/01/2011 11/01/2011

Grains Corn C CBOT 5/01/1993 20/06/2006
Chicago wheat W CBOT 5/01/1993 20/06/2006
Kansas wheat KW CBOT 5/01/1993 20/06/2006
Soybeans SB CBOT 5/01/1993 20/06/2006
Soybean meal SM CBOT 5/01/1993 20/06/2006
Soybean oil BO CBOT 5/01/1993 20/06/2006

Livestock Live cattle LC CME 5/01/1993 20/06/2006
Feeder cattle FC CME 5/01/1993 20/06/2006
Lean hogs LH CME 2/04/1996 20/06/2006

Softs Sugar SB ICE U.S. 5/01/1993 20/06/2006
Coffee KC ICE U.S. 5/01/1993 20/06/2006
Cotton CT ICE U.S. 5/01/1993 20/06/2006
Cocoa CC ICE U.S. 5/01/1993 20/06/2006

Metals Gold GC COMEX 5/01/1993 20/06/2006
Silver SI COMEX 5/01/1993 20/06/2006
Platinum PL COMEX 5/01/1993 01/12/2009
Copper HG COMEX 5/01/1993 20/06/2006

Note: The table gives an overview of the regarded futures markets including the sector, name, exchange, and the availability of the time series for both CoT
eports. The end of the interval is December 31, 2019.

Based on the these data, we construct two types of variables to characterize the positions and trading behavior of futures markets
articipants: (net) exposure and pressure indices. Per group of traders and commodity, the net U.S. dollar exposure at time 𝑡 is defined
as:

𝑐𝑡 = 𝑝𝑡 ∗ 𝑚𝑡 ∗ netpos𝑡, (8)

where 𝑝𝑡 is the price, 𝑚𝑡 is the contract multiplier, and netpos𝑡 is the net position (number of long contracts minus short contracts).
Prices vary along the futures curve, and as only the aggregated number of all contracts is released in the CoT reports, the exact
average price is not known. We take the price of the active futures as an approximation. Speculative traders size their trades in
terms of U.S. dollar exposure, therefore this quantity is of particular interest when we track their trading behavior.

Pressure indices are calculated by dividing the net position of a group of trades by the total open interest 𝑜𝑖𝑡:

𝑐𝑡 =
netpos𝑡
oi𝑡

. (9)

For commercials, with opposite sign, this is a common definition of Keynes’ (1930) and Hicks’ (1939) hedging pressure (e.g., Dewally
et al., 2013; Kang et al., 2020). Fan et al. (2020) label a similar index speculative pressure in the case of non-commercials. The
major advantage of this normalization is that it is stationary by construction. This makes it comparable across commodities and
over time. Stationarity is also a requirement of many test statistics.

Finally, exposure contains information about both prices and positions and is hence not appropriate to examine trading activity.
Therefore, we use the raw number of contracts held by a group of traders (netpos𝑡) to analyze trading patterns.

3.2. Empirical design

The aim of our empirical analysis is fourfold. Firstly, we show that position changes of speculative traders can be predicted
ahead of the release on Friday by using realized returns until Tuesday. Secondly, the return signature plot of aggregate speculators
is revealed. Thirdly, we examine whether or not prediction can be improved through the square root smoother in Section 2.5.
Finally, we identify the counterparties of speculative traders in Section 5.

A challenge for the empirical analysis is that open interest and speculative trading activity are not stable over time and both
quantities show a steady upward trend over our data sample. Consequently, the parameters in Eq. (5) cannot be assumed to be
stable over time, but, rather, we should assume that they adjust (slowly) to the trading activity. The upward trend, however, is
quite steady and it is reasonable to presume that the most recent past is representative for the near future. Therefore, we apply a
rolling-window approach for dynamic parameter learning. Specifically, we estimate the model from a five-year data window with
the last observation 𝜏 and then use these parameters to forecast position changes 𝑐𝜏+10 − 𝑐𝜏+5. Lagging the out-of-sample forecast
7

by one-week accounts for the delayed disclosure of the CoT positions. Next, we re-estimate the model parameters by rolling the
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five-year estimation period one week forward and, based on these parameters, forecast the position changes two weeks ahead. We
continue until the last element of the estimation window is the last but two observations of the entire sample, which generates the
parameters for the out-of-sample forecast of the last observation.11 In line with the literature (e.g., Erb and Harvey, 2006; Fuertes
et al., 2010), we use a maximum look-back period of 12 months. We are also not aware of any practical implementation using a
look-back period of more than 12 months. Longer look-back periods have no material impact on the results.12

3.3. Evaluation measures

We primarily quantify the model’s goodness-of-fit using the coefficient of determination of our out-of-sample forecast:

𝑅2 = 1 − MSE
TSS

= 1 −
∑

𝑡∈𝑊 (𝛥𝑐𝑡 − 𝛥𝑐𝑡)2
∑

𝑡∈𝑊 (𝛥𝑐𝑡 − 𝛥𝑐𝑡)2
, (10)

where MSE is the model’s mean squared error, TSS is the total sum of squares of the observed data, and 𝑊 the set of weekly
observations, where an out-of-sample forecast 𝛥𝑐𝑡 has been calculated. Note that a main objective of our analysis is to quantify the
importance of trend-following. Therefore, R2 should not just be interpreted as a measure of predictive power but rather as a measure
indicating how relevant trend-following and momentum strategies are in the realm of speculative trading.

To detect biases and scaling issues, we run the Mincer and Zarnowitz (1969) regression using the same set of data points:

𝛥𝑐𝑡 = 𝑎 + 𝑏 ∗ 𝛥𝑐𝑡 + 𝜂𝑡. (11)

A good forecast is unbiased and has an intercept of 𝑎 = 0. The slope coefficient 𝑏 should be close to one because otherwise a simple
scaling of the forecast would improve its fit. Therefore, we test the hypothesis that the intercept equals zero and the slope is equal
to one. Finally, we also test for autocorrelation in the first and second lags of the model’s estimation error with:

�̂�𝑡 = 𝛥𝑐𝑡 − 𝛥𝑐𝑡. (12)

For model selection (i.e. the choice of the smoothing function), we use the Diebold and Mariano (1995) test. It tests whether two
orecasts differ significantly. Moreover, we use an augmented Mincer and Zarnowitz (1969) regression that includes the forecasts
f the two models:

𝛥𝑐𝑡 = 𝑎 + 𝑏1 ∗ 𝛥𝑐1,𝑡 + 𝑏2 ∗ 𝛥𝑐2,𝑡 + 𝜂𝑡. (13)

A superior model should squeeze out the other model in this regression. Assuming model 1 dominates, 𝑏1 is significant and close
o 1; 𝑏2, on the other hand, is insignificantly different from zero.

.4. Predicting position changes of non-commercials

We start the empirical analysis with non-commercials because they have the longest data series. Table 2 displays forecasting
power in terms of R2 for the three types of position changes (speculative pressure index, number of contracts, and exposure), as
well as for the two different smoothing functions.

The columns (1) and (2) display the R2 values of the position changes in the speculative pressure index. We find an observation-
weighted average (shown in the last row of the table) of 26.9% for uniform smoothing and 32.1% for square root smoothing. The
base model (1) works best for corn 42.9% and the square root model (2) for coffee (49, 8%). We find the weakest predictability of
speculative pressure in gasoline (6.3% and 8.4% respectively) and in the livestock sector.

Predicting the number of contracts instead of the pressure index (columns (3) and (4) in Table 2) increases the average R2

considerably to 32.8% (+5.9%) for the base model, and to 37.3% (+5.2%) for square root smoothing. In line with the results for the
speculative pressure index, we find that the forecasting performance is exceptionally high for grains and softs. In these two sectors
the average R2 is 40.2% and 37.7% for uniform smoothing and even 43.9% and 43.3% for the square root model.

