
Graph Based Liability Analysis for the Microservice
Architecture

Onur Kalinagac, Wissem Soussi and Gürkan Gür
Zurich University of Applied Sciences (ZHAW) InIT

Winterthur 8401, Switzerland
[name.surname]@zhaw.ch

Abstract—In this work, we present Graph Based Liability
Analysis Framework (GRALAF) for root cause analysis (RCA)
of the microservices. In this Proof-of-Concept (PoC) tool, we keep
track of the performance metrics of microservices, such as service
response time and CPU level values, to detect anomalies. By
injecting faults in the services, we construct a Causal Bayesian
Network (CBN) which represents the relation between service
faults and metrics. The constructed CBN is used to predict
the fault probability of services under given metrics which are
assigned discrete values according to their anomaly states.

Keywords—Root cause analysis, Causal Bayesian Network,
microservices.

I. CONTEXT AND MOTIVATION

In recent years, the complexity of software systems has
increased vastly, and monolithic systems are getting more dif-
ficult to build and maintain. Microservice architecture allows
a large application to be divided into smaller, independent
parts, each with its own set of responsibilities. They can
be implemented by different service providers using various
technologies or programming languages. A microservices-
based application can call on many internal microservices to
compose its response in order to fulfill a single user request.
As a result, in the event of a failure, the responsible party may
be unclear, compromising liability and accountability.

For network and service management, it is an active chal-
lenge to support confidence between parties and compliance
with regulation for cloud and telecom infrastructures. In that
regard, one of the proposed solutions is to use Service Level
Agreements (SLAs) which are extensively investigated. They
are contracts in which service providers guarantee the quality
of the services by defining usage conditions [1]. SLAs provide
a basic rule set; however, the cases where no violation occurs
due to overly loose commitments or multiple SLA violations
occur due to internal dependencies may have an adverse
effect on the accuracy of determining the true cause of a
failure. To address this issue, we present Graph Based Liability
Analysis Framework (GRALAF) which is being developed
in the INSPIRE-5Gplus project [2]. It performs near-real
time anomaly detection and root cause analysis (RCA) in a
microservice environment.

There are many research works dealing with anomaly
detection and RCA in the literature [3]. Studies including a
causality graph-based analysis mostly use PC algorithm [4] to
build causality graph. In one of them, namely Microscope [5],
they use standard deviation-based heuristics to detect anoma-
lies in response times on front-end requests. Starting from

the application front-end, their algorithm recursively visits the
nodes of causality graph in the opposite direction of edges. It
checks a node’s neighbors if it exhibits abnormal behavior. At
the last step, the root cause candidates are ranked according
to their anomaly score or the Pearson correlation between
their response times and the application front-end. In [6], the
MicroRCA algorithm uses topology graph-based analysis and
creates a topology graph with vertices representing services
and host machines, and oriented arcs representing service
interactions and hosting. Each vertex of the topology graph
is associated with the time series of KPIs monitored on the
relevant service or node. MicroRCA then creates a subgraph
by selecting the vertices in the topology graph that correspond
to the services where anomalies were discovered. The RCA
is carried out by modifying the random walk-based subgraph
search suggested in MonitorRank [7].

In GRALAF, we construct a Causal Bayesian Network
(CBN) with NOTEARS [8] algorithm from a data set which
is obtained by injecting faults to services and consists of the
service metrics and service fault states. CBN helps us to learn
about the causal relations between the fault state of services
and their metrics. Then, we try to detect the meaningful
changes in the performance metrics of microservices or an
SLA violation. When either of them happens, we predict
the corresponding state of services in terms of faultiness. By
analyzing our findings, we complete the RCA of the failure.

II. GRALAF

A. Architecture Description

We run all the software elements on a mobile workstation
with Intel Core i9-11950H 2.60GHz (2.30GHz ⇥ 16) CPU,
32GB RAM, and 1TB SSD storage. Virtual machines (VMs)
are managed with Oracle VM VirtualBox. Our system diagram
is shown in Fig. 1. On this block diagram, you may see how
the system components interact with each other.

Kubernetes: Kubernetes MicroK8s distribution [9] is de-
ployed in two VMs each with two allocated cores and 8GB
RAM, hosted on the mobile workstation.

Virtual MQTT device: We developed a mock IoT device
application built in Python that can be managed through
MQTT. It also sends random sensor data periodically to the
EdgeX server. These application instances are run directly on
the host machine. VMs are assigned to the same NAT network
and the connections between the host machine and VMs are
provided with individual port proxy configurations.

© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works. DOI: 10.23919/CNSM55787.2022.9964681

Fledge

GRALAF

Initialization

Anomaly
detection

Analysis

Causal
Bayesian
Network

Construction

Faulty
Service

Localization

core-data core-metadata ui

core-command

IoT
data

exporter-fledge

device-mqtt

redis

kuiper

core-consul core-command

MQTT-broker

HTTP south service

IoT Devices
Virtual
MQTT

device 3
...

service latency;
CPU, memory, IO

and network usage;
topology data

Prometheus

ui

Training Data
Generation

1

43

2selected service

Usage load

Locust

Virtual
MQTT

device 2

Virtual
MQTT

device 1

Discrete metrics

Fig. 1. System block diagram for the demo environment.

Fledge: Fledge [10] is an open source framework and
community for the industrial edge focused on IoT devices.
It is mainly used for fog computing. In our architecture, it
operates as a remote cloud server application where the data
exported from EdgeX are stored. It is installed in a VM on
the mobile workstation. VM has one allocated core and 2GB
RAM.

EdgeX: EdgeX [11] is an open source software framework
that provides interoperability between devices and applications
at the IoT edge. We deployed its main services on our Kuber-
netes environment. MQTT-broker indirectly connects MQTT
based device service with the virtual MQTT devices. A data
exporter app named exporter-fledge is also deployed to send
sensor data to the Fledge server.

Istio: Istio is a service mesh that allows operator to
transparently add capabilities like observability and traffic
management, without adding them to service code [12]. It
primarily serves to keep track of intermicroservice response
times.

Prometheus: Prometheus is an open-source systems mon-
itoring and alerting toolkit [13]. It periodically scrapes system
related data from Kubernetes pods, node exporter and Istio
service, and stores it as a time series database.

Chaos Mesh: Chaos Mesh [14] is an open-source fault-
generation tool for Kubernetes. We use it to create delay and
CPU fault injections to our microservices via its REST API.

Locust: Locust [15] is an open source performance testing
tool that can be used to simulate a very large number of
concurrent users. We developed a Python script which uses its
library to generate multi-threaded load on the REST endpoints
of the EdgeX UI.

Grafana: Grafana [16] is a tool that enables you to query,
visualize, receive alerts about your metrics and comprehend
them. We use it to demonstrate the effect of fault injections
on microservices’ metrics.

GRALAF: It is developed in Python and performs RCA
based on SLA and CBN. The application is run on the host
mobile workstation.

B. Description of the GRALAF workflow

In order to monitor service metrics, GRALAF periodically
queries all the response time, CPU and memory metrics of
microservices from Prometheus.

1 We start creating our training data set with the initial
15 readings. We also add columns for the fault state of
the services. Services are assumed to be representing their
normal working conditions at this initial phase so their fault
states are set to 0. The threshold values for each metric are
obtained by multiplying the average of the metric readings by
a correction coefficient. All the new readings are compared to
these thresholds and the ones with higher readings are marked
as abnormal. Abnormal values are set to 1; otherwise set to 0.

2 In the second phase, we start injecting CPU and delay
faults into randomly selected pods through Chaos Mesh and
save the corresponding values. The fault state of the selected
pods is set to 1 while the rest is set to 0 on each reading. This
phase continues until we get enough amount of data depending
on the number of microservices.

3 In the third phase, we train a structure model with
causalnex Python package which uses NOTEARS algorithm.
From the structure model, we construct the CBN by using the
same training data set. In order to increase prediction speed,
we remove weak links from the graph. That completes our
preparation steps.

4 During the operation phase, when an anomaly is
detected in the metric readings, it is called an incident. When
that occurs, GRALAF estimates the probability of fault state
for each service by using the prediction feature of the existing
CBN. Then an output report with the non-negligible estimated
probability values is generated.

III. PLANNED DEMONSTRATION

We present a live demo where we trigger fault injection to
one of the microservices, and then show the metric changes
on Grafana. We expect GRALAF to detect the anomaly and
give us an RCA report in the UI about the newly performed
root cause analysis. This report includes information such as
timestamp, service name with failure probability and anoma-
lous metrics as shown in Fig. 2.

© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works. DOI: 10.23919/CNSM55787.2022.9964681

Fig. 2. RCA output report.

fault_redis
CPU_UI

latency_UI
core-data

fault_UI

latency_UI
core-metadata

fault_device-mqtt
fault_core-data

CPU_mqtt-broker

latency_UI
core-command

latency_device-mqtt
core-metadata

Fig. 3. Constructed CBN after GRALAF training.

A. Considered Demonstration Scenarios

We demonstrate two scenarios for two different RCA
methods.

