
Fuzzing vs SBST: Intersections & Differences

Giovani Guizzo
University College London (UCL)

London, UK
g.guizzo@ucl.ac.uk

Sebastiano Panichella
Zurich University of Applied Sciences 

Zurich, Switzerland
panc@zhaw.ch

ABSTRACT
Search-Based Software Testing (SBST) is the application of SBSE
for solving hard software testing problems. SBST has been the
subject of discussion of our International SBST Workshop, co-
located with the International Conference on Software Engineer-
ing (ICSE). In 2022 we hosted the 15th edition of our SBST Work-
shop, which brought together researchers and industrial prac-
titioners to encourage the use of search-based and fuzz testing
techniques and tools for addressing software engineering-specific
challenges. In this 2022 edition, SBST held, among other exciting
events, a discussion panel on the similarities and differences be-
tween SBST and Fuzzing. As it implies, the goal of the panel was
to have a common ground for discussion on the main similarities
and differences between the Fuzzing and SBST fields, focusing
on how both communities can collaborate to advance the state-
of-the-art on automated testing. This strong panel composed of
researchers from both academia and industry was the highlight
of SBST’22 and allowed the chairs of the workshop to make sub-
stantial changes for 2023. In this paper, we present the main take
away messages from that seminal panel and highlight exciting new
challenges in the field.

1. INTRODUCTION
Search-Based Software Testing (SBST) consists in the application
of optimization algorithms to implement cost-effective test gener-
ation techniques, among other testing-related tasks [3]. SBST has
been the subject of discussion of our International SBST Work-
shop, co-located with the International Conference on Software
Engineering (ICSE). Some of the specific topics explored in the
workshop include Multi-Objective Solutions, Search-Based Opti-
mization, Test Oracle, SBST for Web and Mobile Software, Hu-
man Aspects and Integration into Real Test Environments, En-
riching SBST with Machine Learning, Application of SBST in
Industrial Practice and the Classroom, and Synergies of SBST
and other SE areas.

In light of recent software testing advances, we also decided to
include Fuzzing [6] in our SBST call for papers. The potential
of SBST and Fuzzing approaches to be applied to a vast number
of open and complex testing problems (e.g., autonomous driving
functions or components [1, 5]) is increasingly evident.

Hence, in our 2022 edition of the SBST Workshop, we put for-
ward the first efforts on discussing the combination of Fuzzing and
SBST approaches by hosting a discussion panel entitled “Fuzzing
vs SBST - Intersections and Differences”. This panel was held
with leading researchers in the field: Andreas Zeller, Annibale
Panichella, Lionel Briand, Marcel Böhme, Mark Harman, Myra
Cohen, and Paolo Tonella. The goal was to have a ground for
discussion on the main similarities and differences between the
Fuzzing and SBST fields. This seminal panel composed of re-

searchers from both academia and industry was the highlight of
SBST’22 and allowed the chairs of the workshop to make substan-
tial changes for 2023.

The objective of this paper is to summarize the take away mes-
sages of this seminal panel. More details on the SBST 2022 work-
shop can be found at https://sbst22.github.io/, including the
recordings of all presentations, keynotes, tutorial, and discussion
panel. If you would like to watch the discussion panel recording
in its entirety, we refer you to the link: https://sbst22.github.
io/panel/.

2. SBST 2022
The 15th edition of SBST was co-located with ICSE 2022 and
was held in virtual mode; 115 distinct participants attended the
workshop during the day. From 2008 to 2013, SBST was co-
located with the Intl. Conference on Software Testing, Verifica-
tion and Validation (ICST). Since 2014, SBST has been co-located
with ICSE. The 16th edition of the SBST workshop (renamed as
Search-Based and Fuzz Testing, as explained later in the paper)
will be co-located with ICSE 2023 (see https://sbft23.github.

io/).

SBST 2022 consisted of one-day workshop, before the main con-
ference on May 9, with the final program of the workshop avail-
able online: https://sbst22.github.io/program/. The starting
point for the SBST discussions were the following elements:

Keynote. Paolo Tonella, from the University of Lugano, presented
a keynote on “Deep Learning Testing”.

Paper Sessions. We hosted four full and short paper presentations.
The list of accepted papers and their recorded presentations can
be seen on our website.

