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Abstract. A large number of methods are known for sys-
tem identification, which are used both in the time do-
main and in the frequency domain. In particular, genetic 
algorithms are increasingly being used today in order to 
determine the parameters of a model on the basis of 
measurements. In this article, the related method 'hill 
climbing' is used together with the least square criterion 
in order to correctly identify models of small order on the 
basis of measured step responses in the time domain. It 
is shown that the algorithm converges well for many start-
ing values and that this method can be applied very well 
and efficiently for the topic of system identification. 

Introduction  
System identification is a field of engineering that is par-
ticularly important for parameter identification and mod-
eling. The identification in the time domain has been 
known in particular since the 20th century, for example 
in [1]. In the following years and in the course of the rap-
idly increasing computing power, identification methods 
with genetic algorithms or particle swarm optimization,
PSO became known. In this paper, the 'hill climbing' 
method [2], [3] is used. This is also a stochastic method 
for the use in optimizing controllers, and it is related to 
PSO. The most important difference is that here, the par-
ticles are processed indepently to each other. This shows 
a good probability for finding smaller local minima.
Since, in applications in mechanical engineering, calcu-
lations are often not made in the frequency domain but in 
the time domain [4], this approach is used for the param-
eter identification of such a problem.
Figure 1 shows a torsional oscillator. A spring is clamped 
on one side and connected to a rotatably mounted disc on 
the other side. The system is fraught with friction. First 
of all, it should be assumed that there is no model of it 
and that one only wants to identify it on the basis of a 
measurement in the time domain. The system is equipped 

with an encoder with 2000 steps per revolution. For the 
measurement, the disk is now turned one turn and then 
released. The resulting curve in the time domain is shown 
in figure 2.

Figure 1: Torsional oscillator with spring, disk and en-
coder 

Figure 2: Torsional oscillator, measurement of step res-
ponse 
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1 Identification 
One now wants to determine a transfer function of the 
system ( ) = ( )( ) using the criterion of the Least 

Square [5]. The output is the angle φ and the input is the 
torque M. The system has a torque -M0 as an initial con-
dition due to the rotation, and when it is released the 
torque changes suddenly to 0. This affects the system in 
this way as if there were a permanent change in the torque 
from 0 to +M0 at time t = t0.
In a general case, the system can be represented as a 
transfer function with the Laplace operator ‘s’ as shown 
in formula 1. First of all, it is assumed that the system 
model is not known and that all parameters an and bn are 
different from zero. A 3rd order system is assumed here 
at the beginning: 

( ) = + + ++ + + (1)

This transfer function is the most compact form of system 
representation. Its step response can now be evaluated in 
the time domain using Matlab. The evaluation of the 
transfer function in the time domain with Matlab is also 
the basis of the following calculations and considera-
tions. In the specific example it is of course clear that the 
transfer function to be identified in the time domain is of 
a smaller order, but it is hoped that the corresponding 
higher order coefficients in the following calculation are 
so small that the order can be reduced. In the following, 
it is here still assumed, that there is no physical model of 
the system. In principle, it would be possible to calculate 
the step responses of the transfer functions for all param-
eter combinations a0 to a3 and b0 to b3 and to compare 
them with the measurement using least square. However, 
if you consider that you have to calculate the parameters 
as example from 0 to 10 in steps of as example 1E-4, the 
result is a huge number of calculations. If the parameter 
a0 is normalized to 1, then the seven remaining parame-
ters span an seven-dimensional space and with this num-
ber of steps there would be 1E5 * 1E7 = 1E12 calcula-
tions. The number theory results in a polynomial compu-
tational effort with nested loops, but this large number 
would be far too computationally intensive even with the 
fastest todays computers. Remember that for each calcu-
lation step, the least square criterion would have to be 

calculated and added up for each measurement and sim-
ulation value. The approach with the conventional 
method, with the calculation with all possible combina-
tions, does not work here.

