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Abstract: Using sentiment information in the analysis of financial markets has attracted much
attention. Natural language processing methods can be used to extract market sentiment information
from texts such as news articles. The objective of this paper is to extract financial market sentiment
information from news articles and use the estimated sentiment scores to predict the price direction of
the stock market index Standard & Poor’s 500. To achieve the best possible performance in sentiment
classification, state-of-the-art bidirectional encoder representations from transformers (BERT) models
are used. The pretrained transformer networks are fine-tuned on a labeled financial text dataset and
applied to news articles from known providers of financial news content to predict their sentiment
scores. The generated sentiment scores for the titles of the given news articles, for the (text) content
of said news articles, and for the combined title-content consideration are posited against past time
series information of the stock market index. To forecast the price direction of the stock market index,
the predicted sentiment scores are used in a simple strategy and as features for a random forest
classifier. The results show that sentiment scores based on news content are particularly useful for
stock price direction prediction.

Keywords: sentiment analysis; natural language processing; machine learning; stock prize prediction

MSC: 91-10

1. Introduction

The assumption that financial markets are random and cannot be predicted has been in-
vestigated in numerous studies, whereby varying results were obtained [1] (pp. 7653–7670).
According to Fama [2] (p. 414), the efficiency of a financial market can be divided into
three categories: weak, semi-strong, and strong. In the weak form of efficiency, asset prices
reflect past market prices. In the semi-strong form of efficiency, asset prices reflect all
publicly available information; and in the strong form of efficiency, asset prices reflect all
information, including non-public information. Depending on the actual market efficiency,
certain information about asset prices should be reflected in the daily news about the
financial markets. The Internet has significantly increased the amount of available data in
recent years, which has also affected the financial sector. With the advancement of research
in machine learning, new opportunities have opened up in generating business-driving
information from the available data. We will make use of natural language processing
and other machine learning methods to distill relevant information from large amounts of
news articles.

More precisely, we conduct an empirical investigation using financial text data to
predict the stock market index price direction of the Standard & Poor’s 500 index (S&P 500).

This is done in three stages: (A) First, a fine-tuned version of a pre-trained language
model is used to label a dataset of news articles from Bloomberg and Reuters; (B) The
predicted sentiment scores are used as features (alone and in combination with time series
data) to predict the price direction of S&P 500; (C) the trained model’s output is used to
choose a strategy where either a short or long position is taken for the following trading day.
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In the natural language processing part, state-of-the-art transformer models [3] are
used. After fine-tuning them on financial textual data, pre-trained transformer models are
able to predict the sentiment scores of financial texts with high accuracy. The sentiment
scores of the titles, the content, and their sentiment scores combined with past time series
information are used to predict the price direction of the S&P 500 stock market index.

We contribute to the existing literature in the following ways:

(a) We analyze the effectiveness of title- and content sentiment for stock price direc-
tion prediction.

(b) We propose several models for predicting stock price directions using sentiment
scores, which give promising results.

Structure of This Paper

In Section 2, we give an overview of the relevant related literature. The datasets and
proposed models are presented and described in Section 3. The fourth chapter discusses the
results. This chapter also presents the limitations of this work, formulates recommendations
for further research, and gives an outlook on possible developments.

2. Related Works

Sentiment analysis has been extensively studied in recent years, using a variety of
machine learning techniques—including natural language processing (NLP). Traditional
NLP methods have the disadvantage that they do not work well with long sentences and
with specialized text. However, by incorporating recurrent deep learning models and fine-
tuning large language models, these problems can be countered. To improve the quality
of models used in a wide variety of domains, a dictionary can also be used. In previous
research [4], natural language processing models using a dictionary have been shown to
outperform classical bag-of-words models [5]. One of the advantages of using dictionaries
is that they can be adapted for a variety of industries. An even more advanced form of
representing words is provided by word embeddings, which take into account aspects such
as linguistic similarities–and thus also provide better classification results, see [6].

State-of-the-art models have proven efficient in capturing sentiment in texts from
various thematic fields. Part of the research on sentiment analysis has also dealt with
applications in finance–thus dealing with the challenge of predicting the sentiment of
financial text data sufficiently well.