As mentioned in Section 3.1, speculative traders often size their trades based on the dollar amount. So we also predict exposure
changes. Results of this forecast over the whole period are displayed in columns (5) and (6) in Table 2. In line with the previous
results, we find that coffee and corn are the best-predicted markets with R2s of 58.3% and 54.4% for uniform smoothing, and
61.8% and 56.4% for square root smoothing, respectively. The model works, best for commodities in the sectors of grains, softs,
and metals, with a sector average R2 of 48.5%, 50.7%, and 48.7%. For these three sectors, the predictability resulting from the square
root smoothing model consistently exceeds 40%. For livestock and the less homogeneous energies, the average R2s are markedly
lower. By far the least explained market is natural gas with mere predictability of 6.0% and 9.4%, respectively. By comparing the
observation-weighted average, we find that the exposure model depicts the highest overall R2 with 38.5% and 41.8%, respectively.

11 This rolling window approach captures the upward trend in trading activity only with some delay, and it cannot handle fast parameter changes. A complete
odeling of the trend would require a regularized state–space model estimated with the Kalman filter [see Li et al. (2014) for an outline on ridge-type Kalman

filtering]. With the large number of features, this approach, however, is computationally substantially more demanding, especially in an out-of-sample testing
framework. In-sample hyperparameter tuning is another challenge to this setup. Therefore, it is beyond the scope of this paper to fully model the growth
dynamics.
12 Empirically, we find some marginal improvement when extending the look-back period to 270 days. For example, using square root smoothing, the average

2 2
8

prediction R for non-commercials increases by 0.3%. For 280 and 300 days, we find an average R that is almost identical to the annual look-back period.
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Table 2
Out-of-sample R2 for the classification of non-commercials.

Non-commercials

Position change Pressure index Number of contracts Exposure

Start date 01/98 01/98 01/98 01/98 01/98 01/98 01/98 07/03 01/09 07/14
End date 12/19 12/19 12/19 12/19 12/19 12/19 06/03 12/08 06/14 12/19
Smoothing flat sqrt flat sqrt flat sqrt sqrt sqrt sqrt sqrt
Column (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
Period (I) (II) (III) (IV)

Energy WTI 17.3 21.9 23.3 27.8 36.4 38.1 20.8 16.2 31.0 51.8
Gasoline 6.3 8.4 8.1 10.8 27.4 28.1 30.3 25.8
Heating oil 22.8 26.8 20.6 25.1 14.8 18.6 29.1 22.8 31.3 −29.1
Natural gas 21.2 26.0 14.8 20.9 6.0 9.4 26.5 7.1 −0.4 17.0
Brent 25.2 32.8 24.8 31.1 36.1 40.1 40.1
Gas oil 28.0 36.8 27.2 34.8 17.5 24.4 24.4

Grains Corn 42.9 47.6 46.0 49.0 54.4 56.4 58.6 55.9 52.7 61.4
Chicago wheat 37.5 40.9 41.9 43.7 38.8 40.2 55.0 29.3 29.7 53.6
Kansas wheat 28.4 34.0 34.5 40.3 47.4 51.5 39.1 48.7 48.5 56.0
Soybean 34.7 37.9 38.5 41.6 45.1 47.2 45.9 45.9 44.5 50.6
Soybean meal 33.6 37.9 39.1 42.3 49.4 51.4 45.0 49.6 44.3 56.0
Soybean oil 30.8 37.4 41.3 46.5 39.9 44.5 32.5 28.4 32.2 64.6

Livestock Lean hog 20.7 25.8 25.8 30.7 28.4 32.0 25.5 26.7 27.3 37.6
Live cattle 13.5 17.9 20.6 26.4 27.5 32.1 29.0 14.9 26.2 39.1
Feeder cattle 14.4 21.4 16.8 22.3 19.3 23.3 32.7 14.6 33.1 15.1

Softs Sugar 30.2 37.4 32.3 38.2 46.1 50.1 26.1 36.8 48.4 56.2
Coffee 42.3 49.8 50.2 54.7 58.3 61.8 53.9 59.0 56.2 67.8
Cotton 34.9 42.2 37.2 42.5 45.2 48.7 41.7 41.6 33.8 62.8
Cocoa 20.3 27.2 31.2 37.6 36.7 42.2 −36.5 40.2 41.2 45.9

Metals Gold 20.5 22.8 35.6 38.1 49.7 51.2 2.9 53.9 41.4 56.3
Silver 23.2 27.3 32.7 35.9 46.9 48.9 66.0 49.6 43.1 50.8
Platinum 20.3 26.0 45.0 49.5 49.7 53.1 31.4 25.6 35.3 72.7
Copper 35.6 40.3 39.3 43.7 37.1 41.6 61.9 17.9 19.0 56.4

Weighted average 26.9 32.1 32.8 37.3 38.5 41.8 34.6 34.2 35.8 45.2

Note: The table presents out-of-sample R2 in percent for the classification of non-commercials. The type of the position change, the smoothing function, and the
ime period are indicated in the header. ‘‘flat’’ indicates uniform smoothing, and ‘‘sqrt’’ square-root-smoothing. The weighted average on the bottom of the table
s weighted by the number of out-of-sample observations.

Note that we have increased the previously reported in-sample R2 of momentum based position forecasts from 6.58% (Kang et al.,
2020) to an out-of-sample R2 of 41.8%. There are three reasons for this improvement. Firstly, and most importantly, we switch to
daily returns. According to the panel regression in Section 2.4, this brings the coefficient of determination to 24.7%. Secondly, the
fused ridge approach allows us to estimate each commodity on its own and thus to account for cross-sectional differences. This
increases the R2 to 32.1%. Thirdly, with an R2 of 41.8%, the exposure can be better predicted than with the pressure index. In
ection 3.6.2, we show that predictability for large speculators is 45.6%, which is even higher.

.5. Shape of the tuning function and empirical return signature plots

A striking finding of the previous section is the higher predictive power of the square root model across all types of position
hanges, as well as all commodities. On average, the difference amounts to more than three percentage points. There is no forecast
here uniform smoothing outperforms square root smoothing. In this subsection, we elaborate on the reasons for this improvement
y looking more closely at the aggregate trading signal. We also test if the improvement is significant.
Estimated return signal plots for the exposure of speculators are depicted in Fig. 3. The shapes of these empirical 𝛽 coefficients

re directly comparable with the more theoretical signal plots of Figs. 1 and 7. Of course, these estimated quantities vary with the
stimation window and thus over time (the evolution of the return signature plots is discussed in Section 3.7), which is why we
resent a snapshot at the end of our dataset.
For all commodities, the return signature plot has a hump-shaped form, similar to the shape of the 𝑥𝑚𝑎𝑐. The peak can be a

it rounder as for most of the grains and livestock or a bit sharper as, for example, for silver and bean oil. In that case, they more
losely resemble the unweighted 𝑚𝑎𝑐. Some futures also have plateaus — ranges where the betas are barely decline with the lag and
hey occur when momentum trading is dominant (e.g., for corn and soybeans). For the energy futures, the hump is narrower, more
ronounced, and fairly symmetric. The curves start to decline in an almost linear fashion after roughly 30 days. Another difference
s that 𝛽0 is higher, especially for the two crude oils. Apparently, there is a good deal of short-term trend-chasing in these markets.
We cannot identify the reason for the hump-shaped pattern. Delayed trading, some kind of moving average crossing or the

resence of reversal traders are all possible reasons. For the first lag, there is, however, also a technical reason: The signal resulting
9

rom today’s return cannot be completely implemented today because it is only known at the end of the day.
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Fig. 3. Empirical return signature plots with different smoothing.
Note: The graphs show estimates of the 𝛽s in Eq. (5) for the exposure of non-commercials with uniform regularization in black (dotted line) and square root
regularization in gray. The five-year subsamples end on December 31, 2019.
10
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The loading on the first return is consistently lower for the square root model, but then the peak is higher for most of the
ommodities. The reduced smoothing at the near end provides the square root model with the flexibility necessary to capture this
teep ascent. Contrary to this, the base model smoothes too much because otherwise the higher lags, which are smoothed with the
ame parameter, would become unstable. We observe that the base model produces a bumpier curve at the far end. Apparently, the
ifficulties the base model encounters with balancing the smoothing are the reason why the square root model outperforms it.
The variation across commodities is not easy to capture with a single model specification as we also need to reduce the variance

f the 𝛽s at the same time. Clearly, the fused ridge approach does an excellent job in balancing the regularization needed to reduce
he sample error and the flexibility necessary to capture all the different trading patterns. This is even more true for the square root
odel.
To more formally compare the forecast accuracy of the different smoothing techniques, we rely on two statistical tests. Firstly,

e use the Diebold and Mariano (1995) test to determine whether the forecasts are significantly different. Secondly, we use an
ugmented Mincer and Zarnowitz (1969) regression, to show that the uniform weighted smoothing model gets squeezed out. The
esults for the exposure are displayed on the left-hand side of Table 3, the results for the speculative pressure index on the right-hand
side.

