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Abstract: Using techniques from deep learning, we show that neural networks can be trained
successfully to replicate the modified payoff functions that were first derived in the context of partial
hedging by Föllmer and Leukert. Not only does this approach better accommodate the realistic
setting of hedging in discrete time, it also allows for the inclusion of transaction costs as well as
general market dynamics. It needs to be noted that, without further modifications, the approach
works only if the risk aversion is beyond a certain level.
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1. Introduction

In a complete market, the writer of an option can eliminate their risk entirely if they
initiate a continuous hedging process with a capital position that equals the Black–Scholes
price of the option. If the option writer decides to post strictly less capital to initiate the
hedge, they will be exposed to shortfall risk. In this situation, they could try to maximize
the probability of replicating the option payoff, a strategy named quantile hedging by Föllmer
and Leukert (1999). Yet another strategy would be efficient hedging (cf. Föllmer and Leukert
(2000); Föllmer and Schied (2016)), which has the advantage of taking into account the
magnitude of the expected shortfall.

Basic Model Setting

Wt shall denote a standard one-dimensional Brownian motion defined on the complete
probability space (Ω,F ,P), where (Ft)t≥0 is the augmentation of the natural filtration
FW

t = σ(Ws; 0 ≤ s ≤ t) for all t ≥ 0. We consider a complete market with a single
geometric Brownian motion

dXt = Xt(µdt + σdWt),

where the drift µ ∈ R and the volatility σ > 0 are constant. Given the contingent claim’s
payoff function H = H(XT), we look for an admissible hedging strategy (V0, ξ) with

Vt = V0 +
∫ t

0
ξsdXs,

where ξ is a predictable process with respect to the Brownian motion W such that either

• P[VT > H] becomes maximal in the context of quantile hedging, or;
• E[`((H −VT)+)] becomes minimal in the context of efficient hedging.

In this note, we consider loss functions of the form `(x) = xp/p, p ∈ R+. The limiting
case p ↓ 0 is, in fact, identical to the quantile hedging problem; the bigger p, the higher the
risk aversion. Föllmer and Leukert showed that quantile/efficient hedging is equivalent
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to delta-hedging options with certain modified payoffs, cf. (Föllmer and Leukert 2000,
Proposition 5.2, and Figure 1).

2. Contribution of this Note

In this research note, we show that deep neural networks can be trained to approximate
closely the modified payoffs for efficient hedging with lower partial moments with p > 1
derived theoretically by Föllmer and Leukert (2000); Leukert (1999). We stress that no other
information is needed for this training but the underlying random environment, the capital
amount corresponding to the initial hedge, and the option’s target payoff function. To
the best of our knowledge, this is the first algorithmic approach to partial hedging whose
optimization takes into account transaction costs.

Remark 1. There is an important limitation to our approach that we encountered when p lies in
the unit interval [0, 1]. For risk preferences within this range, Föllmer and Leukert (2000) found
that the modified contingent claims to be replicated have a knock-out feature that makes their payoff
profiles discontinuous. It appears that deep hedging struggles with detecting these discontinuous
profiles. Overcoming the problem is apparently not straightforward. On the other hand, when the
modified payoff is continuous (e.g., if p > 1), then deep partial hedging does work.

Pricing and hedging is a classical field of mathematical finance with many ramifica-
tions. Tackling partial hedging in realistic financial models is a particularly challenging
endeavour. Typical impediments from the analytical viewpoint are model intractability
originating from complex underlying dynamics (e.g., stochastic volatility, rough volatility,
jumps) market features such as incompleteness and trading frictions, and intricate objective
functions. Hence, partial hedging has only been analyzed in comparatively simple contexts;
cf. Föllmer and Leukert (2000); Leukert (1999). Deep hedging (cf. Buehler et al. (2019))
offers a fresh and powerful approach to deal with these impediments without further
ado. One utilises the backpropagation algorithm to find suitable hedging strategies for a
given bundle of scenarios. Introducing market frictions or using any sort of stochastically
generated scenarios does not adversely affect the operability of the technique. This research
note illustrates both the edge and a possible pitfall when adapting deep hedging to the
relevant use case of partial hedging.