The research around sentiment analysis in finance focuses on the following core
problems: The mere sentiment classification of financial text data, and the analysis and use
of text sentiment for predicting, for instance, stock prices or price directions–or vice-versa,
predicting the sentiment of future news texts using, among others, market time series data.

Some authors have used classical machine learning models like support vector ma-
chines or tree-based models [7,8], to approach questions around predicting stock prices
based on the sentiment of financial news or social media content.

Recently, a higher focus is put on neural networks-based models [4,9–13]—this is
mainly due to the enormous progress in the field of deep neural networks. For instance, [12]
uses feed-forward neural networks and recurrent neural networks. As the latter can capture
relations across time, they are often used to model time series data and are shown in [12] to
perform better for stock price prediction.

Furthermore, ref. [13] uses financial market performance data to predict the sentiment of
news items. For this, they used models based on long short-term memory (LSTM) networks.

The work in [10] shows that the inclusion of past time series information such as
price movement over the last 4, 6, 8 as well as 10 trading days in combination with a
natural language processing model can increase the performance of sentiment analysis
substantially. Claiming that a single classifier is not sufficient for satisfactory price direction
prediction, ref. [10] constructs a multichannel collaborative network using candlestick-chart
and social-media data for stock trend predictions.
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Results of other previous studies [4,11] indicate that the best performance is achieved
by using the transformer models, which nowadays represent the golden standard in the
natural language processing field.

Ref. [14] focuses on sentiment classification for financial text data and shows that this
task can be solved reasonably well with a wide range of techniques and models. Among
them are transformers networks, which are shown to provide superior results as compared
to other more classical natural language processing models, such as ones based on bag-
of-words, ones augmented with financial lexica but also recurrent neural networks or
convolutional neural networks.

The transformer is a new state-of-the-art network architecture [3] (pp. 6000–6010).
They are not based on a recurrent network architecture and rely on an attention mechanism,
achieving a better performance in several NLP fields than models based on recurrent or
convolutional architectures. An open-source software was made available in 2019 [14]
(pp. 4171–4186). Since then, transformers have been applied to many problems in NLP and
gave rise to many other models, some of which are relevant for current research in finance.

Bidirectional encoder representations from transformers (BERT), were first introduced
in [14]. The pre-trained BERT models can be loaded from the Python package “transformers”
and can thus be easily used for natural language tasks. BERT achieves state-of-the-art results
in eleven NLP tasks and can be fine-tuned by adding an additional layer for specific NLP
tasks, which achieves excellent results compared to traditional methods, as shown in [4].

FinBERT results from BERT by pre-training it on financial text data and was proposed
in [15], with the aim of predicting sentiment based on textual financial data.

Refs. [9,10,16] use sentiment analysis for stock prize (direction) prediction. Ref. [10]
shows that the stock trend (i.e., the stock price increasing or decreasing in the near future)
can be predicted with an accuracy of up to around 0.75 for selected stocks.

In [11], a transformer-based model, named FinALBERT, is proposed. To label a given
text, the price predictions are used—as opposed to using the sentiment to predict the stock
price direction prediction.

3. Materials and Methods

In this chapter, we discuss the relevant datasets and the proposed models. Figure 1
below provides an overview of this.

Figure 1. Overview of the empirical research.

The used datasets and the applied methods will be discussed in the next sections.
The time series data of the S&P 500 stock index is used as a target variable. For sentiment
classification, transformer models are applied, using BERT models implemented in Python.
To extract the sentiment score from news items, BERT is first fine-tuned on a pre-labeled
dataset. In a second step, the fine-tuned BERT model is applied to unlabeled financial news
data to compute a sentiment score. This sentiment score is then used as an explanatory
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variable for the prediction of the stock direction of the S&P 500 stock index and is fed as
input into a machine learning model.

3.1. Datasets

This section introduces and discusses the different datasets used in this paper. The
preprocessing of the data, whenever necessary, is then described, which is required for it to
be used as input to a learning algorithm.