For the exposure, the Diebold–Mariano test results in Table 3 strongly reject the equivalence of the uniform and the square root
moothed models for all but two commodities, namely Chicago wheat (the null hypothesis is rejected at the 10% level), and gasoline
null hypothesis cannot be rejected). The results of the augmented Mincer–Zarnowitz regression are in line with these findings. The
oefficients of the square root model are all positive and significant, and for all but two even larger than 1. On the other hand, the
ase model often has negative loadings (in 16 cases), and only for Chicago wheat is it significantly positive at the 10% level. For
oybean oil and cocoa, the loading on the base model is even significantly negative.

Table 3
Model comparison.

Exposure Speculative pressure index

Mincer–Zarnowitz regression DM-test Mincer–Zarnowitz regression DM-test

Smoothing/𝑧 flat sqrt 𝑧-score flat sqrt 𝑧-score

Energy WTI −0.20 (−0.7) 1.30 (5.0) −3.2 −0.41 (−3.0) 1.12 (8.4) −3.5
Gasoline 0.20 (0.7) 0.62 (2.1) −0.6 −0.08 (−0.3) 0.76 (2.9) −1.2
Heating oil −0.41 (−1.7) 1.27 (4.9) −3.5 −0.11 (−0.9) 0.93 (7.4) −3.6
Natural gas −0.32 (−1.5) 1.04 (5.2) −2.7 −0.38 (−2.5) 1.25 (8.9) −3.9
Brent 0.09 (0.2) 1.55 (4.0) −3.2 −0.29 (−0.8) 1.68 (5.2) −3.6
Gas oil −0.56 (−1.8) 1.36 (4.1) −2.7 −0.75 (−2.4) 1.72 (6.0) −4.0

Grains Corn 0.15 (0.9) 1.13 (6.1) −3.2 −0.14 (−1.3) 1.09 (10.0) −4.8
Chicago wheat 0.32 (1.8) 0.91 (5.0) −1.8 −0.03 (−0.3) 0.93 (7.8) −3.3
Kansas wheat −0.15 (−0.9) 1.29 (7.9) −4.7 −0.12 (−1.1) 1.01 (9.4) −4.1
Soybean 0.03 (0.1) 1.22 (5.1) −2.9 −0.18 (−1.2) 1.11 (7.7) −3.9
Soybean meal 0.01 (0.0) 1.34 (5.9) −3.3 −0.10 (−0.9) 1.02 (8.7) −3.8
Soybean oil −0.50 (−3.0) 1.66 (10.4) −6.7 −0.24 (−2.3) 1.06 (10.6) −4.9

Livestock Lean hog −0.07 (−0.4) 1.02 (5.0) −2.8 −0.10 (−0.8) 1.04 (8.2) −4.4
Live cattle −0.14 (−0.7) 1.19 (5.7) −3.4 −0.44 (−2.8) 1.21 (8.1) −4.1
Feeder cattle −0.08 (−0.4) 1.10 (5.8) −3.3 −0.22 (−2.0) 1.04 (9.5) −3.0

Softs Sugar −0.25 (−1.5) 1.40 (8.3) −5.3 −0.31 (−3.2) 1.07 (11.9) −4.0
Coffee −0.16 (−1.0) 1.25 (7.6) −4.6 −0.34 (−3.4) 1.38 (13.7) −5.3
Cotton −0.06 (−0.4) 1.18 (8.2) −4.7 −0.26 (−2.7) 1.10 (12.0) −5.2
Cocoa −0.48 (−2.7) 1.50 (8.4) −5.3 −0.38 (−3.4) 1.11 (10.3) −4.9

Metals Gold 0.18 (0.7) 1.31 (5.3) −2.8 −0.09 (−0.6) 0.79 (5.6) −0.8
Silver −0.19 (−0.8) 1.62 (7.0) −3.9 −0.19 (−1.4) 0.96 (7.2) −2.8
Platinum −0.24 (−1.4) 1.50 (8.7) −5.5 −0.15 (−1.3) 1.00 (9.0) −3.1
Copper −0.21 (−1.0) 1.65 (7.0) −5.1 −0.04 (−0.4) 0.94 (9.2) −3.9

Note: The left-hand side of the table presents the predictions of exposure. First, we show the coefficients of the augmented Mincer–Zarnowitz regression ‘‘flat’’
shows the loadings and the 𝑡-statistics in parentheses of the base model and ‘‘sqrt’’ those of the square root model; the intercept is omitted. Next to it, the
Diebold–Mariano 𝑧-score comparing the forecast accuracy using the two different smoothing functions is shown. 𝑡-statistics in this part are based on the jackknife
estimator HC3 of MacKinnon and White (1985). The right-hand side shows the same analysis for the speculative trading index defined in Eq. (9). For the pressure
index, we report standard 𝑡-statistics. Both parts use the full sample of non-commercial traders.

The results for the speculative pressure index in Table 3 are particularly interesting because the index is stationary by construction
and thus better satisfies the assumptions of the Diebold–Mariano test. The Diebold–Mariano test for the speculative pressure index
is in line with its results for the exposure model specification. The null hypothesis can be rejected for all commodities but gasoline
and gold. Similarly, the augmented Mincer and Zarnowitz (1969) regression consistently displays significantly positive coefficients,
close to one. The coefficients for the base model are all negative, in most cases not significantly negative.

The results of this subsection unanimously show that square root smoothing significantly outperforms uniform smoothing.
Therefore, for the remainder of the paper, we rely on this specification.
11
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3.6. Robustness

In this subsection, we analyze the robustness of the model. Firstly, by analyzing the performance over four non-overlapping
ubperiods, which are: (I) January 20, 1998, till June 30, 2003, (II) July 1, 2003, till December 31, 2008, (III) January 1, 2009,
ill June 30, 2014, and (IV) July 1, 2014, till December 31, 2019. Secondly, we apply the model to the narrower classification of
anaged money. Thirdly, we run Mincer–Zarnowitz regressions and take a closer look at the autocorrelation of the residuals.

.6.1. Time consistency
The columns (7)-(10) of Table 2, present the results of the square root model across the four subperiods (I)-(IV) of equal length.

he average R2 is consistently around 35% in the periods (I)-(III) followed by a substantial and fairly consistent increase to an
verage of 45.2% in the last period. While these findings show that the predictability is robust across different time periods, they
lso indicate that the full sample R2 is somewhat overstated. As there is an upward trend in the magnitude of speculative trading
nd open interest, the later observations with stronger predictability affect the R2 more than the somewhat weaker forecasts at the
beginning of the sample period.

Across all commodities and subperiods, only three display a negative R2. Besides the poorly fitted natural gas in period (III), it
is the first subperiod of cocoa and the last subperiod of heating oil (columns (7) and (10) in Table 2). In the latter two cases, a
relatively rapid decline in momentum trading and the associated decline in the 𝛽s is the reason for the poor performance of our
model. As outlined in Section 3.2, our empirical design cannot handle rapid parameter shifts.

3.6.2. Predicting position changes for large speculators
To further underline the robustness of the model, we apply it to the classification of managed money (2) and also compare its

results to non-commercials (1) in Table 4.
The R2 for the large speculators is on average 2.4% higher than the R2 of non-commercials (estimations are over the same sample

period). This increase confirms the conventional wisdom that trend-following funds, especially the large ones, are usually classified
as managed money (CFTC, 2021). The results are in line with the findings for non-commercials in Section 3.4. The model works
best for commodities in the sectors of grains, softs, and metals and is less accurate for livestock commodities and the energy sector,
although the results for the energies are quite heterogeneous. This model depicts the highest R2 for platinum (68.9%), but continues
to work very well for coffee and corn.