3. Numerical Results

In this section, we present the numerical results by using techniques from deep
learning. We choose similar parameters as in Föllmer and Leukert (2000); a risk-free rate
r = 0.7, Black–Scholes dynamics with µ = 0.08, σ = 0.3, the initial stock price S0 = 100, and
a European call option with strike κ = 110 and maturity T = 10. We choose N = 100 time
steps for time discretization. This leads us to the discretized value process

Vt = Vt−1 + Kt (St − St−1), t = 1, . . . , T, (1)

where (Kt)T
t=1 denotes the adapted hedging strategy.

Let us set a bankruptcy bound B < 0. In order to incorporate 0-admissibility, we
modify the update in the following way: if updating with (1) results in Vt+1 < B, we set

Vt+1 = (Vt − B) exp
(

πt(µdt + σdWt)−
π2

t σ2dt
2

)
+ B

πt =
KtSt

Vt

instead. If Vt = B, we claim bankruptcy and leave the market, i.e., Kh = 0 prevails for
all h ≥ t. With this modification, we make sure all strategies are B-admissible.1 Then, we
numerically minimize the loss consisting of three terms

L(K) = Lp(K) + Lcost(K) + Lad(K), (2)
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where
Lp(K) = E

[
`((H −VT)+)

]
,

Lcost(K) = ccostE
[ T−1

∑
t=1
|Kt+1 − Kt| · St

]
,

Lad(K) = cadE
[
(−min

t
Vt)+

]
,

for the hyperparameters ccost and cad. The minimization of the first term Lp is the primary
objective of efficient hedging. The second term takes into account proportional transaction
costs. The last term penalizes the deviation from 0-admissibility. We consider the so-called
deep strategy

Kt = Nt(St),

where Nt belongs to a certain class of neural networks NN . Its structure comprises two
hidden layers and each hidden layer consists of 21 nodes. The detailed configuration can be
found in the publicly available code2. We utilize Adam mini-batch training with a learning
rate of 0.01, cf. Kingma and Ba (2015). For different risk aversion levels p ∈ {1, 1.1, 2},
Tables 1 and 2 depict the performance line-up for deep hedging and discretized delta
hedging respectively.

Table 1. Efficient hedging loss for different risk aversion levels without transaction costs.

p = 1 p = 1.1 p = 2

deep hedge 18.14 16.75 14.31

delta hedge 19.64 36.69 32.63

Table 2. Efficient hedging loss for different risk aversion levels with proportional transaction costs
of 1%.

p = 1 p = 1.1 p = 2

deep hedge 18.09 16.39 15.58

delta hedge 26.45 44.01 37.84

Finally, we compare the terminal wealth between deep hedging and delta hedging in
Figures 1–6, from which we can see that the violation of admissibility by delta hedging is
substantial.

Figure 1. Terminal wealth (p = 1).
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Figure 2. Hedging strategy (p = 1).

Figure 3. Terminal wealth (p = 1.1).

Figure 4. Hedging strategy (p = 1.1).

Figure 5. Terminal wealth (p = 2).

Figure 6. Hedging strategy (p = 2).
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4. Conclusions and Outlook

In this note, we have shown that deep partial hedging can replicate the modified
contingent claims as derived theoretically in the context of efficient hedging by Föllmer and
Leukert (2000), without any prior knowledge of the latter’s payoff profile. Our findings
hold for risk-neutral and risk-averse option writers (p ≥ 1); for risk-taking option writers
(p ∈ [0, 1)), it appears to be difficult to capture the modified payoff with two barriers using
deep neural networks (cf. Föllmer and Leukert (2000)). We refer further research into these
challenges, as well as the investigation of deep partial hedging for more general market
dynamics and derivatives, to future work.
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Notes
1 In our numerical experiments, we set B = −100.
2 https://github.com/justinhou95/DeepHedging, accessed on 16 May 2022.
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