2 Hill Climbing algorithm with 
Least Square 

The hill climbing algorithm is a method that has been 
known for a long time. Today it is assigned to the meth-
ods of artificial intelligence. In recent years, there were 
also similar methods used for parameter optimization in 
system identification and control theory [6] – [12]. The 
idea behind this hill climbing algorithm is simple: With 
each new calculation step, the smallest parameter change, 
multiplied by a random sign (+/- 1) or 0, is added to each 
of the parameters to be changed. Then the new least 
square is calculated and compared with the previous one. 
If the new least square is smaller, the new values are re-
tained and assumed as new. If the new least square is 
larger, the old values are used again as the new. The hill 
climbing algorithm always works with a heuristic func-
tion that changes the parameters. The heuristic function 
for the shown problem is:

= + (2) 

Where p = [b3, b2, b1, b0, a3, a2] (there is a1 = 1)

The hill climbing method actually only finds local min-
ima, in this case local minima of the least square value. It 
turns out, however, that with different starting values af-
ter many calculations, always the same or very similar 
parameters are found. This suggests that there are essen-
tially only monotonically falling or rising least square 
values. This fact would have to be examined more closely 
in further steps. 
The convergence of hill climbing with the search for the 
least square is also relatively good. For small parameter 
changes, the author only carries out up to a few million 
calculation steps, depending on the simulation. It would 
be possible to define as a termination criterion when the 
values of the least square no longer change significantly 
or no longer change at all. Here, too, further calculations 
are likely to be carried out. However, in practice the pa-
rameters found are quite good.
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3 Results 

In a first step, the parameters are calculated for a higher 
order than assumed; in this example, with the boundary 
conditions for a parameter change of 1E-4 per calculation 
step, the best result for the 3rd order system after 10 sim-
ulations with randomized starting values and 3’000’000 
learning iterations each is:

( ) = 0.0018 + 0.0434 + 5.884 + 6.320.0322 + 0.0454 + 0.9457 + 1 (3)

In many representations of the transfer function, the pa-
rameter of the highest denominator order, here a3, is nor-
malized to 1. When calculating the parameters with the 
hill climbing method, however, the author advises nor-
malizing the parameter a0 to 1, since this exists in all sys-
tems with a stationary end value. In systems with a free 
integrator without a stationary end value, this parameter 
is zero. Otherwise, it would make sense to normalize the 
parameter a1 to 1.
The convergence of the parameters was also calculated 
over the iterations. It always behaves similarly over the 
10 simulations carried out with different starting values. 
Figure 3 shows the course. Since all parameters are 
changed simultaneously using the hill climbing method, 
the method converges slowly.

  
Figure 3: parameter convergence for the transfer func-

tion of formula 3 

3.1 Reduction of system order 

Now it turns out that the parameters for the higher orders 
a3 and a2 in the denominator and b3 and b2 in the numer-
ator are much smaller than the other parameters. Another 
issue is also the reduction of order. It is also a field of 
science in itself. The literature on it is immense and there 
is only a very brief introduction given here. The transfer 
function from formula 3 can also be represented in the 
pole-zero notation [1]. With this notation according to the 
pole- zero notation, G(s) can also be represented as in 
formula 4. 

( ) = ( ) ( ) ( )( ) ( ) ( ) (4)

For the system order reduction you can now also search 
for dominant zeros and poles. These are those that are 
sufficiently close to 0. The non-dominant poles and zeros 
are those that are sufficiently far away from 0; these can 
be neglected if necessary. One also has to take into ac-
count the sampling time of the systems, because the re-
sulting aliasing also affects the system behavior.
In this example, a zero and a pole are almost identical. 
One solution of the numerator polynomial is s = -1.0824
and one of the denominator polynomial is s = -1.0707.
Such solutions result in identical local minimums of the 
least square. One can cancel the zeroes. In this case there 
is an order reduction of the numerator and the denomina-
tor by one order each. Another calculation is now carried 
out in such a way that the corresponding coefficients of 
the third order, b3 and a3, are set to zero, taking into ac-
count that order reduction. The best result after 10 simu-
lations with randomized starting values and 1’500’000 
learning iterations each is as follows.  

( ) = 0.0033 + 0.0493 + 6.3170.0346 + 0.0117 + 1 (5)

Here, too, it must be discussed whether a further reduc-
tion in order can be carried out. The two parameters b2 
and b1 are small compared to b0. The modeling of the 
system that is available in this special case can also be 
used for discussion. This is shown below.

ASIM 2022 Proceedings Langbeiträge, 26. Symposium Simulationstechnik, TU Wien, 25.7.-27.7.2022

207



Assumed that all of this has been taken into account and 
one came to the conclusion that a3, b3, b2 and b1 can 
actually be neglected, one can do the calculation again. 
With the parameter change of 0.0001, the parameters of 
formula 6 result after 10 Simulations with 500’000 cal-
culation steps. The number of calculation steps de-
creases, since there are less parameters to change. This 
results in a faster convergence.

( ) = 6.3150.0343 + 0.0119 + 1 (6)

Here, too, the parameters converge in all simulations. 
Since fewer different parameters are now changed via the 
hill climbing method, the convergence is much faster 
than with the formula 3 with more changed parameters.