Table 4
Out-of-sample R2 for large speculators.

Classification Non-commercials Managed money

Position change Exposure Exposure Pressure index Number of contracts
Column (1) (2) (3) (4)

Energy WTI 46.2 42.2 37.7 38.6
Gasoline 28.1 28.1 23.6 29.7
Heating oil 11.1 17.7 26.0 32.2
Natural gas 15.5 33.0 34.5 35.4
Brent 40.1 51.3 33.0 35.5
Gas oil 24.4 44.5 47.2 45.5

Grains Corn 57.0 53.5 48.8 49.2
Chicago wheat 43.0 50.9 52.0 52.2
Kansas wheat 51.8 49.6 43.1 44.7
Soybean 46.6 47.9 43.1 45.3
Soybean meal 51.7 53.1 44.0 47.4
Soybean oil 52.7 52.5 53.3 56.1

Livestock Lean hog 35.3 39.7 34.9 36.1
Live cattle 33.8 35.7 24.3 30.7
Feeder cattle 21.0 29.3 22.0 26.6

Softs Sugar 51.4 51.0 43.9 46.9
Coffee 63.2 61.3 55.6 53.1
Cotton 53.4 49.9 30.2 41.8
Cocoa 44.4 53.4 47.5 53.5

Metals Gold 52.2 50.0 37.2 44.7
Silver 49.3 46.3 36.7 36.2
Platinum 74.8 68.9 59.9 59.0
Copper 46.1 49.5 43.4 50.0

Weighted average 43.2 45.6 39.7 42.9

Note: The table presents out-of-sample R2 in percent for the three different type of position changes (exposure, speculative pressure index, and the number of
contracts). The estimation period is based on the sample period of the disaggregated CoT report, also for the class of non-commercials. All forecasts are based
on square root smoothing.
12
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Table 5
Model biases.

Mincer Zarnowitz regression Autocorrelation

Intercept Slope 𝑐𝑜𝑟𝑟(�̂�𝑡 , �̂�𝑡−1) 𝑐𝑜𝑟𝑟(�̂�𝑡 , �̂�𝑡−2)

Column (1) (2) (3) (4) (5) (6) (7) (8)

Energy WTI 3.3E+07 (0.9) 1.11 (1.4) 0.16 (5.6) −0.02 (−0.6)
Gasoline 5.3E+08 (0.2) 0.82 (−2.5) 0.24 (5.1) 0.09 (1.9)
Heating oil 1.7E+08 (0.1) 0.88 (−1.2) 0.14 (4.9) −0.04 (−1.4)
Natural gas −2.9E+05 (−0.2) 0.78 (−2.8) −0.05 (−1.6) 0.06 (1.9)
Brent 9.5E+04 (0.0) 1.63 (3.9) 0.17 (2.6) 0.13 (1.8)
Gas oil −3.5E+07 (−0.8) 0.85 (−1.1) 0.10 (1.3) 0.05 (0.7)

Grains Corn 2.4E+06 (0.2) 1.28 (5.1) 0.28 (10.0) 0.05 (1.8)
Chicago wheat −3.8E+04 (−0.0) 1.21 (3.1) 0.00 (0.0) −0.08 (−2.6)
Kansas wheat 1.2E+05 (0.0) 1.15 (3.1) 0.17 (6.0) 0.08 (2.7)
Soybean 2.9E+06 (0.2) 1.25 (4.3) 0.18 (6.1) 0.13 (4.5)
Soybean meal 1.0E+06 (0.2) 1.35 (6.2) 0.19 (6.7) 0.05 (1.8)
Soybean oil −1.1E+05 (0.0) 1.19 (3.8) 0.15 (5.2) −0.01 (−0.3)

Livestock Lean hog 1.2E+05 (0.3) 0.96 (−0.6) 0.33 (10.9) 0.13 (3.9)
Live cattle 3.5E+05 (0.5) 1.07 (0.8) 0.20 (7.0) 0.00 (0.0)
Feeder cattle 3.1E+03 (0.0) 1.03 (0.3) 0.22 (7.6) 0.09 (3.0)

Softs Sugar −1.6E+04 (0.0) 1.16 (3.3) 0.16 (5.4) −0.03 (−0.8)
Coffee −4.0E+05 (−0.1) 1.15 (3.2) 0.13 (4.3) −0.02 (−0.6)
Cotton 1.7E+06 (0.3) 1.12 (2.6) 0.24 (8.4) 0.04 (1.5)
Cocoa 8.5E+05 (0.3) 1.06 (0.9) 0.26 (9.1) 0.09 (3.2)

Metals Gold 2.5E+07 (0.7) 1.48 (5.7) 0.10 (3.4) −0.05 (−1.6)
Silver 2.5E+06 (0.3) 1.43 (5.7) 0.24 (8.5) 0.02 (0.8)
Platinum 1.7E+06 (0.6) 1.27 (5.3) 0.26 (9.3) 0.05 (1.7)
Copper −9.5E+07 (−0.1) 1.45 (5.4) 0.17 (5.9) −0.07 (−2.4)

Note: The table provides results for the classification of non-commercial traders (entire data samples) with square root smoothing. The left panel provides the
results of the Mincer Zarnowitz regressions. The regression coefficients are followed by corresponding 𝑡-statistics in parentheses. We are testing if the intercept
is different from zero and if the slope coefficient is different from one. The right panel ‘‘Autocorrelation’’ shows first and second-order autocorrelations of the
models prediction error in Eq. (12) with the corresponding 𝑡-statistics in brackets. All 𝑡-statistics are based on the jackknife estimator HC3 of MacKinnon and
hite (1985).

.6.3. Model bias and autocorrelation
The results of the Mincer–Zarnowitz regression are reported in the first part of Table 5. Column (1) shows the value of the

ntercept 𝑎 of Eq. (11) and the corresponding 𝑡-statistics in column (2). While the intercepts are large in absolute terms, they are all
nsignificant, and, therefore, the bias in the forecasts is negligible for all commodities. The column (3) displays the slope coefficient
and the 𝑡-statistics for 𝑏 being different from 1 in (4). For the energy sector, the results are rather heterogeneous. For the two
arieties of crude oil, 𝑏 is significantly larger than 1, but for the other energy commodities, it is below 1. This mirrors the fact that
he model is less accurate in the energy sector and, more specifically, that it is unstable for natural gas and has some problems
itting heating oil in the last quarter of the sample. For the other sectors, the results are consistent. Beta is either insignificantly
ifferent from 1 or significantly higher than 1. As we document above, there is an upward trend in open interest and speculative
ctivity. If trading activity increases, estimates from the most recent past will most likely underestimate the magnitude of trading.
his is exactly what we find in the data.
Finally, we also report tests for autocorrelation of the forecasting error �̂�𝑡 = 𝛥𝑐𝑡 − 𝛥𝑐𝑡 in Table 5. First- and second-order

utocorrelations are depicted in columns (5) and (7) with the corresponding 𝑡-statistics in (6) and (8). First-order correlations are
ignificantly positive, usually highly positive, for all but three commodities. Only natural gas displays an (insignificantly) negative
irst-order autocorrelation. Lean hog (0.33) and corn (0.28) show the largest coefficients and also the highest significance.
Recalling the definition of the residuals in Eq. (5) – position changes of speculators that are not trend-followers – it is not

urprising that we see some autocorrelation: Like the trend-followers, other speculators might also implement trades slowly,
otentially over many days. This generates a certain level of autocorrelation in the position changes. It largely vanishes after a
eek, as shown in the last two columns of Table 5. More specifically, the second-order coefficient remains significantly positive
nly for five markets. It even turns negative for eight commodities and significantly negative for Chicago wheat and copper.

