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Abstract

Background: Cyber-Physical Systems (CPSs) are systems in which software and hardware components interact with each other.

Understanding the specific nature and root cause of CPS bugs would help to design better verification and validation (V&V)

techniques for these systems such as domain-specific mutants.

Aim: We look at CPS bugs from an open-source perspective, trying to understand what kinds of bugs occur in a set of open-source

CPSs belonging to different domains.

Method: We analyze 1,151 issues from 14 projects related to drones, automotive, robotics, and Arduino. We apply a hybrid

card-sorting procedure to create a taxonomy of CPS bugs, by extending a previously proposed taxonomy specific to the automotive

domain.

Results: We provide a taxonomy featuring 22 root causes, grouped into eight high-level categories. Our qualitative and quantitative

analyses suggest that 33.4% of the analyzed bugs occurring in CPSs are peculiar to those and, consequently, require specific care

during verification and validation activities.

Conclusion: The taxonomy provides an overview of the root causes related to bugs found in open-source CPSs belonging to

different domains. Such root causes are related to different components of a CPS, including hardware, interface, configuration,

network, data, and application logic.
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1. Introduction

Nowadays, software development concerns more and more

about software systems interacting with hardware devices such

as sensors and actuators. Examples include automotive and

avionic systems, as well as, e-health devices [48], and also

software governing Internet of Things (IoT) infrastructures for

building automation, smart cities, and manufacturing. Such

systems are named Cyber-Physical Systems (CPSs). The main

distinguishing element of CPSs is that they are systems that col-

lect, analyze, and leverage sensor data from the surrounding

environment to control physical actuators at run-time [1, 7].

The interaction of a CPS with hardware devices, as well

as with humans and other systems, makes the nature and

effect of bugs in CPS environments very specific and non-

predictable [57, 61]. One of the most famous software failures

in a CPS is the one related to the Ariane 5 [19, 33], caused

by improper reuse from its predecessor, i.e., Ariane 4. As a

consequence, there is the need to empirically define a CPS-

specific bug taxonomy that helps to determine the root causes

of different bugs that might occur in a CPS. Such a taxonomy

would help in developing effective CPS-specific bug detection

tools and techniques.
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Definition 1: CPS bug and CPS failure

We define CPS bug as “a flaw in the hardware (not prop-

erly handled by the software), or an incorrect interaction

between the software and hardware components leading

to a CPS misbehavior.” A CPS bug can manifest as a CPS

failure, which makes a CPS unable to deliver its required

functionality or fulfill certain non-functional properties.

CPS-specific bugs can occur in presence of broken sen-

sors [40] or a security attack [58], leading to (unexpected) in-

puts resulting in a misbehavior of the autonomous system. As

an example, in PX4-AUTOPILOT the presence of noisy data,

i.e., false or unrealistic, coming from airspeed sensors, leads to

an unexpected behavior of the drone in-flight, i.e., “the con-

troller scaled the control surface signals up leading to heavy

oscillations”1. A different example has been experienced in the

OPENPILOT project where, on a specific device (Rav4 Prime)

the software does not work as expected while “a CAN bus er-

ror occurs”2. After having tried the software over different de-

vices, developers ended up that the software is not compatible

with the Rav4 Prime. The latter highlights that it is possible to

see unexpected behavior in the CPS when running the software

on unsupported hardware devices.

The goal of this paper is to empirically define a taxonomy

of bugs occurring in CPSs belonging to different domains to

design better verification and validation (V&V) techniques for

CPSs. The purpose of devising such bug taxonomy is many-

fold. Specifically, it can be useful to (i) better understand the

root causes of failures [23], or (ii) better plan code review [39]

and testing activities, as well as, (iii) to define domain-specific

(testing) mutants. The latter is important since previous re-

search has shown that test mutants do not always represent real

faults [31], and therefore domain-specific mutants’ taxonomy

may be required for emerging systems such as CPSs. Not only

the fault distribution would change, but, also, there could be

1https://github.com/PX4/PX4-Autopilot/issues/8980
2https://github.com/commaai/openpilot/issues/2103

faults, e.g., related to sensor failures (or interfacing), which may

not be fully captured by existing general-purpose mutants’ tax-

onomies [32, 35].

Our study stems from the Garcia et al.’s autonomous vehicle

(AV) bug taxonomy [23] derived by looking at data of two AV

systems, and contribute with a differentiated replication study

(i.e., a replication differing both in terms of domain, method-

ology, and possibly focusing on specific aspects of the original

study [13, 49]) as summarized in the following:

• Different purpose: while the goal of the Garcia et al.’s

study is to relate symptoms and root causes, we only fo-

cus on the root causes with the aim of supporting future

research aimed at deriving specific mutation testing strate-

gies for CPSs.

• Different domains: while Garcia et al.’s study specifically

targets bugs in self-driving car software from two systems,

our work involves more projects and spans across differ-

ent CPS domains. Specifically, we analyze a more hetero-

geneous set of bugs from 14 different projects including

Arduino (e.g., Arduino core, as well as, Internet of Things

– IoT, and Infrared Remote libraries for Arduino), drones,

robotics, and automotive.

• Number of projects analyzed: while Garcia et al.’s work

targets two open-source projects, we extend upon their

work by analyzing 1,151 issues from 14 open-source

projects belonging to four different CPS domains.

• Explicitly distinguishing CPS-specific bugs from generic

bugs: while discussing different bug categories, we make

the case for, and discuss, bugs that are specific to CPSs

from bugs that may occur in any (conventional) software

system.

The bug categorization has been conducted using a hybrid

card-sorting approach [45], i.e., we started from a set of prede-

fined categories used in Garcia et al. [23]’s work. While their

work belongs to the automotive domain, we found its domain

relatively close to our work (as we also consider automotive
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projects), and the categories they defined in terms of root causes

applicable to our context as well.

As a result of the manual categorization, we obtained a tax-

onomy featuring 22 root causes, grouped into eight high-level

categories. The taxonomy enhances and extends the one pre-

viously created by Garcia et al. [23] for AV bugs. To the best

of our knowledge, this is the first work that proposes a tax-

onomy aimed at identifying the root causes of the bugs intro-

duced by developers while developing CPSs including hard-

ware, network, interface, data, configuration, algorithm and

documentation-related bugs.

On the one hand, our results point out that ≈ 33% of the bugs

are CPS-specific. Even if this percentage may appear to be rel-

atively limited, it is not entirely surprising that the majority of

bugs occurring in CPS (as in any other traditional software sys-

tem) are conventional (e.g., programming logic or other) bugs.