Tutorial. Rahul Gopinath, from the University of Sydney, Aus-
tralia, presented a tutorial on“Learning and Refining Input Gram-
mars for Effective Fuzzing”.

Tool Competitions. As for previous years, SBST hosted two Tool
Competitions: A Java testing tool competition and a Cyber-
physical systems testing tool competition (https://sbst22.github.
io/tools/). This edition of the workshop attracted thirteen tool
papers.

Discussion panel on SBST vs Fuzzing. The star attraction of our
15th workshop edition. Composed by a set of leading researchers,
this panel was a stage for a rich discussion on the challenges faced
when automating testing tasks and how both communities handle
those challenges. You can find the full panel recording in this link:
https://sbst22.github.io/panel/.

This is the accepted manuscript version of a paper published by ACM. The Version of Record is available at 
https://doi.org/10.1145/3573074.3573102

https://sbst22.github.io/
https://sbst22.github.io/panel/
https://sbst22.github.io/panel/
https://sbft23.github.io/
https://sbft23.github.io/
https://sbst22.github.io/program/
https://sbst22.github.io/tools/
https://sbst22.github.io/tools/
https://sbst22.github.io/panel/
https://doi.org/10.1145/3573074.3573102


The next section summarises the main take away messages we
gathered from the discussion panel.

3. DISCUSSION PANEL: FUZZING VS SBST –
INTERSECTIONS & DIFFERENCES

Although SBST 2022 was full of insightful ideas and exciting
research, it is evident that the main attraction was the discus-
sion panel on SBST and Fuzzing. The discussion panel entitled
“Fuzzing vs SBST – Intersections and Differences”had as main goal
to provide a common ground for discussion on the main similari-
ties and differences between the Fuzzing [2, 6] and SBST fields [3].
Both have similar goals and apply similar techniques: automati-
cally testing the software through heuristics to reveal faults. How-
ever, they differ in some aspects such as the scope of the testing
(i.e., system testing vs unit testing), guiding technique (i.e., cov-
erage vs fitness functions).

The panel was comprised by notorious software engineering re-
searchers (in alphabetical order): Andreas Zeller (CISPA Helmholtz
Center for Information Security & Saarland University); Annibale
Panichella (Delft University of Technology); Lionel Briand (Uni-
versity of Ottawa & University of Luxembourg); Marcel Böhme
(Max Planck Institute for Security and Privacy); Mark Harman
(Meta Platforms Inc. & University College London); Myra Co-
hen (Iowa State University); and Paolo Tonella (Università della
Svizzera Italiana). Their expertise was demonstrated in a two
hour long discussion, which proved to be so impacting that it
changed the future of the SBST workshop and, arguably, the fu-
ture of automated software testing as a whole.

As follows, we summarise the main lessons learned from the dis-
cussion panel, as perceived by the authors of this paper. We also
lay down a few challenges that can be tackled by both commu-
nities, perhaps known challenges, but nevertheless still relevant
ones.

3.1 The SBST and Fuzzing Overlapping Insights
It is difficult to completely separate Fuzzing from SBST approaches:
Similar strategies are often used to solve the same set of problems
and with similar goals. The panelists have rightfully pointed out
that it is hard to distinguish where the overlaps end with Fuzzing
and SBST when the terms are obfuscated. In reality, what differs
Fuzzing from SBST is the scope of the testing effort (system test-
ing for Fuzzing and unit testing for SBST), but aside from that,
the differences are most of time only perceived because of differ-
ent terms adopted by both communities. In the end, the goal
is the same: automatically reveal faults in the Software Under
Test (SUT). The techniques used by both communities also share
similar behaviour: intelligent search for meaningful test data.