3.1.1. Financial Phrase Bank

The Financial Phrase Bank dataset [17] contains 5000 phrases in the field of finance
and economics and was first used and published in 2013. It is intended for establishing new
standards for modeling techniques in a financial context. It is labeled to allow sentiment
classification, i.e., to classify each sentence into a positive, negative, or neutral category
by considering only the information explicitly available in that sentence. Each sentence
was annotated by 16 annotators with sufficient background expertise in financial markets.
Three of the annotators were researchers, and the remaining 13 were master’s students at
the Aalto University School of Business with majors in finance, accounting, and economics.
The annotators were asked to consider the sentences from only an investor’s point of view,
that is, whether the news could have a positive, negative, or neutral impact on the stock
price. Sentences that did not appear to be relevant were considered neutral [17].

Once the 5000 sentences had been classified by the annotators, it was necessary to
aggregate these classifications. They provided four datasets that differ in the agreement
rate of the classifications. The agreement rates of the classifications in the datasets were
100%, more than 75%, more than 66%, and more than 50%. In their published paper,
it turned out that the performance of a classification model did not vary significantly,
depending on which of these datasets it was trained on. Accordingly, we decided to use the
dataset with more than 50% agreement. The advantage is that this dataset contains 4846
observations, respectively classified sets, whereas the number of observations decreases
for the more precisely classified datasets. In Table 1 a positive, a neutral, and a negative
sentence are shown.

Table 1. Sentences of the Financial Phrase Bank [17].

Positive Sentiment: Sales have risen in other export markets.

Neutral Sentiment: However, the brokers’ ratings on the stock differ.

Negative Sentiment: The company slipped to an operating loss of EUR 2.6 million from a profit
of EUR 1.3 million.

The dataset contains 2879 neutral, 604 negative, and 1363 positive observations. It
is used further in the next chapter of the empirical research to fine-tune a sentiment
classification model.

3.1.2. Financial News Dataset from Bloomberg and Reuters

The financial news dataset [18] collected in 2014 was used to predict the sentiment and,
in the next step, to predict stock price movements. This dataset is one of the largest publicly
available datasets which can be downloaded from Remy & Ding [19]. The Bloomberg
dataset contains 447,279 observations, which include the publication date, the title, and
the content of the news. Figure 2 provides an overview of the number of news articles by
publication date between 3 January 2007 and 26 November 2013.
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Figure 2. Amount of Bloomberg news by publication date.

It can also be seen that the number of messages per day varies significantly, and that
at the beginning, there are only a few news items available for each day. Furthermore, the
dataset shows some timestamps which do not contain any news. To further analyze the
dataset, the number of messages per weekday was plotted in a bar chart.

Figure 3 illustrates that most of the news items were published on the midweek days.
The volume of news published on Saturday or Sunday is around a quarter compared to
the other days of the week. After the Bloomberg dataset has been considered, the same
procedure is performed for the Reuters news dataset. Unlike the Bloomberg dataset, the
Reuters news dataset contains 8,556,310 news items published between 1 January 2007 and
16 August 2016. The dataset includes the publication date, title, and URL link, but not the
content, for each observation.

Figure 3. Amount of Bloomberg news by weekday.

Figure 4 illustrates that the number of news items per publication date does not
fluctuate as much as in the Bloomberg dataset. Furthermore, the dataset does not show any
time periods when no news was published.
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Figure 4. Amount of Reuters news by publication date.

In Figure 5, the number of news titles published per weekday runs similarly to the
Bloomberg dataset.

Figure 5. Amount of Reuters news by weekday.

3.1.3. Data Mining and Preprocessing of the Financial News Datasets

The first step is deleting all observations with empty content in both datasets. Since the
Bloomberg dataset has both the title and the associated content, it is used as the reference
dataset. This means that for days with too few or no observations in the Bloomberg dataset,
additional news items were downloaded. As mentioned previously, the Reuters dataset
shows, per observation, the publication date, the title, and the URL, which is used for
data mining. However, to determine which news items are additionally downloaded, the
number of published news items in the Bloomberg dataset was analyzed. Thereby, the date
when fewer than 50 news items are available is stored in a date vector. This vector is then
used to filter out the URLs from the Reuters dataset.