.7. Evolution of the return signature plots

Fig. 4 shows the estimated return signature plots at different estimation periods for non-commercials. All commodities show a
istinct upward trend in the magnitude of trading, and in particular, a large jump from the data point at the end of 2009.
Another remarkably stable characteristic of these plots is the hump-shaped pattern we observe over time and across commodities.

iven the relatively large changes in the magnitude of the signal, the shape remains surprisingly consistent. In unreported results,
e also inspect other characteristics of the shape: For instance, the average look-back period defined as the 𝛽-weighted average of
he lag (∑ 𝑖× 𝛽 ∕

∑

𝛽 ), the location of the peak of the hump defined as the lag 𝑖 with the highest loading, and the range of the lags
13
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a

Fig. 4. Evolution of return signature plots for the exposure.
Note: The graphs show estimates of the 𝛽s in Eq. (5) for the exposure of non-commercial traders using square root smoothing. The five five-year subsamples
re evenly spread over the entire data sample.
14
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Fig. 5. Evolution of return signature plots for the speculative pressure index.
Note: The graphs show estimates of the 𝛽s in Eq. (5) for the speculative pressure index for the classification of non-commercial traders using square root
smoothing. The five five-year subsamples are evenly spread over the entire data sample.
15



Journal of Financial Markets 64 (2023) 100774D. Boos and L. Grob

p
b

i

containing the 10 largest values of 𝛽. While of course fluctuating, all these figures remain, in general, stable over time. There was
no striking tendency, for example, for a longer or shorter average look-back period or for a drift of the peak of the hump. The only
exception is natural gas, which has an unstable return signature plot caused by periods of strong reversal trading. This instability
is in line with the lower predictability of position changes reported in Tables 2 and 4.

Finally, we also take a closer look at the return signature plots of the speculative pressure index, displayed in Fig. 5. The
speculative pressure index is stationary by design, therefore we can better analyze trading activity relative to open interest. The
graphs show that the hump-shaped pattern is consistent over time and across commodities, also for this measure. However, the
upward trend in speculative trading has vanished in relative terms, so we see a very heterogeneous picture where for many
commodities trading activity is higher at the beginning of the sample. Moreover, in most markets, the trading activity is very
low around the financial crisis. This finding might be related to the convective risk flow observed by Cheng et al. (2015), who show
that speculators reduced their net long positions during the crisis.

4. Importance of other factors

The results in Section 3 show that the well-documented commodity momentum premium is indeed exploited by speculators.
There are, however, other factors known to explain commodity returns. For example, Erb and Harvey (2006) implement a simple
long–short strategy that buys the six most backwardated commodities and shorts the six most contangoed commodities. The Sharpe
ratio of this portfolio is almost twice as high as the Sharpe ratio of the long-only index. Fuertes et al. (2010) document that double-
sort strategies that exploit both momentum and the basis clearly outperform the single-sort strategies. Among others, Gorton et al.
(2012), Szymanowsky et al. (2014), and Koijen et al. (2018) also document the performance potential of basis or carry strategies.
Boons and Prado (2019) show that changes in the basis or basis-momentum strongly outperform benchmark characteristics in
predicting commodity spot and term premiums in both the time series and the cross-section. Davis et al. (2022) extend these findings
to other asset classes.

We experimented with incorporating basis and basis-momentum into our out-of-sample position forecast; however, this did not
lead to a better forecasting power of the model. Therefore, we switched to an in-sample framework, which confirmed our findings:
changes in the basis do not significantly improve a momentum-based position forecast.

In our in-sample analysis, we use the definition of Fuertes et al. (2010) and for the basis signal, we use the following:

basis𝑡 = ln(𝐹𝑡,1) − ln(𝐹𝑡,2), (14)

where 𝐹𝑡,1 is the price of the first generic futures contract, and 𝐹𝑡,2 is the price of the second generic futures contract. Hong and
Yogo (2012) and Gorton et al. (2012) also use the first and the second contract to define the basis. With this definition, the signal
change for a basis strategy becomes the difference of the first (𝑟𝑤𝑡,1) and the second weekly futures return (𝑟

𝑤
𝑡,1):

𝛥 basis𝑡 = 𝑟𝑤𝑡,1 − 𝑟𝑤𝑡,2. (15)

This resembles the signal in Boons and Prado (2019), who define basis-momentum as the difference between momentum in a first
and second nearby futures strategy. In fact, if we apply decomposition (6) to the basis-momentum signal, 𝑟𝑤𝑡,1 − 𝑟𝑤𝑡,2 is the news term
with constant coefficients. Therefore, adding the basis change in (15) to our momentum-based forecast (5) is informative about
position changes related to both basis and basis-momentum strategies.

We forecast changes in the pressure index (because it is stationary) with the basis change signal (15) in addition to the lagged
returns. The momentum signal is regularized as described in Section 2 using square root smoothing. Due to the inevitable bias,
in-sample testing with regularization is not straightforward and usually not precise. We conduct a non-exact 𝑡-test that can be
interpreted in exactly the same way as the standard 𝑡-test. Details about the procedure and its pitfalls are outlined in Appendix C.
The 𝑡-statistics of the carry signal per commodity are reported in Table 6. The results are highly inconclusive: 8 commodities have
negative 𝑡-statistics, and WTI and natural gas even a significantly negative one. Out of the 15 futures with the correct sign, only
5 are significant. Silver, the most significant one, is a commodity with normally minimal variation in the basis. This confirms our
(unreported) findings from the out-of-sample analysis that incorporating basis changes do not add predictive power to the position
forecast.

A reason for this finding could be that carry strategies are usually described (cf. the references at the beginning of this section)
and implemented in a cross-sectional framework. Therefore, relative rather than absolute carry changes might drive speculative
trading. To test this possibility, we deduce the cross-sectional average among the 23 commodities from the basis change in Eq. (15)
and rerun the augmented regression using this signal instead of the unadjusted basis change. This regression also does not indicate
substantial trading on basis changes. Specifically, only 4 commodities are significant with the right sign, as can be seen in the fourth
column of Table 6.13 We conclude that basis and basis-momentum strategies play, if at all, only a minor role in practice.14

In addition to these carry-based signals, we also looked into risk-based signals and position adjustments (unreported) but we
could not find robust results. The only signal we have found to improve time series momentum is cross-sectional momentum. Just

13 In unreported analyses, we also calculated the cross-sectional average of the basis using weighted averages accounting for the varying number of contracts
er year and hence the varying lag between the expiry of the first and the second futures. In addition, we examined lagged basis changes, and lagged relative
asis changes. All these settings failed to predict position changes.
14 Basu and Miffre (2013) find a link between the term structure and hedging pressure in a univariate framework. Our basis change signal is also significant
16

n a univariate regression, confirming these findings.
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Table 6
Other strategies.

Base Basis changes Relative basis changes Cross-sectional momentum

R2 t -value R2 t -value R2 t -value R2

Energy WTI 34.2 −4.00 36.9 −3.90 36.8 0.34 34.2
Gasoline 28.9 2.03 29.2 1.97 29.2 3.14 29.2
Heating oil 32.0 0.13 31.9 0.09 31.9 3.58 32.3
Natural gas 31.8 −2.18 32.1 −1.79 31.9 2.79 31.9
Brent 29.6 0.80 29.6 1.16 29.7 −0.38 29.6
Gas oil 38.7 −0.63 38.6 −0.40 38.6 2.19 38.6

Grains Corn 38.9 0.12 38.8 0.18 38.8 2.91 39.2
Chicago wheat 41.0 −0.88 41.1 −0.06 40.9 5.66 42.7
Kansas wheat 31.0 −0.78 30.9 0.35 30.9 2.79 31.1
Soybean 36.0 0.39 35.9 0.06 35.9 4.18 36.8
Soybean meal 46.2 0.77 46.2 0.62 46.2 4.23 47.0
Soybean oil 41.6 1.45 41.5 0.46 41.5 3.00 41.8

Livestock Lean hog 37.1 −0.61 37.1 −0.73 37.1 1.87 37.1
Live cattle 27.9 −0.07 27.8 0.21 27.8 0.93 27.8
Feeder cattle 27.0 1.73 27.1 2.63 27.5 3.26 27.6