Lack of knowledge sharing and known pitfalls: It is not unusual
for both fields to apply the same techniques, achieve similar mile-
stones, and sometimes fall into the same pitfalls when techniques
prove to be sub-optimal. For example, one of the main perceived
problems with SBST is the lack of scalability of the techniques
due to costly solution evaluations. Fuzzing, on the other hand,
has as one of its main advantages the incredible scalability of gen-
erating millions (if not billions) of inputs in the same time window
an SBST technique takes to achieve a decent coverage milestone.
Conversely, Fuzzing struggles with diversity of inputs, i.e., when
an input makes the SUT crash, the Fuzzing technique may find
itself generating the same input because it was successful in the
past. In SBST, maintaining the diversity of inputs and avoiding
local optima is something that has been investigated since its con-
ception. However, because both communities do not collaborate

as often as they should, such knowledge about what is adequate
and what is not is seldom shared. This is not a major problem
that can jeopardize scientific advances on the state-of-the-art, but
trying to “reinvent the wheel” was never efficient.

The SBST and Fuzzing communities should walk together: This
is the main take away message from the discussion panel (from
Lionel Briand). A more tight collaboration between both com-
munities is not only desirable, but rather a necessity to achieve a
smooth, efficient, and more exciting scientific advancement. Both
communities should walk together and join efforts to effectively
and efficiently learn from each other. One of the most prominent
results of such collaboration is the standardisation of terms in
both communities, i.e., while one community calls a given term
“A1”, the other calls it “1A”: they are essentially the same, but the
search engines will definitely lose their marbles. To achieve this,
it would be useful to organize common events, organize seminars,
and have hybrid PC members. Such joint collaboration is long
overdue.

3.2 Open Challenges
Scalability, the testing Achilles’ tendon: When automating test-
ing, be it with SBST or Fuzzing, one of the biggest concerns is
scalability. It is not unknown that testing comprises most of the
software development cost, and this high cost is not different for
its automation. As mentioned, some techniques (we are looking at
you Machine Learning) may struggle with the incurred overhead.
Not only that, the entire process can be a burden to the engineer
and cause the cost of the testing task to rapidly increase. We need
to consider execution costs and attributes such as scalability of
proposed tools (does an approach scale in a particular context?)
when designing new techniques. The usage of “surrogate models”
is a topic that could be investigated by both SBST and Fuzzing
communities to test complex systems.

The lingering oracle problem: When Mark Harman (literally)
brought his white elephant to our online room, called it “Ora-
cle”, and said we should address it, there was a single reaction
from all participants: they all nodded (with visible pain). Given
an input, is the generated output the correct one? Answering
that question requires an oracle, the ever so elusive oracle. What
we learnt during the panel discussion is that SBST still strug-
gles with attaining a good oracle, while Fuzzing uses the answer
to “has the program crashed?” as their main source. There is
something beautiful about reducing the oracle problem to a sim-
ple “has it crashed or not?” question; it is undoubtedly efficient,
but is it enough? More complex and continuous oracles may give
us a smoother guidance to effective inputs, but the cost behind
such complex oracles is still a problem. We hope that, by bringing
SBST and Fuzzing together, we can finally find a middle ground
where an enhanced simple oracle is all we need.

Flaky tests: Not surprisingly, panelists from both SBST and Fuzzing
fields showed increased concern with flaky tests, i.e., tests that,
although unchanged, one cannot predict their behaviour. Flaky
tests introduce all sorts of uncertainty to scientific experiments
and practical applications alike. Much like the oracle problem,
flakiness is costly and generally requires some human effort. This
was the only problem brought up during the discussion panel for
which the panelists had no clear direction on how to solve it.
Flakiness remains an open challenge, perhaps the hardest.

Other challenges and solutions: Human-into-the-loop testing could
be an important challenging aspect to consider in the evaluation
of SBST and Fuzzing techniques. Perhaps involving humans in



the loop is not a challenge, but rather a solution. Who is it to
say? Security testing was also brought up during the discussion.
Although Fuzzing focuses on this aspect more commonly than
SBST, it is still a great deal of importance in the testing commu-
nity and for sure an open challenge.

4. FUTURE PLANS
As previously mentioned, the results of the rich and insightful
discussion panel of SBST 2022 will echo through years to come.
In light of this, we decided that the SBST workshop should focus
more and more on bringing together international researchers and
practitioners from both fields. The idea is to to collaborate, share
experiences, provide directions for future research, and encourage
the use of SBST and Fuzzing techniques for supporting developers
and project managers in all aspects of the software development
cycle.