For a better overview of the process, we highlight the conducted steps:

1. Filter out the dates when the Bloomberg dataset contains 50 or fewer observations
and generate a date vector for these cases.

2. Extract the observations of the Reuters dataset according to the date vector of step (1).
3. Use the URL of the filtered observations from step (2) to download additional articles.

If there are more than 200 articles, randomly select 200 among them.
4. Since the Reuters dataset has a longer date vector than the Bloomberg dataset, addi-

tional 200 articles per day are downloaded from 26 November 2013 (date of the last
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observation of the Bloomberg dataset) to 16 August 2016 (date of the last observation
of the Reuters dataset).

In steps (3) and (4), some URLs which did not work were adjusted by a trial-and-error
method to make the relevant content accessible. The problem with these URLs was that the
year in which the news was published was also part of the URL and had to be removed.
To check if these really were the correct news items, we considered a sufficiently large
random sample and checked the contents and publication dates. During data mining, the
content, as well as the title, were downloaded. In a second control, the downloaded title
was compared to the titles from the Reuters dataset. Once the 345,776 additional articles
were downloaded, this data was merged with the Bloomberg dataset. However, to use the
dataset as input for our random forest classifiers, a constant number of observations per
day is required. Consequently, the dataset is preprocessed to contain 58 observations per
day, as this is the smallest number of available observations per day. The 58 observations
were selected randomly using a random number generator.

3.1.4. Timeseries Data

The Standard & Poor’s 500 Index (S&P 500®) was used as the time series data. The
S&P 500 is considered the best single indicator for US large cap equities. The index
comprises 500 leading companies from the United States and covers approximately 80% of
the available market capitalization. It is rebalanced once a year, whereby new companies
can be included in the index or existing companies can be excluded. Rebalancing takes place
quarterly, whereby the weights of the individual companies in the index are adjusted [20].

Figure 6 shows the closing prices of the S&P 500 total return index. Total return
means that, in the performance measurement, not only the price development but also the
reinvested cash distributions, such as reinvested dividends, are considered. The reason for
using a total return index and not a price index is that, among others, dividend distributions
influence the price of a stock, and news reports write about these distributions. Since we
discuss price direction prediction, an attempt is made to predict the direction of the price
for the next day. Accordingly, the time series must still be preprocessed such that a
binary classification can be performed. First, the daily returns are calculated using the
formula below.

rt =
Pt − Pt−1

Pt−1
(1)

where rt is the relative return at time t, Pt is the price at time t, Pt−1 is the price at time t− 1.

Figure 6. Price chart of the S&P 500 total return index.

Once the daily relative returns have been calculated, they are further preprocessed
using the signum function.

dt = sign(rt) =


1 i f rt > 0
0 i f rt = 0
−1 i f rt < 0 |

(2)

where dt is the price direction at time t and rt is the relative return at time t.
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According to the above formula, the price direction has a value of zero if the return also
has a value of zero. In this case, the problem to be solved would be a multi-classification
problem. Since it is more of interest to predict a rising or falling return, the price directions
which have a value of zero were over-sampled with the previous day’s value. In this case,
the problem to be solved turned into a binary classification problem.

The annualized returns are calculated using the geometric average, and the volatility
is calculated using the standard deviation of the returns. To provide a better overview of
the calculation, the formulas are listed below:

returnp.a. =

(
T

∏
t=1

(1 + returnt)

) 252
T

− 1 (3)

volatility =

(
1

T − 1

T

∑
t=1

(
returnt − return

)) 1
2

· (252)
1
2 (4)

return/risk =
return p.a.
volatility

(5)

max.drawdown =
Peak− Lowest value

Peak
(6)

where peak refers to the peak value before the largest drop, and the lowest value refers to
the lowest value before a new peak is established, considering the whole period.