On the other hand, our set of CPS-specific bugs could be used

to define mutation testing or fault-injection [51] strategies spe-

cific to CPS domains, as well as, to testing solutions specific to

CPS.

Our replication package, submitted as additional material for

review and available on Zenodo [56], contains (i) the scripts

developed to extract the data used for this research and (ii) the

manual validated dataset of bugs occurring in CPSs.

The paper is organized as follows. Section 2 details the study

definition and planning. The CPS bug taxonomy is presented

and discussed in Section 3. The study implications for devel-

opers and researchers are discussed in Section 4, while Sec-

tion 5 discusses the the threats to the study validity. Finally,

Section 6 discusses related research, while Section 7 summa-

rizes our findings, and outlines directions for future work.

2. Study Definition and Methodology

The goal of our study is to analyze the root cause of bugs oc-

curring in open-source CPSs. The perspective is of researchers

developing suitable approaches to support the discovery, local-

ization, and management of CPS-specific bugs. Also, the study

results can be useful to developers in understanding the nature

of bugs occurring in CPSs. The context of the study consists of

1,151 closed issues sampled from 14 open-source CPS projects

hosted on GitHub.

Specifically, we answer the following research question:

RQ: What types of bugs occur in open-source CPSs?

This research question focuses on qualitatively defining a tax-

onomy comprising of root causes for bugs occurring in CPSs.

We aim at discriminating bugs specific to CPS from bugs simi-

lar to those also occurring in traditional (general-purpose) soft-

ware.

In the following, we detail the methodology adopted to an-

swer our research question.

2.1. Methodology Overview

Fig. 1 depicts the methodology we followed, which consists

of four subsequent steps. First, (1) we performed an inception

phase aimed at enriching our knowledge about the studied prob-

lem and determining a starting point for our taxonomy. Then,

(2) we selected the pool of projects to be considered in the study

and extracted issues from them. After that, (3) we performed

the CPS bugs categorization, which involved four people (two

annotators and two reviewers). Finally, (4) an independent an-

notator re-labeled the whole set of bugs, to limit subjectivity,

and after having solved conflicts, the final taxonomy of CPS

bugs was created.

2.2. Inception Phase

As a first step, we needed to enrich our knowledge by iden-

tifying from previous literature, studies aimed at characterizing

bugs in different software application domains. More specifi-

cally, as detailed in Section 6, we looked at previous bug tax-

onomies [23, 24, 27]. Among them, the closest (in terms of

the domain) was the one proposed by Garcia et al. [23], which

looked at bugs affecting two open-source autonomous vehicles

(AV) systems. They classified the root causes of AV bugs into

13 categories, summarized in Table 1.

By looking at their descriptions, we found such categories a

suitable starting point for our work, mainly because they feature
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Figure 1: Research methodology

conventional bugs (e.g., missing condition checks and incorrect

condition logic) but also numerical bugs, and bugs related to

how the software interfaces with hardware components, which

are likely to occur in CPSs. As a consequence, we refer to the

categories detailed in Table 1 as a starting point for our investi-

gation, while (i) adding further categories, and (ii) determining

the extent to which those categories apply in the open-source

CPSs relying on different domains.

2.3. Project Selection

To properly derive a taxonomy aimed at covering root

causes for bugs occurring in CPSs, we selected 14 open-source

projects hosted on GitHub. To identify CPS-related projects,

we used the GitHub query search feature. Since our goal is to

identify projects belonging to different CPS domains, includ-

ing the previously studied automotive domain [23], we ex-

perimented with CPS-specific GitHub queries: Drone, robot,

and autonomous vehicles. In addition, we also considered ar-

duino to explicitly target projects that likely design and man-

ufacture single-board micro-controllers and micro-controllers

kits for building digital devices.

Starting from the initial set of projects, we applied the fol-

lowing selection criteria, ending up with a sample of 14 projects

whose characteristics are summarized in Table 2:

• Project Popularity: We sorted the results by stars to focus

on popular repositories. Note that, while selecting projects

solely based on stars has been criticized [11], this is not our

only criteria.

• Programming languages: We selected projects having as

main programming languages C++ or Python since, while

querying GitHub for projects belonging to the CPS do-

main, we realized that most of them use the selected lan-

guages. This is consistent with the findings from previ-

ous literature highlighting that CPS development is mostly

performed using C/C++, with many complex CPSs that

“do not allow the use of other languages" such as Java or

Swift [44].

• Use of GitHub issue tracker: The projects must rely on

GitHub for tracking their issues, so we only considered

projects having at least 100 closed issues.

• Use of issue labels: Since our goal is to classify bugs and

not any type of issue (e.g., enhancements or new features),

we only focused on projects that use labels for discrimi-

nating about different types of issues, accounting for those

projects having at least 10 issues being related to bugs, and

labeled as such.

• Active Projects: We selected projects having at least 5

closed issues in the last 3 months of the observed period.
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Table 1: Garcia et al.’s taxonomy [23].

Name of the Root Cause Description of the Root Cause

Incorrect algorithm implementation A difficult to fix incorrect implementation of the algorithm’s logic

Incorrect numerical computation Incorrect numerical calculations, values, or usage

Incorrect assignment Variable(s) incorrectly assigned or initialized

Missing condition checks A necessary conditional statement is missing

Data Incorrect data structure (or data type conversion) and misused data pointers

Misuse of an external interface The misuse of interfaces of other systems or libraries

Misuse of an internal interface Misuse of interfaces of other components and incorrect opening, reading, and writing

Incorrect condition logic This occurs due to incorrect conditional expressions

Concurrency Misuse of concurrency oriented structures

Memory Misuse of memory (e.g., improper memory allocation or de-allocation).

Invalid Documentation Incorrect manuals, tutorials, code comments, and text.

Incorrect configuration Modifications to files for compilation, build, compatibility, and installation

Other Root causes that do not fall into any one of the above categories.

The number of projects to consider as context for our study

has been determined so that (i) we were able to sample and ana-

lyze enough issues per project (this would not be possible if an-

alyzing a large number of projects and then sampling very few

bugs from them), and (ii) we had a similar number of projects

for each CPS domain.

2.4. CPS Bug Categorization

Once having identified the projects of interest, we proceeded

with the extraction of their GitHub issues data (i.e., title, de-

scription, labels, status, and comments) using Perceval [20].