 
Figure 4: parameter convergence for the transfer func-

tion of formula 6 

The comparison of simulation and measurement is shown 
in figure 5. 

Figure 5: Comparison of simulation and measurement 
for the torsional oscillator 

3.2 Reduction of system order using the 
physical model 

The method presented here works in the general case 
without any knowledge of the model. This is how it was 
carried out up to here, up to the model reduction due to 
small parameter values or the shortening of poles and ze-
ros. However, if a physical model can be derived, one can 
reduce the model to the relevant parameters right from 
the start. According to formula 7:

=  =  (7)

Thus, the differential equation also results to:

+ + =  (8)

And after the laplace transformation, the transfer func-
tion of formula 9 results:( )( ) = 12 + + = 1// 2 + / + 1 (9)

This shows that the parameter or order reduction of for-
mula 6 is correct.
If you take a closer look at the measured step response 
according to figure 2, it is also noticeable that the step 
response of the simulation no longer corresponds very 
well with the measurement, especially after a long time. 
This is due to the non-linear effect of static friction, 
which is responsible for the fact that the shaft simply 
stops after falling below a certain low speed. This small 
non-linearity is not taken into account in the model.

4 Discussion and outlook 
It turns out that this is a very applicable and transparently 
explainable method to carry out the parameter identifica-
tion in the time domain. The convergence is quite good 
in the discussed examples, although the orders are not 
very large. With many systems that occur in practice, 
however, measurements of sub-systems can also be car-
ried out, which then often have an order that is small 

g
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enough that this method can be used. Often there are also 
several measurements with slightly different step re-
sponses. This can be caused by small measurement inac-
curacies, for example. This can also be dealt with using 
this method. The least square method is then simply ap-
plied to the individual comparisons with the measure-
ments, one after the other. In this case the least square 
results will be added up and compared with older added
up least square results.
So that the reader can test out examples himself, a Matlab
code of a simple example is also printed at the end. This 
can be copied into an editor. In order to simulate an ex-
isting measurement, a transfer function was set at the be-
ginning and its step response was subsequently assumed 
as a measurement. The hill climbing method also con-
verges well here and delivers the identified parameters as 
discussed above.

clear
ls = 1E20;
% didactic example with given Gmeas which
% replaces Measurement
Gmeas = tf([2 2],[3 2 1])
delta_t = 0.01;      %% sample time
t= 0.01:delta_t:50;  %% time vector
[xmeas,tmeas]= step(Gmeas,t);
  
b2 = 1; delta_b2 = 0.01; 
%% hill climbing parameter
b1 = 1; delta_b1 = 0.01; 
%% hill climbing parameter
b0 = 1; delta_b0 = 0.01; 
%% hill climbing parameter
a2 = 1; delta_a2 = 0.01; 
%% hill climbing parameter
a1 = 1; delta_a1 = 0.01; 
%% hill climbing parameter
a0 = 1; delta_a0 = 0.0; 
%% hill climbing parameter
  
for counter = 1:10000;
counter
sign_b2 = fix(5*rand(1))-2;
% [-2...2] heuristic function
b2 = b2 + sign_b2*delta_b2;
sign_b1 = fix(5*rand(1))-2; % [-2...2] 
b1 = b1 + sign_b1*delta_b1;   
sign_b0 = fix(5*rand(1))-2; % [-2...2] 
b0 = b0 + sign_b0*delta_b0;
sign_a2 = fix(5*rand(1))-2; % [-2...2] 
a2 = a2 + sign_a2*delta_a2;
sign_a1 = fix(5*rand(1))-2; % [-2...2] 
a1 = a1 + sign_a1*delta_a1;
% a0 is kept as 1
  
G = tf([b2 b1 b0],[a2 a1 a0]);

[x,t1] = step(G,t);
  
lsnew = leastsquare(x,xmeas,delta_t);
if (lsnew < ls)               

% Backpropagation
      ls = lsnew
else                            

      b2 = b2 - sign_b2*delta_b2;
      b1 = b1 - sign_b1*delta_b1;
      b0 = b0 - sign_b0*delta_b0;
      a2 = a2 - sign_a2*delta_a2;
      a1 = a1 - sign_a1*delta_a1;
end

end %counter
  
plot(t,x,tmeas,xmeas)
  
ls = leastsquare(x,xmeas,delta_t);
  
function y = leastsquare(a,b,deltat)
y = 0;
for k = 1:length(a);

    y = y + (a(k)-b(k))^2*deltat;
end

end
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