3.2. Proposed Models

The purpose of the empirical research presented here is to predict the S&P 500 stock
market index price direction using the data outlined in the previous subsection. To this end,
a pre-trained transformer network was fine-tuned on a labeled dataset, the Financial Phrase
Bank dataset, presented in Section 3.1.1. After the model is fine-tuned, the preprocessed
textual data from the Bloomberg and Reuters dataset, presented in Section 3.1.2, is fed as
input to the model, and sentiment scores are calculated for the 58 daily news items. The
predicted sentiment scores are then used as labels.

Based on the computed sentiment scores, two strategies were implemented, a simple
one that does not make use of machine learning and one that does, based on a random
forest classifier, to predict the price direction. These models are then further compared to
the so-called random walk model—a simple and well-known baseline model.

As pointed out in previous research [21] where textual data is used to predict stock
prices, there are disagreements on whether to use the title or the whole content of the news
items for sentiment classification. For this reason, we developed different models that
predict stock price direction using the title, the content, the title, and content combined,
and the title combined with the content and some one-day lagged moving averages of the
S&P 500 stock market index.

Note that transaction costs are neglected across all the models presented in this work.
The implementation of the pre-trained transformer networks is explained in

Section 3.2.1. In Section 3.2.2, first, a simple stock price direction prediction model is
presented, which is based on the sentiment scores but makes no use of machine learning.
The model is then extended with the use of random forest models. A comparison of the
results of the applied models is provided in Section 4.

3.2.1. Sentiment Scores

As mentioned above, the model architecture, as well as the concept of BERT, is based
on the transformer networks. During the pre-training, the BERT model was trained by
the publicists on unlabeled data over different tasks. Therefore, by adding a single output
layer and subsequent fine-tuning, the model performs well in countless NLP tasks such as
question-answering, language inference, etc.
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While performing the pre-training, the WordPiece embeddings were used [14]. In
contrast to the transformer architecture published by Vaswani [3], the architecture of BERT
does not include any transformer decoder layer but has transformer encoder layers. The
encoder layers serve to decompose and understand the inputs, whereas the additional
output layer is task-specific and may be regarded as a decoder from the point of view of
its functionality. Another difference is that, in the self-attention mechanism, not only the
words on the left side of the sentence but also the words on the right side of the sentence are
considered. This is also the reason why there are no decoders in the BERT architecture. The
authors of the Python package published two BERT architectures, which differ based on
their size. BERTBASE contains 12 encoder layers, and BERTLARGE contains 24 encoder layers.

The BERT model we used here is FinBERT [15], which uses the BERTBASE uncased model
as a pre-trained model. Uncased means that the text is lowercased before training is started.
In addition to the BERTBASE uncased model, a classification layer was added as the output
layer, which predicts the labels as positive, neutral, or negative. The model parameters are
listed in the Table 2 below.

Table 2. Tested parameters.

Parameter Value

train_batch_size 32
eval_batch_size 32
max_seq_length 48
learning_rate 2× 10−5

epochs 4
lower_case True
encoder_no 12

A batch size of 32 is used in the training as well as in the evaluation phase. The
parameter “max_seq_length” stands for the maximum length of the sentences that are
used. This means that for a sentence with a length of 70 words, only the first 48 words
are used. The learning rate and the epochs were initiated with values of 2× 10−5 and 4,
respectively. The model parameter “lower_case” means that the texts are written in lower
case. Since the BERT base model is the BERTBASE uncased model, it makes no difference if
this parameter is set to True since this is already done in the base model, anyway. The
parameter “encoder_no” stands for the number of pre-trained encoders that are fine-tuned
during the downstream task. In this case, all 12 encoders are adjusted during fine-tuning.

Before proceeding with a discussion of the models used to predict price directions,
some technical preliminary remarks are due.

3.2.2. Performance Measures

To assess the accuracy of machine learning models, appropriate performance measures
must be used. For classification tasks, the confusion matrix (see Table 3) contains a lot of
information. This is a 2 × 2 matrix for binary classification and represents the correctly
predicted instances (true positives and true negatives) and the two incorrectly predicted
instances (false positives and false negatives). A good model results in a confusion matrix
with a high number of true positives and true negatives and a low number of entries off
the diagonal.

Table 3. Confusion matrix for binary classification.