Softs Sugar 35.6 −0.53 35.5 −0.27 35.5 2.72 35.8
Coffee 58.5 1.86 58.6 2.90 58.9 4.13 58.9
Cotton 32.1 0.98 32.0 0.78 32.0 1.22 32.0
Cocoa 40.1 0.75 40.0 0.78 40.0 3.12 40.4

Metals Gold 32.0 1.61 32.2 0.83 32.0 2.15 32.2
Silver 27.9 3.91 29.4 1.53 28.0 3.07 28.1
Platinum 49.7 1.31 49.7 0.11 49.6 4.23 50.4
Copper 33.1 2.88 33.8 2.57 33.6 6.35 35.6

Weighted average 36.1 36.3 36.2 36.5

Note: The table presents the adjusted in-sample R2 in percent as well as the non-exact t -values (as described in Appendix C) for the additional factors. The
dditional factors are basis changes, relative basis changes and cross-sectional momentum. The results are based on the estimation of the speculative pressure
ndex, where we regard the full sample of the large speculators.

s with the relative carry, we demeaned weekly return by the cross-sectional average and run another augmented regression using
his signal, in addition to the time series momentum part. The last two columns of Table 6 report 𝑡-statistics of the relative momentum
ignal and R2s. Nineteen display significant 𝑡-statistics with the right sign, many of them are highly significant. Brent crude oil is
he only contract with the wrong sign. The increase in R2, however, is moderate and less than 0.5% on average. We conclude that
ross-sectional momentum plays a subordinate but significant role in practice.

. The role of producers

.1. Momentum trading of other groups

Not only speculators but also hedgers respond strongly to price changes as outlined in Cheng and Xiong (2014). They short
more contracts when futures price rises and reduce their short position as futures price fall, or to put it differently, they pursue
a reversal strategy. This observation is in fact just the other side of the coin from our finding that speculators are predominantly
trend-followers and thus increase their long position when prices rise. By the adding up constraints and because non-reportables
make up only a small fraction of traders, hedgers must follow strategies that mirror those of speculators. Using the disaggregated
CoT report, we can further analyze which subgroup of traders is taking the other side of momentum traders. For this aim, we split
commercial traders into the three subgroups of producers, users, and swap traders as described in Section 3.1. We also examine
other reportables and non-reportables.

For each of these five subgroups, we predict position changes (number of contracts) and estimate the return signature plots
in the same way as we did for speculators. The left-hand side of Table 7 shows the correlation between the momentum-based
trading of speculators and each of the subgroups. The right-hand side of the table shows the out-of-sample predictability of our
momentum-based forecast.

We find the highest overall R2 among producers with an observation-weighted average of 24.7%. The energy sector is pulling
this figure down significantly, but the results of the other sectors are consistently high and only in two cases below the overall
average. The correlation is above 0.6 for all commodities, so producers are collectively reversal traders in all markets. For agricultural
products and metals, the correlation is even above 0.9 without exception. This observation extends the findings of Cheng and Xiong
(2014), that as the price rises, producers increase their short positions while as the price falls, they reduce their short position to a
substantially larger set of commodities.

Fig. 6 further illustrates this relationship. It shows the return signature plots for producers and speculators at the last data point of
our sample. Leaving aside the energy sector, the curves of the two groups have a very similar shape; in particular, the characteristic
17
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Table 7
Correlation and R2 for position changes in the number of contracts.

Correlation Number of contracts

Prod User Swap Orep Nrep Prod User Swap Orep Nrep

Energy WTI 0.60 −0.31 −0.88 −0.64 0.11 −0.5 0.5 27.7 6.6 21.4
Gasoline 0.81 −0.53 −0.59 −0.67 0.90 1.8 0.8 0.7 22.6 28.3
Heating oil 0.89 −0.80 −0.86 −0.70 0.88 9.4 1.2 1.1 11.4 29.7
Natural gas 0.62 −0.27 −0.97 −0.59 0.67 0.3 −0.5 23.3 27.3 6.7
Brent 0.79 −0.27 −0.25 −0.40 0.74 8.8 −2.8 3.6 −0.6 −3.0
Gas oil 0.92 −0.48 −0.90 −0.64 0.91 3.3 −0.6 7.1 4.8 15.9

Grains Corn 0.97 −0.77 0.38 −0.34 0.07 40.0 8.5 −1.4 −0.1 6.7
Chicago wheat 0.95 −0.95 −0.19 −0.89 0.53 37.2 15.9 −2.2 18.6 0.1
Kansas wheat 0.94 −0.91 0.61 0.31 0.47 33.8 8.8 6.6 −1.9 2.0
Soybean 0.98 −0.90 0.68 −0.19 0.68 28.1 9.1 1.4 1.3 12.0
Soybean meal 0.98 −0.92 0.20 0.22 0.90 33.6 13.5 −0.8 1.6 37.1
Soybean oil 0.98 −0.95 0.38 −0.27 0.87 35.9 28.8 −1.2 0.0 33.3

Livestock Lean hog 0.97 −0.73 0.61 −0.45 −0.04 42.0 0.8 8.1 −0.9 1.9
Live cattle 0.95 −0.69 0.59 0.02 −0.78 28.5 2.3 4.2 −2.7 13.1
Feeder cattle 0.92 −0.59 0.79 −0.52 −0.92 8.5 −1.2 0.4 1.0 19.2

Softs Sugar 0.95 −0.87 −0.60 −0.53 0.86 23.8 8.0 2.3 5.1 36.9
Coffee 0.95 −0.93 0.57 −0.54 0.40 29.4 18.6 0.0 3.1 1.5
Cotton 0.98 −0.90 0.17 0.44 0.88 39.0 2.8 1.1 0.2 28.3
Cocoa 0.94 −0.92 0.56 −0.30 0.63 25.9 17.0 0.4 1.7 17.6

Metals Gold 0.95 −0.75 −0.98 −0.53 0.87 26.1 2.2 35.4 −0.1 16.8
Silver 0.97 −0.77 −0.97 −0.88 0.64 28.5 3.2 32.8 12.5 8.5
Platinum 0.99 −0.87 −0.97 −0.21 0.53 53.3 6.3 53.0 9.8 0.9
Copper 0.96 −0.89 −0.86 −0.91 0.67 22.3 11.5 4.4 24.0 5.0

Weighted average 0.91 −0.75 −0.11 −0.40 0.48 24.7 7.2 8.4 6.4 15.4

Note: The table depicts on the left-hand side the correlations between the momentum-based trading of speculators and each of the subgroups (form left to right:
Producers, user, swap dealers, other reportables, and non-reportables). The right-hand side of the table shows the out-of-sample predictability (R2 in percent) of
ur momentum-based forecast with square root smoothing.

ump is also present for producers. For most commodities, the magnitude of the signal is stronger for speculators, but for lean hog,
ive cattle, and cotton they are virtually identical.
For users, the pattern is similar but less consistent and less pronounced overall. Their correlation is negative for all commodities,

nd the average absolute correlation remains quite high at −0.75. Like the producers, they are therefore reversal traders. But the R2

alues are much lower and average a mere 7.2%. Predictability is non-existent in the energy sector and negligible in the livestock
ector.
Swap dealers show a more diverse behavior. For WTI, natural gas, and the three precious metals, they clearly take a counter-

osition to momentum traders. The other commodities show low predictability with often negative R2s and negative correlation.
his heterogeneity corresponds well with the fact that swap dealers trade on futures markets solely to hedge and manage risks
rising from swap transactions. Their clients can be traders who trade for speculative or hedging purposes; therefore, identifying
he clients’ motivation for entering a swap contract is difficult (Bosch and Smimou, 2022). This heterogeneity of customers becomes
pparent in our aggregate analysis.
Other reportables (i.e. small speculators) are only marginally predicted with an average R2 of 6.4%. They tend to be reversal

raders, which also supports the findings from Section 3, that the sub-groups of large speculators are more pronounced momentum
raders than the parent class of non-commercials. Finally, the majority of non-reportables are moderate momentum traders with an
verage R2 of 16.4% and an average correlation with speculative momentum of 0.49.