As reported in Table 2, we downloaded a total of 32,333 is-

sues of which 28,094 are closed issues. Once having filtered

out all those closed issues that did not have a bug-related label,

we ended up with a total of 3,713 issues relevant to our study.

Issue Sampling. Since manually analyzing all bug-related

issues in our dataset would be infeasible, we extracted a sta-

tistically significant sample to be analyzed. Specifically, we

applied a stratified random sampling on each project, with a

significance level of 95% and a confidence interval of ±2.4%,

which led to the selection of 1,151 closed bug-related issues

to be manually analyzed. The sample size (S S ) is based on a

formula for an unknown population [41]:

S S = p · (1 − p)
Z2
α

E2

and S S ad j for a known population pop:

S S ad j =
S S

1 + S S−1
pop

where p is the estimated probability of the observation event

to occur (assumed to be 0.5 if we do not know it a priori), Zα is

the value of the Z distribution for a given confidence level, and

E is the estimated margin of error (5%).

Preliminary Bug Categorization. By following the recom-

mendation from previous work [50], we choose to label only

the issues where the discussion was not tangled to reduce the

possibility of misclassifying their root causes. Moreover, since

developers may assign inappropriate labels when opening and

discussing issues [4, 25], we discard the issues that were not

bugs, despite the label. In other words, we performed a first

high-level manual filtering of the issues in our dataset, discard-

ing issues that (i) were not bugs, despite the label; (ii) were not

linked to a specific fix; and (iii) were duplicates of already ana-

lyzed issues. After this preliminary manual filtering, we ended
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Table 2: Characteristics of the analyzed projects.

Project Domain Issues
Closed Bug-related

Issues Issues

Autoware-AI/autoware.ai Automotive 1,030 1,027 49

commaai/openpilot Automotive 608 562 78

ArduPilot/ardupilot Drones 5,123 3,613 1,044

PX4/PX4-Autopilot Drones 5,875 5,303 1,197

dronekit/DroneKit-Python Drones 631 311 62

mavlink/qgroundcontrol Drones 3,873 3,038 92

ros/ros Robotics 100 99 41

carla-simulator/carla Robotics 3,298 2,933 168

cyberbotics/webots Robotics 1,076 912 486

bblanchon/ArduinoJSON Arduino 1,346 1,329 136

Arduino-IRremote/Arduino-IRremote Arduino 505 502 17

miguelbalboa/rfid Arduino 334 312 17

espressif/arduino-esp32 Arduino 3,367 3,208 12

esp8266/Arduino Arduino 5,167 4,945 314

TOTAL - 32,333 28,094 3,713

up with a set of 655 bugs to be used for deriving the taxonomy

for CPS bugs. With respect to the initial population, this is a

statistically significant sample with 95% confidence level and

±3.78% confidence interval.

On the useful set of 655 issues, we performed a hybrid card-

sorting approach [45], by considering the Garcia et al.’s taxon-

omy [23] as a reference starting point.

Our card sorting consisted of the following steps:

1. Annotation Phase: We split the 655 issues into two sets.

Two annotators independently evaluated the assigned set

of issues and proposed labels for them. To identify the

root cause of an issue, the annotators looked at the title,

description, discussion, and source code change diffs as-

sociated with each linked fix. The labeling was performed

by either reusing labels provided by Garcia et al. [23], thus

adding new labels when necessary.

2. Reviewing Phase: Each labeled issue has been subse-

quently reviewed by a different annotator (not involved in

the initial annotation phase), which confirmed or rejected

the categories assigned in the previous step. In presence

of disagreement, i.e., the new annotator rejected the pre-

viously identified category, a discussion was opened in-

volving an additional annotator (not involved in the previ-

ous labeling). A decision was taken by applying a major-

ity vote strategy among the participants of the discussion.

Among the 655 analyzed issues, a discussion was needed

in 93 cases.

As an outcome of the overall bug categorization step, a pre-

liminary version of the taxonomy was created.

2.5. Definition of the Final Taxonomy

To guarantee the integrity of the labeled dataset, i.e., reducing

possible subjectivity and bias, and of the emerging categories,

i.e., removing potential redundancies from the preliminary ver-

sion of the taxonomy, an additional annotator, not involved in

the previous bug categorization step, re-labeled the previously
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manually validated issues independently. Then, the two labeled

datasets have been compared to identify disagreements, that

have been discussed and solved in a discussion session with

two different reviewers.

Besides performing a discussion to resolve disagreements,

we computed the inter-rater agreement to determine to what

extent annotators agreed by chance. That is, if the inter-rater

agreement is too low compared to the agreement rate, this in-

dicates that several cases of agreement could have (also mis-

takenly) occurred by chance. To determine the reliability of

the manual labeling, we used the Cohen’s k inter-rater agree-

ment [16]. Specifically, the agreement has been computed at

two different levels. First, we computed the agreement looking

at whether or not a bug is CPS-specific, obtaining a percentage

of agreement of ≈ 93% and a Cohen k = 0.84, which indicates

an almost perfect agreement between the annotators. Then, we

looked at the percentage of agreement while assigning the high-

level category of our taxonomy. In this case, the percentage of

agreement is equal to 76% with a Cohen k = 0.66, representing

a strong agreement.

3. Study Results

Table 3 reports the root causes of bugs in the CPSs we ana-

lyzed. The taxonomy comprises 22 different root causes prop-

erly grouped into 8 high-level categories:

1. Hardware includes bugs whose root cause is in the hard-

ware and its related software, e.g., faulty data sent by sen-

sors, components not supported by the current implemen-

tation, or overflow of the physical storage on the real de-

vice;

2. Network includes bugs whose root cause is in the com-

munication between the hardware and the software com-

ponents in terms of connections and packets being lost or

corrupted;

3. Interface groups bugs whose root cause resides in a misuse

of the interface of the hardware devices, other software

libraries and/or components, as well as, bugs inherited by

third-party components integrated into the system;

4. Data groups bugs caused by the usage of an improper data

structure, as well as related to its storage;

5. Configuration includes bugs due to a wrong build config-

uration process;

6. Algorithm groups bugs whose root cause is related to how

the application logic is implemented, e.g., incorrect condi-

tional expressions, incorrect numerical calculations or val-

ues, as well as misuse of memory in terms of strategies

used for allocating or de-allocating it;

7. Documentation includes bugs that do not occur in the

source code but rather in the documentation associated

with the application, i.e., documentation is outdated with

respect to the current version of the software;

8. Others groups those root causes that cannot be classified

into any of the previous categories.