Predicted Class
Positive Negative

Positive True positives (TP) False negatives (FN)True
Class Negative False positives (FP) True negatives (TN)
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The confusion matrix can easily be computed for k classes in a multi-class classification
and is then represented by a k × k-matrix.

Below we will consider the confusion matrix for the classification of sentiment into
the three classes—positive, neutral, and negative.

Several performance measures can be calculated from the confusion matrix. The usual
performance measures (accuracy, precision, recall, and F1 score) have the disadvantage
that they give biased results when the data sets are unbalanced (i.e., unequal number of
occurrences of the classes we want to predict). A simple way around this problem is to
calculate these values per class and then calculate the weighted value (weighted precision,
weighted recall, or weighted F1 score). The advantage is that this score is weighted by the
number of observations in the classes and thus does not give a biased calculation [22].

weightedscore = ∑M
m=1 nm · scorem

N
(7)

Here M is the number of classes, nm is the number of datapoints belonging to class m,
scorem is the used performance measure (so, either precision, recall, or F1-score) on class m,
and N is the number of datapoints in the whole dataset.

In addition to the above measures, there are others that are considered useful in
evaluating binary classifiers. We will use the so-called (binary) Brier score and the Matthews
correlation coefficient (MCC) to evaluate the price direction classifier (see [23,24]).

3.2.3. Using k-Fold Cross-Validation for Machine Learning Models on Time Series Data

When validating machine learning models, especially the ones with high variance,
k-fold cross-validation is often used to provide a more stable measure of model accuracy.
In addition, k-fold cross-validation is used for hyperparameter tuning. In practice, these
two methods are often combined simultaneously. With respect to time series data, the
applicability of k-fold cross-validation has been critically discussed because it does not
take into account the temporal sequence and, therefore, one may suspect that the obtained
model performance estimates are overly optimistic. We will nevertheless use k-fold cross-
validation to perform hyperparameter tuning and obtain stable accuracy estimates for our
models. There are two main reasons why k-fold cross-validation is useful here.

- There are theoretical arguments from the literature [25] that show that k-fold cross-
validation can be used for common machine learning models applied to time se-
ries data.

- We perform hyperparameter tuning using k-fold cross-validation, but ultimately test
the model out-of-sample on a dataset not used in the validation step.

3.3. Random Walk Model for Price Direction Prediction

To assess the effectiveness of the proposed models, their performances in predicting
the price direction of the S&P 500 index are compared with that of the well-known random
walk model [26]. Formally, the stock price is modeled by the following equation:

St+1 = St + µSt∆t + Stσε
√∆t (8)

Here, St+1 is the current stock price, ∆t is the considered time interval, µ and σ are
the mean and the standard deviation, respectively, of the returns computed from historical
data, and ε is a stochastic error term which is standard normal distributed. As explained
in Equation (2), the price direction is then computed by applying the signum function on
the returns.

The first two terms on the right-hand side of equation 8 can be interpreted as follows:
The current stock price is changed within the time interval ∆t by the µ%. Whereas the third
term includes randomness through ε and is modulated by the value of σ.

Simulating the above model on the same historical time series data of the S&P 500 index
will result in different predictions each time due to the stochastic term involving ε. This
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in turn will lead to different results in terms of the accuracy of the prediction of the price
direction. To get a good idea of the behavior of the model in describing the price direction,
we run the above model 1000 times on the same data, calculate the mean over the predicted
index values, and finally apply the signum function to obtain a binary result.

3.4. Simple Strategy for Price Direction Prediction

Next, we present a simple stock price direction prediction based on the sentiment
scores computed from the contents and titles of news items. In a first step, the mean of
the 58 sentiment scores is calculated per day. In a second step, the signum function is
applied to this mean. If the mean is greater than 0 and thus represents a rather positive
sentiment, it is rounded up to 1. Accordingly, a negative average value is rounded down to
−1. Subsequently, this vector with the trading signals is shifted by one day and multiplied
by the returns of the next trading day.