1) SLA based RCA: In this baseline scenario, we intend
to show the demo environment. GRALAF tracks metrics
and compare them with the given SLA data. In the case of
SLA violation, GRALAF informs us about the corresponding
service which failed to sustain its commitments such as max
service delay or service availability.

2) CBN based RCA: The anomaly detection is performed
continuously in the live system and provides discretized values
to the rest of the flow (1). Since the training data generation
(2) takes around one hour, we perform it and construct the
CBN(3) beforehand. In Fig. 3, you can see the visualisation
of the CBN graph where the thickness of the edges indicates
the causal probability between the nodes. A node with a
turquoise color represents the fault state of a service, while a
node with purple or green coloring represents a service’s CPU
metric or response time between a service pair. This graph
indicates that if an abnormal response time between UI and
core-data services is observed, core-data fault is much more
likely to be the root cause than UI service fault.

After the fault injection, GRALAF detects the anomaly
and gives us the estimated probability of each service being
responsible for the incident as an RCA output report (4).
The report is accessible from GRALAF UI service as shown
in Fig. 2.

B. Demonstrated Aspects

In our demonstration, we present four main aspects:

• A technical overview of the developed system is given.

• Our RCA algorithm is presented to illustrate how the
PoC system operates.

• The GRALAF output report is explained to depict the
utility of the system from the RCA perspective.

• From anomaly detection to CBN generation, the tech-
nical challenges we have faced and our solutions for
them are discussed.

IV. CONCLUSION

We proposed a graph liability analysis framework where
we perform anomaly detection and CBN based RCA in a
microservice environment. Also, we deployed a realistic IoT
edge network framework to develop and test our algorithms.
As future work, we will work on further development and
performance evaluation of GRALAF.

ACKNOWLEDGMENT

The research leading to these results partly received fund-
ing from the European Union’s Horizon 2020 research and
innovation programme under grant agreement no 871808 (5G
PPP project INSPIRE-5Gplus). The paper reflects only the
authors’ views. The Commission is not responsible for any
use that may be made of the information it contains.

REFERENCES

[1] C.-Y. Lee, K. M. Kavi, R. A. Paul, and M. Gomathisankaran, “Ontology
of secure service level agreement,” in 2015 IEEE 16th International
Symposium on High Assurance Systems Engineering, 2015, pp. 166–
172.

[2] J. Ortiz et al., “INSPIRE-5Gplus: Intelligent security and pervasive trust
for 5G and beyond networks,” in Proceedings of the 15th International
Conference on Availability, Reliability and Security, ser. ARES ’20.
New York, NY, USA: Association for Computing Machinery, 2020.

[3] J. Soldani and A. Brogi, “Anomaly detection and failure root cause
analysis in (micro) service-based cloud applications: A survey,” ACM
Comput. Surv., vol. 55, no. 3, Feb 2022.

[4] P. Spirtes, C. N. Glymour, R. Scheines, and D. Heckerman, Causation,
prediction, and search. MIT press, 2000.

[5] J. Lin, P. Chen, and Z. Zheng, “Microscope: Pinpoint performance is-
sues with causal graphs in micro-service environments,” in International
Conference on Service-Oriented Computing. Springer, 2018, pp. 3–20.

[6] L. Wu, J. Tordsson, E. Elmroth, and O. Kao, “MicroRCA: Root cause
localization of performance issues in microservices,” in NOMS 2020
- 2020 IEEE/IFIP Network Operations and Management Symposium.
IEEE, Apr. 2020, pp. 1–9.

[7] M. Kim, R. Sumbaly, and S. Shah, “Root cause detection in a service-
oriented architecture,” ACM SIGMETRICS Performance Evaluation
Review, vol. 41, no. 1, pp. 93–104, 2013.

[8] X. Zheng, B. Aragam, P. Ravikumar, and E. P. Xing, “DAGs with NO
TEARS: Continuous optimization for structure learning,” 2018.

[9] “MicroK8s homepage,” https://microk8s.io, 2022.
[10] “Fledge project page,” https://www.lfedge.org/projects/fledge, 2022.
[11] “EdgeX Foundry homepage,” https://www.edgexfoundry.org, 2022.
[12] “Istio homepage,” https://istio.io, 2022.
[13] “Prometheus homepage,” https://prometheus.io, 2022.
[14] “Chaos Mesh homepage,” https://www.chaos-mesh.org, 2022.
[15] “Locust homepage,” https://locust.io, 2022.
[16] “Grafana homepage,” https://grafana.com, 2022.

© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works. DOI: 10.23919/CNSM55787.2022.9964681