Table 3 also reports, for each root cause, the number and per-

centage of bugs belonging to it discriminating between bugs

that are specific to CPSs (e.g., related to hardware or its inter-

facing, or algorithms related to hardware controlling), as well

as, generic bugs that are not CPS-specific.

In the following, we discuss each category, reporting a short

description together with representative examples for each spe-

cific root cause, and then outline our main findings includ-

ing, whenever possible, implications for practitioners and re-

searchers. The discussion starts from the categories not in-

cluded in the classification of AV bugs by Garcia et al. [23] (i.e.,

Hardware and Network), and then considers the categories that

abstract or specialize those from the previous taxonomy.

3.1. Hardware

Description: We found five root causes dealing with hard-

ware components being integrated with CPSs: (i) HW not sup-

ported/not compatible groups bugs that are generated by using

a hardware component/device that is not supported or is not
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Table 3: Taxonomy of CPS bugs: number of bugs for each root cause, number (percentage) of CPS-specific bugs, and other bugs.

Category Root Cause # of (%) # of (%)

CPS-specific bugs other bugs

Hardware

Energy 2 (0.31) 0 (0)

Faulty Sensor Data 7 (1.07) 0 (0)

Hardware Failure 4 (0.61) 0 (0)

HW Not Supported/Not Compatible 11 (1.68) 0 (0)

Memory 4 (0.61) 0 (0)

Total Hardware 28 (4.28) 0 (0)

Network
Connection/Communication 5 (0.76) 11 (1.68)

Packet Corrupted/Lost 8 (1.22) 1 (0.15)

Total Network 13 (1.98) 12 (1.83)

Interface
External 27 (4.12) 27 (4.12)

Internal 6 (0.92) 24 (3.66)

Total Interface 33 (5.04) 51 (7. 78)

Data
Incorrect Data Structure 0 (0) 9 (1.37)

Not Persisted 0 (0) 2 (0.31)

Total Data 0 (0) 11 (1.68)

Configuration
Build Configuration 2 (0.31) 68 (10.38)

Wrong Parameters 5 (0.76) 13 (1.98)

Total Configuration 7 (1.07) 81 (12.36)

Algorithm

Assignment 19 (2.9) 58 (8.85)

Concurrency 2 (0.31) 5 (0.76)

Incorrect Condition Logic 17 (2.6) 35 (5.34)

Memory 5 (0.76) 16 (2.44)

Missing Condition Check 25 (3.82) 50 (7.63)

Numerical 18 (2.75) 23 (3.51)

Programming 26 (3.97) 90 (13.74)

Total Algorithm 112 (17.11) 277 (42.27)

Documentation - 1 (0.15) 27 (4.12)

Others - 0 (0) 2 (0.31)

OVERALL 194 (33.40) 461 (66.56)

compatible with the CPS system; (ii) Faulty Sensor Data in-

cludes bugs due to sensors providing faulty values; (iii) Mem-

ory groups bugs generated by storage on physical devices; simi-

larly, (iv) Energy includes bugs dealing with the power on phys-

ical devices; and (v) Hardware Failure groups bugs where the

root cause of the failure is directly on the hardware componen-

t/device. Based on the above description, and as reported in

Table 3, this category includes only CPS-specific bugs.

Discussion and Examples: 11 out of 28 bugs belong to

HW not supported/not compatible. Bug #21033 in OPENPILOT

points out the presence of a CAN bus error on a specific de-

vice (i.e., Rav4 Prime). After a detailed discussion, in which

other users still experienced the same problem, the developer

3To access the bug description use

https://github.com/$owner/$repo/issues/$issue_number. For this specific

example it is https://github.com/commaai/openpilot/issues/2103.
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ended up stating: “This isn’t an issue - the RAV4 Prime isn’t

listed as a supported car”. From a different perspective, still in

OPENPILOT we found a different bug (#1813) where the prob-

lem is due to the usage of the wrong simulator, indeed, since

that “some older HKG vehicles do not have FCA11msg” it is

required to “use SCC12 for stock ADAS signals on cars that

don’t have FCA11”.

Faulty Sensor Data includes seven CPS-specific bugs. For

instance, we found a case in which there is a GPS glitch (bug

#14253 in ARDUPILOT), or, false and unrealistic airspeed mea-

surements (bug #8980 in PX4-AUTOPILOT) resulting in an un-

successful flight.

We found four CPS-specific bugs belonging to Memory:

consider bug #1662 in AUTOWARE.AI where the functionality

crashes since the disk capacity has been filled up, or bug #2352

in ARDUPILOT where the misbehavior (i.e., empty logs list over

MAVLink) occurs as a consequence of the SD card being full.

We found two CPS-specific bugs belonging to Energy. As an

example, in ARDUPILOT, the user experienced a crash together

with a partial data freeze as a consequence of “a power failure.

Power overload, not a software problem” (bug #6300).

Finally, we found four bugs for which the root cause is di-

rectly related to the hardware component/device. For instance,

bug #9738 in PX4-AUTOPILOT, after a very long discussion,

has been closed stating that: “... it turns out that my board

had hardfaulted ... and then it got “stuck” waiting for key-

board input on the console to clear the hardfault. The fault

wouldn’t/didn’t clear itself over multiple reboots, leading to a

“bricked” board.”

Main Findings: Hardware-specific bugs are peculiar to

our taxonomy, and, unsurprisingly, all of them are CPS-

specific. Recognizing (and simulating) hardware failures

has paramount importance in V&V. Also, developers should

take particular care of hardware compatibility, especially for

CPSs targeting multiple devices. Last, but not least, the in-

teraction with the hardware makes particularly crucial the

analysis of non-functional properties such as performance,

memory, and energy consumption.

3.2. Network

Description: Differently from the Garcia et al.’s work [23],

we have identified a new root cause accounting for bugs oc-

curring in the networking between software and hardware com-

ponents. Indeed, the network plays a paramount role in many

CPSs [42], e.g., in the Internet-of-Things (IoT) domain, or do-

mains such as drones, satellite, automotive, etc. [3, 21, 55]. We

discriminated between bugs dealing with (i) packets being lost

or corrupted, and (ii) merely connection problems. Out of 25

bugs in this category, 13 are CPS-specific with most of them

belonging to Packet Corrupted/Lost.