Considering the inputs of the SBST 2022 panel, the general agree-
ment of world reckoned testing experts and the SBST workshop
Steering Committee is that SBST and Fuzzing overlap consider-
ably and are converging towards a single research stream with
similar goals. This observation has led to the decision (approved
by the SBST workshop Steering Committee) to rename the SBST
workshop as Search-Based and Fuzz Testing (SBFT). SBFT 2023
(https://sbft23.github.io/), similarly to the structure of the
last SBST edition, will welcome standard research submissions
(i.e., full and short papers), tool competitions, and keynote talks
on SBST and Fuzzing alike.

The SBFT 2023 workshop will host three different Tool Compe-
titions, as described at https://sbft23.github.io/tools/: the
already consolidated Java Unit Testing Competition, the second
Cyber-Physical Systems (CPS) Testing Competition, and a third,
new, and exciting competition, called Fuzzing Competition. The
latter will focus on using FuzzBench [4] as a benchmarking tool
for the fuzzers. The 12th edition of the competition will be or-
ganized by Abhishek Arya (Google Inc.), Dongge Liu (Google
Inc.), Gunel Jahangirova (King’s College London), Jarkko Pel-
tomaki (Abo Akademi University), Johnatan Metzman (Google
Inc.), Marcel Böhme (Max Planck Institute for Security and Pri-
vacy), Matteo Biagiola (Università Della Svizzera Italiana), Oliver
Chang (Google Inc.), Stefan Klikovits (Johannes Kepler University

Linz), Valerio Terragni (University of Auckland), and Vincenzo
Riccio (Università della Svizzera Italiana).

Complementary, for the 16th edition of SBFT workshop, Prof. Li-
onel Briand, having shared appointments between (1) The Univer-
sity of Ottawa, Canada and (2) The SnT centre for Security, Re-
liability, and Trust, University of Luxembourg, already accepted
our invitations to give a keynote talk. We are confident that
this Keynote will be great additions to an attractive workshop
program. Finally, we plan to hold an one-hour-long discussion
panel, entitled “Testing & Security for Cyber-physical systems
(CPS)”. We will invite at least six panelists in the areas of SBFT,
we believe that this strong panel will be one of the highlights of
SBFT’23.

5. REFERENCES
[1] Raja Ben Abdessalem, Annibale Panichella, Shiva Nejati,

Lionel C. Briand, and Thomas Stifter. Testing autonomous cars
for feature interaction failures using many-objective search. In
ASE, pages 143–154, 2018.

[2] Valentin Jean Marie Manès, HyungSeok Han, Choongwoo Han,
Sang Kil Cha, Manuel Egele, Edward J Schwartz, and Maverick
Woo. The art, science, and engineering of fuzzing: A survey.
Transactions on Software Engineering, 2019.

[3] Philip McMinn. Search-based software test data generation: A
survey. Software Testing, Verification and Reliability,
14(2):105–156, June 2004.

[4] Jonathan Metzman, László Szekeres, Laurent Maurice
Romain Simon, Read Trevelin Sprabery, and Abhishek Arya.
FuzzBench: An Open Fuzzer Benchmarking Platform and Service.
In Proceedings of the 29th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the
Foundations of Software Engineering, ESEC/FSE 2021, page
1393–1403, New York, NY, USA, 2021. Association for Computing
Machinery.

[5] Andreea-Ina Radu and Flavio D. Garcia. Grey-box analysis and
fuzzing of automotive electronic components via control-flow graph
extraction. In Björn Brücher, Oliver Wasenmüller, Mario Fritz,
Hans-Joachim Hof, and Christoph Krauß, editors, CSCS ’20:
Computer Science in Cars Symposium, Feldkirchen, Germany,
December 2, 2020, pages 9:1–9:11. ACM, 2020.

[6] Andreas Zeller, Rahul Gopinath, Marcel Böhme, Gordon Fraser,
and Christian Holler. The Fuzzing Book. CISPA Helmholtz Center
for Information Security, 2021. Retrieved 2021-10-26
15:30:20+02:00.

https://sbft23.github.io/
https://sbft23.github.io/tools/

	Introduction
	SBST 2022
	Discussion Panel: Fuzzing vs SBST – Intersections & Differences
	The SBST and Fuzzing Overlapping Insights
	Open Challenges

	Future Plans
	References