As an example, one can use the news that was published on Monday. First, the
sentiment scores are calculated as described in the previous chapter, and then the mean
value is calculated thereof, which then is rounded to 1 or −1. A positive value is rounded
up to 1, which stands for a buy signal, and is multiplied by the return on Tuesday. A
negative value is rounded to −1 and multiplied by the return on Tuesday, which represents
a 100% short position. For this purpose, transaction costs are neglected; however, it is
possible to replicate this trading strategy cheaply using S&P 500 futures.

3.5. Price Direction Prediction with Random Forest

Random forest (RF) can be applied to solve classification and regression problems
and falls within the area of machine learning called ensemble learning. Different machine
learning models show different strengths and weaknesses, depending on the nature of
the problem at hand. The main idea of ensemble learning is to build a strong predictive
model based on a collection of several, possibly weak, models. Ensemble learning often
helps to reduce the widespread machine learning problem of poor out-of-sample prediction
accuracy due to high variance [27] (pp. 605–507).

The random forest has several hyperparameters which can be tuned to find an optimal
model, among which are n_estimators (number of trees in the forest); max_depth (maxi-
mum depth of each tree); bootstrap (whether bootstrap samples are used when building
trees), and criterion (function that is used to measure the quality of a split, whereby the
Gini impurity and entropy are the supported methods).

We will use random forest classifiers to predict the price direction based on (a) sen-
timent scores and (b) sentiment scores in combination with time series data (moving
avarages). The input variables are always the predicted sentiment scores (as given by the
fine-tuned language model), and the target variable is the price direction of the next trading
day. For the experiments, all settings are kept constant except the training and test data.

To get a comprehensive estimation of the out-of-sample performance, we will train
and test several models, according to the sets given in Table 4. The implemented random
forest models are first fitted in the first four years and tested in the following year. In a
second run, the models are fitted in the first five years and tested in the sixth year, and
so on.

Table 4. In-sample and out-of-sample periods.

In-Sample Period Out-of-Sample Period

01/01/2007 to 12/31/2010 01/01/2011 to 12/31/2011
01/01/2007 to 12/31/2011 01/01/2012 to 12/31/2012
01/01/2007 to 12/31/2012 01/01/2013 to 12/31/2013
01/01/2007 to 12/31/2013 01/01/2014 to 12/31/2014
01/01/2007 to 12/31/2014 01/01/2015 to 12/31/2015
01/01/2007 to 12/31/2015 01/01/2016 to 08/16/2016
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During the fitting of the in-sample time period, hyperparameter tuning is conducted—with
the aim of finding the best-performing model. For this, the Scikit-learn grid search method
“GridSearchCV” is used, with k = 8 folds.

So, in the learning process, the entire training dataset is split into numerous training
and validation samples. The model is then fitted on the training datasets and tested
on the validation datasets, with the resulting cross-validated score being the average
over all validation runs. In the case of the k-fold cross-validation, the original training
dataset is split into k subsets with the same size for all subsets without replacement. The
model is trained on k− 1 training subsets and evaluated on the remaining kth subset, i.e.,
the validation subset. This process is repeated until each of the k subsets is used once
as the validation set. The resulting cross-validated performance is the average of the k
performance measurements on the k validation subsets [28].

Cross-validation (as opposed to a single train-test-split) allows for a more stable
estimation of the out-of-sample performance of the model (as obtained on the test data)
and is particularly useful for models that exhibit high variance, such as decision trees.

The left column of the table above lists the parameters which are used for hyperpa-
rameter tuning. The values tested are shown in the right column. GridSearchCV tests all
possible parameter combinations and cross-validates them simultaneously.

This means that the model tests different random forests with the specified parameters
from Table 5, cross-validates them, and returns the random forest model with the highest
cross-validated score as output. The model with the highest cross-validated score is then
fitted to the whole in-sample dataset and applied during the out-of-sample period.

Table 5. Tested hyperparameters.