Discussion and Examples: Bug #1696 in OPENPILOT is an

example of Packet Corrupted/Lost, in which the fault is due

to an improper parity bit and command being received in the

message order (i.e., packet is corrupted). With the same root

cause, we also found bug #4302 in ARDUINO, where there is

a memory leak while doing repeated connections to a server,

causing the loss of around 8KB for each connection.

For what concerns bugs with Connection/Communication

root cause, we found five out of 16 being CPS-specific. In

ARDUPILOT we found a bug (#11398) where the problem expe-

rienced is related to “gimbal’s tilt control is overshooting badly”

while using the ChibiOS environment. After a long discussion,

a developer found that the root cause of the misbehavior is the

latency while communicating through an i2c bus. A different

problem has been reported in ARDUINO (bug #4060): once

having properly completed a sequence of requests through the
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network, the user started to receive a “Connection Refused” er-

ror and while looking at the connection status it was lost. After

those events, it was neither possible for the user to reconnect to

the network.

Main Findings: In several CPSs, networking plays a

paramount role, and therefore can be the origin of bugs. The

CPS monitoring infrastructure should therefore include net-

work monitors. Moreover, V&V techniques may contem-

plate CPS misbehavior caused by network-specific aspects.

3.3. Interface

Description: This category groups bugs dealing with a mis-

use of the interfaces among software and hardware components

(External), as well as among different software components that

may be both external software libraries being used in the CPS

system (External), or modules and/or classes in the same CPS

system (Internal). It is important to remark that when the re-

ported issue affects a third-party library used by the system (i.e.,

inherited bugs), we did not exclude it, but labeled it as an ex-

ternal interface bug. 84 out of 655 (≈ 13%) bugs in our dataset

belong to this category, with 33 of them being CPS-specific.

Discussion and Examples: As regards the inheritance of

bugs in third-party components being integrated into the soft-

ware application (External), in PX4-AUTOPILOT we found a

bug (#6546) dealing with GPS “jamming” that has already been

reported as an issue in the library aimed at supporting the Intel

Aero Platform. In other words, the bug has been inherited from

the library being used while interfacing with GPS. However,

in the External root cause, there are CPS-specific bugs dealing

with the interface towards the hardware components. For in-

stance, bug #8822 in PX4-AUTOPILOT reports a problem with

the name of the rotors to use while connecting to the drone. In

this case, it is required to use “rear” instead of “rear-right”.

We also found cases where, as a consequence of up-

dates in the firmware, the CPSs start to not work as ex-

pected. For instance, bug #226 in ARDUINO reports:

“ESP8266HTTPUpdateServer fails to check sketch size versus

available space” and, while looking at the fix we realized that

the bug has been raised as a consequence of the new firmware

being released (i.e., make updater fail if there is not enough

space to fit the new firmware4).

Finally, we found functional bugs in the drivers’ implemen-

tation (i.e., interface component). As an example, the issue re-

port #11854 in PX4-AUTOPILOT points out that the driver con-

nected to the temperature sensor is not able to provide the right

results even if the sensor values are not corrupted. By looking

at the issue report, we found that the problem is in the logic

implemented for filling the report buffer with the temperature

values coming from the sensor. To fix the problem, the devel-

oper changed the code while considering the value reported in

the datasheet of the sensor measuring the temperature values

(i.e., BMI055).

Concerning the interface with Internal software components,

we found only six CPS-specific bugs out of 30 bugs. Very often

developers tend to rely on the wrong API (or misuse certain

APIs) while accomplishing a specific task. For instance, bug

#66 in DRONEKIT-PYTHON states that there is a wrong usage

of the API used for giving a command: the developer relies

on the “VehicleMode” class instead of using the “Command”

class.

Main Findings: Interfacing bugs are challenging for de-

velopers coping with CPSs. Surely, testing efforts should

focus on this aspect. Moreover, when hardware or firmware

changes, there may be a lack of documentation or code ex-

amples for developers.

3.4. Data

Description: This category groups bugs whose root cause is

in the way data is stored (Not Persisted) and handled (Incorrect

Data Structure) by the application logic of the system. Quite

surprisingly, we did not find any bug that is specific to the CPS

domain, and, as reported in Table 3, only a few bugs (1.68%)

belong to this category.

Discussion and Examples: Two bugs are related to the data

persistence, and nine deal with incorrect data structures being

4https://github.com/esp8266/Arduino/pull/2405
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used for modeling purposes. An interesting example is bug #60

in ARDUPILOT stating that some settings are not stored perma-

nently while they should (i.e., “video device input setting not

stored permanently”). The latter comes with unexpected be-

havior summarized by the user as: “the video is replaced with

a white box and the desired input device needs to be selected

again”.

Main Findings: We did not find many data-related bugs,

and those found are not CPS-specific. Although data ex-

change and storage have paramount importance for CPSs,

we found that problems tend to occur at the interface level

rather than being related to data structure management.

Therefore, developers (and testers in particular) should fo-

cus their effort on that.

3.5. Configuration

Description: This category groups bugs related to (i) how

the build process is configured, and in particular how the

commands or the environments have been configured; or (ii)

how the application run-time parameters are configured. Even

if ≈ 92% of them are not CPS-specific, we found seven bugs,

i.e., two in Build Configuration and five in Wrong parameters

that are strictly related to the CPS domain.

Discussion and Examples: In PX4-AUTOPILOT we have a

bug (#2229) in which a user found that a driver for a specific

hardware component (i.e., PCA8574) is included in the startup

script even if it is never compiled. As a solution, the developer,

instead of completely removing it from the script, only com-

mented it out since “it might be useful down the road”. Moving

to the Wrong parameters root cause, we refer to bug #1017 in

ARDUINOJSON where, after a crash of the board, the watch-

dog timer resets correctly but the board will not restart auto-

matically. After a long discussion in which the developer pro-

vides additional details on how to properly connect the hard-

ware components to the software application, a hard reset was

forced. The latter translates into modifying the parameters be-

ing used while running a specific command during configura-

tion5.

Main Findings: Besides conventional build scripts, CPS

developers should pay specific attention to properly config-

uring builds aimed at integrating (and possibly testing) dif-

ferent combinations of drivers/hardware versions.