.2. Counterparties of trend-followers

The analysis in the previous subsection shows that producers, and to a lesser extent consumers, are on the other side of the
peculative momentum traders. Fig. 6 indicates an important role for producers but lacks quantification and attribution to the
ubgroups. To obtain a breakdown, using the adding up constraint, we decompose our position change forecast for non-commercials
mom𝑡) into five components

𝛥mom𝑡 = 𝛥 prod𝑡 − 𝛥 user𝑡 − 𝛥 swap𝑡 − 𝛥 ospec𝑡 − 𝛥 nrep𝑡, (16)

here prod, user, swap, ospec, and nrep represent the number of contracts held by producers, users, swap dealers, and other
peculators (as the residual of our position change forecast) and non-reportables respectively. The producers enter with a positive
ign because they hold short contracts. The variance of momentum trading can now be decomposed into five covariance terms:

var(𝛥mom) = cov(𝛥mom, 𝛥 prod) − cov(𝛥mom, 𝛥 user) − cov(𝛥mom, 𝛥 swap) − cov(𝛥mom, 𝛥 ospec) − cov(𝛥mom, 𝛥 nrep). (17)
18
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a

Fig. 6. Empirical return signature plots for non-commercials and producers.
Note: The graphs show the estimation of the 𝛽s in Eq. (8) for the number of contracts for producers in black (dotted) and non-commercials in gray. The plots
re based on the last data point of our sample.
19
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Table 8
Variance decomposition.

On actual CFTC position changes on fitted momentum trades

Prod User Swap Ospec Nrep Prod User Swap Nrep 𝜀

Energy WTI 0.17 0.09 0.77 −0.17 0.15 0.13 0.05 0.76 0.09 −0.03
Gasoline 0.70 0.45 0.11 0.22 −0.47 0.88 0.52 0.07 −0.49 0.02
Heating oil 0.89 0.42 0.20 0.07 −0.58 0.78 0.35 0.21 −0.58 0.23
Natural gas 0.27 0.16 1.03 −0.30 −0.16 0.22 0.05 0.84 −0.19 0.08
Brent 1.55 0.23 0.20 −0.89 −0.09 0.90 0.09 0.08 −0.10 0.02
Gas oil 1.15 0.06 0.41 −0.40 −0.22 0.68 0.14 0.18 −0.22 0.23

Grains Corn 0.99 0.25 −0.08 −0.24 0.07 0.73 0.18 −0.02 0.04 0.07
Chicago wheat 0.79 0.42 −0.02 −0.17 −0.02 0.66 0.36 0.02 −0.06 0.02
Kansas wheat 0.85 0.34 −0.16 −0.13 0.09 0.75 0.31 −0.10 −0.02 0.06
Soybean 1.09 0.49 −0.15 −0.34 −0.08 0.83 0.35 −0.08 −0.11 0.02
Soybean meal 1.17 0.51 −0.03 −0.29 −0.37 0.95 0.35 −0.01 −0.34 0.05
Soybean oil 0.97 0.58 −0.08 −0.23 −0.25 0.77 0.48 −0.02 −0.25 0.01

Livestock Lean hog 1.09 0.10 −0.19 0.00 0.00 0.98 0.07 −0.08 0.01 0.02
Live cattle 0.79 0.17 −0.11 −0.08 0.22 0.67 0.18 −0.04 0.15 0.04
Feeder cattle 0.48 0.09 −0.13 −0.03 0.60 0.43 0.08 −0.09 0.52 0.06

Softs Sugar 1.02 0.50 0.11 −0.24 −0.39 0.82 0.30 0.07 −0.32 0.13
Coffee 0.83 0.47 −0.04 −0.25 −0.01 0.62 0.38 −0.03 −0.01 0.03
Cotton 1.07 0.17 −0.04 −0.02 −0.19 0.99 0.18 −0.01 −0.20 0.04
Cocoa 0.79 0.43 −0.07 −0.04 −0.11 0.72 0.38 −0.05 −0.14 0.10

Metals Gold 0.62 0.12 0.68 −0.25 −0.17 0.50 0.07 0.53 −0.16 0.05
Silver 0.57 0.16 0.63 −0.25 −0.11 0.47 0.06 0.57 −0.13 0.03
Platinum 0.71 0.11 0.85 −0.63 −0.04 0.45 0.07 0.53 −0.08 0.02
Copper 0.70 0.50 0.15 −0.33 −0.02 0.59 0.26 0.14 −0.02 0.02

Weighted average 0.81 0.31 0.16 −0.19 −0.08 0.67 0.24 0.15 −0.11 0.06

Note: The table displays the results of the variance decomposition, outlined in Section 5.2. The left-hand side depicts the results of the variance decomposition
based on the actual CFTC data using Eqs. (16) and (17). The right-hand side presents the results based on the fitted momentum trades from Eq. (18). The
analysis is based on the position changes in the number of contracts over the entire out-of-sample period.

Dividing both sides by var(𝛥mom) yields a variance decomposition. The results of this decomposition are shown in Table 8. For all but
six commodities, the covariance with producers is the largest contributor. The exceptions are WTI, natural gas, and precious metals,
where swap traders deliver the highest contribution, as well as for feeder cattle where non-reportables play the most important role.
These exceptions are the same as in the forecast and correlation analysis in Section 5.1. Overall, producers contribute 81% of the
variance of speculative momentum trading. The contribution of users is also consistently positive and averages 31%.

Another way to decompose speculative momentum trades is to use the momentum (reversal trades) of other subgroups (marked
with a leading m for each subgroup):

𝛥mom𝑡 = 𝛥mprod𝑡 − 𝛥muser𝑡 − 𝛥mswap𝑡 − 𝛥mnrep𝑡 − 𝜌𝑡. (18)

e use our out-of-sample forecast, which implies that the first four terms do not add up to the left-hand side as they would with an
nregularized in-sample OLS. The last term 𝜌 is a residual, which is chosen in such a way that the equation holds. This decomposition
elivers very similar results as the previous decomposition: Producers dominate with an average contribution of 67%, and the
ontribution of users remains consistent but smaller (24%). Overall, both variance decompositions in this section and the analysis
f the previous section clearly indicate that producers are the dominant counterparty of speculative momentum traders.

.3. Trading motives of commercials

The aim of this paper is to reveal trading patterns and describe them quantitatively. The methods we use are very well suited for
his purpose but cannot provide information about the underlying reasons for the trading activity. While the speculators’ rationale
s quite clear, they replicate a known anomaly to make a profit, the motivation of the producers is not as evident. Many motives are
onceivable and are also described elsewhere [see Cheng and Xiong (2014) and the references therein]. Reversal trading, however,
s rarely justified by simple profit-taking, although this would fit well with the behavioral explanations for the momentum effect.
or instance, producers could suffer from a displacement effect as in Barberis et al. (2001) and thus realize profits too early or they
could anchor prices to previous levels as in Barberis et al. (1998) or to production cost.

There are also risk-based explanations of profit-taking. If prices soar, producers can end up with a very large profit in dollar terms
resulting from unhedged exposure to the commodity they produce. It is hardly rational to hold this concentrated position solely in
a single commodity, rather it is advisable from a risk point of view to reduce or diversify it. Moreover, according to the theory of
storage, higher prices are associated with lower inventories and thus higher volatility (e.g., Symeonidis et al., 2012; Geman and
Smith, 2013; Basu and Miffre, 2013). Then, if producers increase their hedging with the risk, they also increase it with prices and
thus act as reversal traders.
20
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Finally, one can reflect on the subordinate role of users relative to producers. This difference can be explained by the fact that
roducers usually run a business that is concentrated on a single or a few similar raw materials. With users, on the other hand, a
ingle commodity is usually just one input factor among many. As a result, the commodity risk of users is better diversified per se
nd therefore less risky. Accordingly, the need for hedging is also lower. This echoes Keynes’ (1930) and Hicks’ (1939) theory of
hedging pressure and normal backwardation, which also assigns a dominant role to producers.