3.6. Algorithm

Description: This category includes 389 bugs (of which 112

are CPS-specific) mainly due to how the application logic is

implemented. In this category we have seven different root

causes: (i) Assignment deals with variables that are wrongly as-

signed and/or initialized; (ii) Missing Condition Check (MCC)

includes bugs related to a logic being only partially imple-

mented; (iii) Incorrect Condition Logic groups those bugs in

which the condition logic has been improperly implemented;

(iv) Numerical includes bugs due to incorrect numerical calcu-

lations and values/ranges; (v) Memory accounts for bugs in the

logic used by the application while allocating or de-allocating

the memory; (vi) Concurrency groups bugs that are related to

a misuse of the concurrency-oriented structures; and (vii) Pro-

gramming deals with bugs that cannot be assigned to only one

of the other root causes in the same category.

Discussion and Examples: 77 out of 389 algorithm bugs

are related to Assignment. As an example, in ARDUPILOT we

found a bug (#801) related to how the vertical acceleration was

being set (i.e., assigned the first time being used) and used. This

has been confirmed by the fix commit stating: “Vehicle was not

reaching target climb or descent rate because of incorrectly de-

faulted acceleration”. In PX4-AUTOPILOT, instead, we found

a bug (#1098) manifesting during compilation dues to a param-

eter not being initialized (i.e., “warning: ’alt_sp’ may be used

uninitialized in this function”).

As reported in Table 3, 75 bugs are generated from condi-

tions that are not considered and handled (i.e., Missing Condi-

tion Check). As expected, 66.7% of them are not CPS-specific

and can occur in systems independently on whether or not they

5https://github.com/esp8266/Arduino/pull/5433/files
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interact with hardware devices and simulators. Among the 25

CPS-specific bugs, in ARDUPILOT a bug (#2620) discussing

that the value outputted by the barometer sensor in a specific

condition is not handled by the application. Specifically, the

user stated: “the barometer altitude became NaN [...] but the

EKF probably continued to use the barometer altitude because

the EKF’s readHgtData method doesn’t check the health of the

baro”. Fixing this problem requires checking the status of the

sensor before consuming its value.

As regards the Incorrect Condition Logic, we identified 52

bugs belonging to this root cause of which 17 are CPS-specific.

For instance, in ARDUPILOT we found a bug (#5660) in which

the user discovered that while stopping the propeller movement,

the Revolutions per Minute (RPM) sensing does not provide

any new measurement, so no updates are processed by the Mis-

sion Planner. The latter implies that “if your engine dies mid-

air, you will never get a 0 RPM”. By carefully analyzing the

issue, the developer confirmed that “if you stop getting signals,

or get them slower than 1 Hz, then it sets the “quality” to zero

and the healthy goes false and it will no longer log it.” The bug

was fixed by changing the condition being checked to always

log RPM when enabled and not only when healthy.

For Numerical bugs we found that 44% of them (18 out of

41) are CPS-specific. Compared to the work by Di Franco

et al. [18], we only accounted for incorrect numerical calcu-

lations and values/ranges. Specifically, we considered all those

cases where (i) there is a division by zero, (ii) the value may

not have a precise representation in memory because of round-

ing errors, and (iii) the value is wrongly evaluated, i.e., there is

an error in the formula being used to determine the value. For

instance, in DRONEKIT-PYTHON we have a bug (#298) mani-

festing in a race condition dues to the usage of a value wrongly

defaulted as “None”, before correctly instantiating it. As a re-

sult, the application raises a divide by None error. Dealing with

this problem means properly assigning the default value instead

of relying on “None”.

21 out of 389 algorithmic bugs deal with how the Memory

has been used by the application logic. Note that this root

cause is different from the one we have in the Hardware cat-

egory. For instance, bug #5670 in ARDUPILOT where the user

reports: “When changing baud rates buffers should be cleared”

otherwise having data in the buffer that has not yet been parsed

results in falsely detecting valid GPS instances.

In terms of misuse of concurrency-oriented structures, we

only found seven cases in our dataset, with only two being CPS-

specific. One likely reason for such a smaller proportion is that

most of the systems we consider do not use concurrency at all

(e.g., Arduino does not have native support for threads). An ex-

ample of a concurrency bug was found in DRONEKIT-PYTHON

(bug #12), in which the root cause has been highlighted by the

developer as “... this is caused by race conditions caused by

threading. Spin-waiting on two separate threads for parameter

confirmation causes a lot of “BAD DATA” messages to pop out

[in a non-deterministic manner]”.

Finally, most of the bugs in our manually analyzed sample

belong to Programming (116 out of 389) with 26 being specific

to the CPS domain. As an example, in PX4-AUTOPILOT we

found bug #5446 dealing with the flakiness of a test command

for Arduino, i.e., “The 9250 test command is flaky, interfering

with the normal operation of the sensor.”.

Main Findings: Algorithmic bugs in CPSs tend to be sim-

ilar to those occurring in other types of software systems.

Therefore, existing mutants taxonomies can be used to seed

some representative faults. However, the way failures man-

ifest (e.g., flaky effects on the hardware or actuators) can

make these bugs more subtle to detect and potentially dan-

gerous. This should encourage developers to make heavy

use (while caring about overhead) of logging and asser-

tion. Some root causes, such as concurrency, are generally

avoided “by construction”, i.e., by not supporting concur-

rency at all.

3.7. Documentation

Description: This category includes bugs dealing with the

system’s documentation. As previous research has pointed out,
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documentation issues are as important as program-related is-

sues [2, 14]. These problems mostly occur independently from

the application domain. Indeed, as reported in Table 3, we

found 28 bugs belonging to this category (≈ 4%), with only

one being CPS-specific.

Discussion and Examples: In this context a perfect align-

ment between the system (which includes not only software

but also hardware) and the related documentation is crucial.

In general, this has been the subject of various studies and

approaches [47, 5, 59, 53, 60]. In the context of CPSs, we

need to pay attention to properly connecting hardware and soft-

ware components focusing on how and whether the function-

ality may change based on the characteristics of the hardware.

An example is bug #6522 in ARDUPILOT where developers,

once having struggled to find the root cause of a bug dealing

with parameters configuration being lost, realized that: “if you

downgrade from Plane 3.8 to an earlier version of the plane

then any changes that were made to the RC_* parameters will

be lost in the earlier version and that upgrading back to 3.8 will

not copy over any param changes that happened in the earlier

version. This is only an issue if the user decides to downgrade”.

As a consequence, it was required to add into the release note a

warning that “if users downgrade back to 3.7, their RC settings

will likely be wrong, up to inverted servos and crashes”.

Main Findings: While documentation inconsistencies in

CPSs are similar to other systems, CPS documentation must

align with the characteristics and changes of software and

hardware components and CPS specific APIs. That is,

changes to CPS hardware devices, components, or sensors

can trigger changes in the software documentation too.

3.8. Comparison with domain-specific taxonomies

Our work has similarities, but also differences, with respect

to previous work on bug taxonomies for specific CPS do-

mains, and in particular the AV taxonomy by Garcia et al. [23]

and the Unmanned Aerial Vehicles (UAV) taxonomy by Wang

et al. [52].

Differently from previous literature, we made a distinction

between bugs specific to CPS domains, and bugs that may also

occur in conventional software applications. This is relevant

especially when defining domain-specific mutation testing ap-

proaches, aimed at capturing bugs that may not be captured us-

ing conventional mutation operators. Our results highlight that

≈ 33% of the studied bugs are CPS-specific, indicating that pe-

culiar V&V approaches are required.

Specifically, the root causes of bugs identified by Garcia

et al. [23] in the automotive domain can also manifest in dif-

ferent CPS domains (e.g., Arduino or drones). However, our

taxonomy highlights the presence of two new bug categories

not mentioned by Garcia et al.’s taxonomy [23]. Specifically,

we found bugs originating directly from the hardware devices

(e.g., faulty sensors, hardware failures, or energy drain), but

also from the network infrastructure and protocol. Furthermore,

we specialized the Data category to account for bugs dealing

with data persistence (i.e., Not Persisted), and we included the

bugs inherited from third-party components in the External In-

terface category.

For what concerns the Wang et al. work [52], identifying

eight root causes of UAV specific bugs together with challenges

in detecting and fixing them, the main commonalities with our

taxonomy are:

• The “Hardware support” category in their taxonomy, is, in

our taxonomy, a sub-category of the Hardware category.

However, while Wang et al. found that the “hardware sup-

port” bugs in UAV systems are no different from those in

traditional systems, all the bugs in our category are CPS-

specific.

• The “Correction” category of Wang et al., dealing with

correction of sensor data, can be potentially mapped onto

our Programming sub-category of the Algorithm category,

where developers could misuse data coming from sensors

without properly cleaning them.

• The “Math” category in their case, can be mapped onto our

Numerical sub-category of the Algorithm category.
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• The “Parameter” category of Wang et al. can be potentially

mapped onto our (more general) Interface category.

Besides that, the rest of Wang et al. taxonomy accounts for

categories that are specific to the UAV domain (e.g., "Limit",

"Priority", or "Consistency"). These categories of bugs have

a lower level of abstraction with respect to the root causes in

our taxonomy, which makes them not generalizable/reusable to

generic CPS domains. For instance, Bugs having as root causes

inconsistencies between hardware and software in a UAV sys-

tem, could not be generalized in other CPS domains.

In summary, our taxonomy is more generic than Wang et al.

taxonomy and its categories do not refer to any specific CPS

domain. In other words, we focus on designing a CPS bugs tax-

onomy from a different perspective, which does make it broader

and more re-usable in different CPS domains. Indeed, our tax-

onomy is less specific to previously investigated domains (e.g.,

UAVs and automotive), but also more comprehensive, since

bugs in our taxonomy also cover bug types not observed in pre-

viously studied CPS domains.

4. Implications

This work can have relevant implications for developers and

researchers.

For what concerns developers, the elicited CPS bug taxon-

omy highlights specific problems that need to be carefully mon-

itored in CPS development. These include, for instance, the

need for coping with multiple hardware versions, which could

cause incompatibilities. Also, it is of paramount importance to

identify symptoms of hardware failures (e.g., broken sensors)

so that they can be properly handled by the software.

The presence of bugs originating from hardware-specific

problems highlights the need for complementary software and

hardware (which may or may not be available) knowledge in a

project.

Finally, to enable the detection and fixing of CPS bugs dur-

ing the evolution of CPSs, developers should focus on properly

configuring CI/CD pipelines aimed at integrating and testing

different combinations of drivers/hardware devices in diversi-

fied testing scenarios. Of course, we expect that solutions for

monitoring and detecting CPS bugs can vary between CPS do-

mains.

For what concerns researchers, this work triggers activities

towards better testing and analysis of CPSs. First and fore-

most, given the identified bug taxonomy, it can be used to de-

rive higher order [29] CPS-specific mutation operators. For

example, bugs related to faulty-sensor data could lead to mu-

tants that artificially change the sensor inputs towards a faulty

value, or else, change the source code by omitting the input

correctness check. More complicated would be dealing with

memory-related problems, which may require to be simulated

by perturbing the configuration of simulators during the testing

process. Interface-related mutants could be produced as higher-

order mutants from already existing mutants—e.g., those from

object-oriented language mutants [32]—by modifying the com-

munication between CPS and devices, for example altering the

ordering of method calls and/or passed parameters. Finally, net-

work communication mutants may include, among others, mu-

tants aimed at perturbing the exchanged packets, similarly to

what was previously proposed by Xu et al. for web service test-

ing [54]. As explained in previous literature [29], higher order

mutants may subsume trivial operators, yet have been shown to

be harder to kill than their constituents.

Also, the work could foster the development of specific static

analysis tools, looking for CPS-specific recurring problems.

Finally, complementary empirical research could be directed

to investigate the difficulty (e.g., duration) to fix CPS-specific

bugs, and to develop tools guiding developers in allocating the

appropriate development effort to various types of CPS bugs.

In the context of CPSs, achieving a deep knowledge of CPS

bugs and their root causes would facilitate the development

of better approaches and tools to facilitate their reproduction.

Specifically, being able to reproduce a bug is crucial during bug

triaging and debugging tasks [8, 26, 62]. Researchers proposed

several automated solutions to generate test cases reproducing

the crashes of software-only systems [6, 15, 30, 38, 43], focus-
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ing on the problem of generating the program execution state

that triggered a crash in the field.

Fixing or addressing CPS-specific bugs and automatically

assessing the correctness of the CPS behavior represent a crit-

ical challenge. Our investigation has highlighted types of CPS

bugs related to the uncertainty of CPSs behavior. Hence, future

studies should look more on safety-related bugs due to the un-

certainty of CPS behavior, concerning for instance the CPS ini-

tialization, or concerning potential CPS misbehavior. This topic

has been recently studied in the automotive domain [9, 10, 46],

yet it requires further investigations in other CPS domains.