6. Conclusion

In this paper, we demonstrate that trend-following and momentum trading are indeed the predominant investment strategies of
speculative traders in the commodity futures market. We fit typical signals and deduce strong out-of-sample forecasts of position
changes and hence the flow generated by speculators. While these results are interesting per se, our flow analysis can also be used
for further research. It can, for example, be used to assess whether the popularity of trend-following leads to capacity constraints
and thus to potential inefficiencies (Baltas and Kosowski, 2013). A related issue is the concern that excessive and unidirectional
speculative trading in food commodities can force prices up or have destabilizing effects with adverse effects on the real economy
[see Haase et al. (2016) for a literature review on the topic]. A better understanding of the flow pattern could add another perspective
to this strand of literature.

If momentum trading is indeed at the capacity limit or has destabilizing effects, our results can also be useful to optimize
the execution of trend strategies. An even more detailed understanding of speculative trading patterns can be used to refine the
understanding of the liquidity needs of speculators. This knowledge could then be used to derive a liquidity providing strategy
along the lines of Kang et al. (2020) but with more accurate and real-time tracking of trend-followers.

We also point out an interesting interplay between momentum traders and producers. However, this analysis is purely empirical
and lacks an economic rationale. A utility-based framework that rationalizes producer behavior would be a natural continuation of
our research.

Our model might be extended to other futures markets traded by CTAs. With a complete universe, it can also be used to replicate
the time series and return characteristics of CTAs, yielding another empirical examination of the return signature plots derived in
this paper.

Finally, the paper also offers an innovative regularization method through the generalized ridge regression and the in-sample
tuning of the hyperparameters using LOOCV, and it demonstrates the usefulness of uneven smoothing along the ordered features.
Our choice of the weighting function, however, is rather ad hoc and a more stringent choice of this function might be a topic of
further research.
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Appendix A. Return signal plots

A.1. Moving average

The moving average signal is defined as the current price minus the average price over the look-back period:

𝑚𝑎𝑡 = 𝑝𝑡 −
1
𝑛

𝑛
∑

𝑖=1
𝑝𝑡−𝑖 =

1
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𝑛
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1
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∑
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1
𝑛

𝑛
∑

𝑖=0
(𝑛 − 𝑖)𝑟𝑡−𝑖,
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so, the triangle plotted in the right graph of Fig. 1.
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Fig. 7. Return signature plots for partially rebalanced signals.
Note: Weights of the partially rebalanced momentum signal (left) and the partially rebalanced moving average signals (right). Weights are normalized to sum to
.

.2. Partial rebalancing

Fig. 1 depicts a very simple rebalancing rule that averages the momentum signal over five days. Another rebalancing rule is that
a fixed proportion 𝛼 of the difference between the model-implied weight (so the signal) and the current weight is traded. These rules
re path-dependent but reach a steady state when traded over a longer period. For a momentum signal with a look-back period of
𝛽𝑖 = 1∕𝑛 for all 𝑖 < 𝑛, so for the partial rebalancing rule the loading on the new return is 𝛽𝛼0 = 𝛼∕𝑛. In the steady state, the weight

of the one-day lagged return must be equal to 𝛼 times (1 − 𝛼) times the previous 𝛽𝛼0 and so on:

𝛽𝛼1 = 𝛼𝛽1 + (1 − 𝛼)𝛽𝛼0
𝛽𝛼2 = 𝛼𝛽2 + (1 − 𝛼)𝛽𝛼1
⋮

This can be solved recursively. The same can be done for any linear trend signal. Fig. 7 shows the resulting return signature plots
for 𝑚𝑜𝑚30 and a 𝑚𝑎30 as a basis signal and 𝑎𝑙𝑝ℎ𝑎 = 0.2. The momentum plot increases until the end of the look-back period but still
has a sharp brink at the end of the look-back period. The 𝑚𝑎 shows a nice hump shape form similar to the 𝑥𝑚𝑎𝑐 and to what can
be observed in the data.

Appendix B. Details on the estimation procedure

As in the ridge case, the parameters can be estimated with OLS by augmenting the data with pseudo-observation reflecting the
regularization terms. The augmented model can be visualized as follows:
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(B.1)

If 𝛾𝑛 = 0, the last line can be skipped.15 Matrix notation is useful and we write:
[

𝛥𝐶
0

]

=
[

𝑋
𝛤

]

𝐵 +
[

𝐸
𝐻

]

(B.2)

with the self-explanatory definition of the matrices. Finally, we define the hat matrix as:

𝐴(𝛤 ) = 𝑋(𝑋𝑇𝑋 + 𝛤 𝑇𝛤 )−1𝑋𝑇 . (B.3)

15 We experimented with shrinking the last observation to zero, i.e., using 𝛾 > 0. This specification did not improve the forecasting power.
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Eqs. (B.1) and (B.2) remain valid if we enlarge the set of predictive variables as in Section 4.

.1. Hyperparameter tuning

Following Allen (1974), a set of hyperparameters 𝛤 can be efficiently determined using leave-one-out cross-validation (LOOCV).
his is done by estimating Eq. (5) with all but the 𝜏th observation. This yields estimated 𝛽𝑖s denoted as 𝛽𝑖,−𝜏 (𝛤 ) and an out-of-sample
orecast of the position changes:

𝛥𝑐𝜏 (𝛤 ) =
𝑛−1
∑

𝑖=0
𝛽𝑖,−𝜏 (𝛤 )𝛥𝑟𝜏−𝑖. (B.4)

llen’s PRESS (prediction sum of squares) statistics is the average mean squared error over all observations:

𝑃 (𝛤 ) = 1
𝑇

𝑇
∑

𝜏=1
(𝛥𝑐𝜏 (𝛤 ) − 𝛥𝑐𝜏 )2. (B.5)

Using the Sherman–Morrison–Woodbury formula, it can be shown that:

𝑃 (𝛤 ) = 1
𝑇
‖𝐵(𝛤 )(𝐼 − 𝐴(𝛤 ))𝛥𝐶‖ (B.6)

where 𝐵(𝛤 ) is a diagonal matrix with 𝑗𝑗th entry 1∕(1 − 𝑎𝑗𝑗 (𝛤 )), 𝑎𝑗𝑗 being the 𝑗𝑗th entry of 𝐴(𝛤 ) and ‖ ⋅ ‖ is the Euclidean norm.
See van Wieringen (2020) and Golub et al. (1979) for further details. The optimal set of hyperparameters is then the minimizer of
the PRESS statistics.

In our base model with all 𝛾𝑖 being equal, there is only one hyperparameter to optimize, and no specification mentioned in this
paper has more than two free hyperparameters. Using (B.6), the optimal parameters can efficiently be estimated numerically. Note
that the hyperparameters are tuned by the data. Therefore, beyond the shape of the 𝛾-curve, there is no discretion in their choice.

Appendix C. In-sample t -test

Our in-sample test follows Cule et al. (2011). Using notation from Eq. (B.2), the covariance matrix of the regression coefficients
resulting from a ridge regression is given by:

var(𝐵) = 𝜎2(𝑋𝑇𝑋 + 𝛤 𝑇𝛤 )−1𝑋𝑇𝑋(𝑋𝑇𝑋 + 𝛤 𝑇𝛤 )−1, (C.1)

e.g., van Wieringen (2020). In practice, 𝜎2 is replaced by its estimate, given by the residual mean square of the ridge model:

𝜎2 =
(𝛥𝐶 −𝑋𝐵)𝑇 (𝛥𝐶 −𝑋𝐵)

𝜈
, (C.2)

here 𝜈 is the effective degree of freedom defined as:

𝜈 = 𝑇 − tr (2𝐴 − 𝐴𝐴𝑇 ). (C.3)

tandard errors of B (se(𝛽𝑖)) are the square root of the diagonal of the covariance matrix in Eq. (C.1) and the test statistics are given
s 𝛽𝑖∕se(𝛽𝑖). Halawa and Bassiouni (2000) refer to this testing procedure as a ‘‘non-exact’’ t -type test because it ignores the bias of
he ridge regression. Their simulation study, however, shows that the procedure works well when ridge is a desired estimator. Then,
t outperforms the standard OLS-based t -test in most cases.
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