5. Threats to Validity

Threats to construct validity concern the relationship be-

tween theory and observation. Those are mainly due to the

imprecisions in issue classification, e.g., as it is reported in the

issue tracker [4, 25], and to the subjectivity/error-proneness

of the manual classification. We mitigated both threats with a

multi-stage manual classification detailed in Section 2.

Another threat could be related to how our taxonomy has

been obtained, especially because we started from the taxon-

omy proposed by Garcia et al. [23] rather than creating a new

taxonomy from scratch. On the one hand, this allows us to build

from past experience, especially because of the related domain.

On the other hand, there could have been the risk of repeating

previous mistakes. This risk has been partially mitigated since

every time it was necessary to classify a bug, we determined

whether it fitted previous categories, or whether it would have

been useful to create new (sub) categories.

Threats to conclusion validity concern the relationship be-

tween treatment and outcome. As described in Section 2, to

achieve a reliable classification of the analyzed bugs, we per-

formed multiple annotation rounds, and then computed the Co-

hen’s k inter-rater agreement.

Threats to internal validity may concern the cause-effect re-

lationships between the investigated bugs (effects) and their

root causes inferred from the fixes and discussions. We looked

at discussions as well as fix change diffs, which could be help-

ful to infer bugs’ root causes. Furthermore, while as explained

in Section 2.4 we have excluded from the analysis bugs with

multiple root causes, these are likely part of the bugs occurring

in a software projects. In other words, we have focused our

analysis on the occurrence of single causes, while in practice

there may be cases in which multiple root causes co-occur to

determine a bug. Further analyses towards the co-occurrence of

root causes may therefore be desirable.

Finally, threats to external validity concern the generaliza-

tion of our findings. Although the number of analyzed issues

(1,151) is relatively large for a multiple-person manual anal-

ysis, and although they have been sampled from 14 projects

belonging to different domains, by no means they can be gener-

alized to the universe of open-source CPSs. Therefore, further

replications are desirable, in both open-source but also in in-

dustrial contexts, to assess the generalizability of the proposed

taxonomy.

6. Related Work

This section discusses the literature concerning similar stud-

ies and taxonomies about bugs related to different domains.

Dealing with software bugs involves significant costs for

software organizations [37]. For this reason, researchers have

investigated the nature, root causes, and symptoms of bugs af-

fecting different types of application domains.

Gunawi et al. [24] presented an extensive exploration of is-

sues and bugs associated with cloud applications. According to

them, the dominant aspects of cloud-related bugs are associated

with performance, security, Quality of Service (QoS), reliabil-

ity, and consistency. This means that cloud application bugs

have different characteristics and are typically more difficult to

detect (e.g., bugs involving distributed systems) than bugs oc-

curring in more traditional systems [24, 34, 36].

Linares et al. [50] proposed a framework for improving the

mutation testing of Android applications. To achieve this goal,

the authors systematically devised a taxonomy of 262 types of
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Android faults grouped into 14 categories by manually analyz-

ing 2,023 software artifacts from different sources (e.g., bug

reports, commits).

Humbatova et al. [27] introduced a large taxonomy of faults

in Deep Learning (DL) systems by manually analyzing 1,059

artifacts gathered from GitHub commits and issues of projects

that use the most popular DL frameworks (i.e., TensorFlow,

Keras, and PyTorch) and from related Stack Overflow posts.

In a follow-up work, Jahangirova et al. [28] developed a mutant

taxonomy for DL.

Fischer et al. [22] studied dependency bugs in the Robot Op-

erating System (ROS), which makes their work more specific

to the robotic domain and focused on a specific bug type, com-

pared to our study.

Wang et al. [52] studied Unmanned aerial vehicles (UAVs)

bugs by manually analyzing 569 bugs from two open-source

GitHub repositories (i.e., PX4 and Ardupilot). In this sample,

they found 168 UAV-specific bugs that were related to eight dif-

ferent types of root-causes. Wang et al. also summarized chal-

lenges for detecting and fixing the UAV-specific bugs. With

respect to our work, which is more general, Wang et al. per-

form an in-depth analysis of problems specifically occurring in

UAVs.

Garcia et al.’s work [23] investigated the bugs affecting two

autonomous vehicles (AV) simulation tools. Specifically, they

investigated the frequency, root causes, symptoms, and location

(e.g., components) of bugs affecting such systems. In this pa-

per, we considered the Garcia et al.’s taxonomy as a reference

starting point to design our taxonomy.

To the best of our knowledge, our study represents the first

work providing a taxonomy that aims at identifying the root

causes of the mistakes made by developers while developing a

wide set of CPSs.

Since requirement specifications of CPSs are typically

expressed using signal-based temporal properties, Boufaied

et al. [12] presented a taxonomy of the various types of signal-

based properties and provide, for each type, a comprehensive

and detailed description as well as a formalization in temporal

logic. Hence, they also reported on the application of the taxon-

omy to classify the requirements specifications of an industrial

case study in the aerospace domain.

Finally, Delgado-Perez et al. [17] applied mutation testing

in the nuclear power domain, showing how such a technique

can be promising for evaluating test suite effectiveness and to

achieve good fault detection. This shows the applicability of

mutation-testing in CPS-related domains. At the same time,

following the results of previous studies on mutation testing ef-

fectiveness [31], as well as previous studies on domain-specific

mutants [50], it may be necessary to customize the taxonomies

of mutant operators. Therefore, creating a taxonomy of CPS-

specific bugs represents a starting point towards that direction.

7. Conclusions and Future Work

This paper studied the root causes of bugs occurring in

open-source Cyber-Physical Systems (CPSs). By using a hy-

brid card-sorting strategy [45], we have manually analyzed a

statistically significant sample of 1,151 issues (of which 655

were classified as bugs) from 14 open-source projects hosted

on GitHub, developed using C++ and Python, and belonging

to different domains, i.e., Arduino, automotive, robotics, and

drones.

Our analysis reveals that ≈ 34% of the classified bugs are

CPS-specific, most of which are related to hardware, network-

ing, or interface. The inspection of root causes for samples of

such bugs suggests different ways in which developers could

improve Verification & Validation, but also support the com-

prehension and evolution of CPSs.

Future work aims at replicating this work in industrial con-

texts (belonging to different domains), at investigating whether

there are recurring (and, possibly, reusable) patterns for cer-

tain bug categories, and at proposing specific mutation opera-

tors and tools for CPSs.
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