Parameter Value

n_estimators 250, 500, 750, 1000
max_depth 1, 3, 5, 10, 20, 30
max_features 2, 5, 10, 15, 30, 40, 58
criterion gini, entropy
random_state 333
bootstrap True

The weighted F1-score and the weighted precision score are used as performance
scores. It is important to note that this procedure is applied to all simulations. The results
of the simulations where the weighted precision score is used as a performance score
are shown in the next subsections. Since the procedure remains the same for different
performance metrics, the results where the weighted F1-score is used as a performance
metric are only shown in Section 3 and compared with the other results.

After the FinBERT model is fine-tuned on the Financial Phrase Bank dataset, the
sentiment score prediction of the aggregated Reuters and Bloomberg dataset is started.

For this purpose, the fine-tuned FinBERT model is used, and the sentiment scores
of the titles as well as the contents are predicted. In BERT models, individual sentences
are given as input instead of the whole text as observations. The added output layer in
FinBERT provides as output the probabilities for the financial text being positive, neutral,
or negative. The classification is done according to the highest of the three probabilities. To
calculate the sentiment score, it is defined that a score of 1 is highly positive and a score of
−1 is highly negative. A sentiment score of 0 can be considered neutral.

Let us consider a sample title: “TREASURIES–Bonds creep higher in thin trade”. This sen-
tence is a title of an observation of the Reuters dataset and was published on 2 January 2007.
The FinBERT model provides the following probabilities for the sentiment classification:

positive = 0.965
negative = 0.0175
neutral = 0.0175
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The calculation of the sentiment score is simple and can be calculated from the differ-
ence between the probability that a text is positive and the probability that a text is negative.

Sentiment score = 0.965− 0.0175 = 0.9475

The sentiment score in this case is high and corresponds to a text being classified as
positive. Texts that are classified as neutral usually have low probabilities of being positive
or negative. Consequently, their sentiment scores are close to 0. Since, in BERT, sentences
and not whole texts are considered as observations and a news story often consists of
several sentences, the average value of all sentiment scores from the sentences is used as
sentiment score for the entire news content.

Once the sentiment scores of the 58 news stories per day are predicted, two new
DataFrames are created, which can be used as input for a machine learning model. The
DataFrames have the date vector as index and columns with the 58 sentiment scores,
whereby the datasets differ in that one contains the sentiment scores of the titles and the
other the sentiment scores of the content.

In the random forest models, the sentiment scores are used as features, and the
price direction of the S&P 500 stock market index is used as the target variable. Since
the stock index is only traded on weekdays, and thus contains a different date vector
than the DataFrames with the sentiment scores, the DataFrames of the sentiment scores
are reindexed to the date vector of the S&P 500 stock index. This means that published
messages on weekends are deleted from the DataFrames and that if there are no sentiment
scores on a trading day, the values are forward-filled with the previous sentiment scores.
This also prevents news, respectively sentiment scores, from being used for the prediction
of the return direction of the same day. To continue using the scores from the weekends,
the sentiment scores from Friday, Saturday, and Sunday are averaged so that they can be
used to predict the price direction for Monday.

4. Results
4.1. Sentiment Classification

First, let us consider the performance of the fine-tuned model when it comes to
predicting the sentiment of given news items. For fine-tuning, the subset with more
than 50% agreement among the annotators of the Financial Phrase Bank dataset is used.
This is split into a train, validation, and test datasets with the proportions of 72-8-20. As
pointed out, the target variable is the sentiment of the news, with the three labels being
positive (label 0), negative (label 1), and neutral (label 2). Accordingly, the model is trained,
validated, and then tested on the test dataset. The resulting confusion matrix is shown in
Figure 7.

Figure 7. Confusion matrix for FinBERT sentiment classification.



Mathematics 2022, 10, 2156 14 of 20

This yields the following results, given in Table 6.

Table 6. Classification accuracy using FinBERT.

Accuracy Weighted Precision Weighted Recall Weighted F1−Score

0.836 0.839 0.836 0.837

4.2. Simple Strategy Based on Sentiment Scores

To compare the simple strategy (without a random forest classifier) with the strategies
explained later in this chapter, the returns are calculated and indexed from 1 January 2011
to 16 August 2016, where the starting value is 100. This can be considered as investing
100 USD at the beginning.

In Figure 8 above, the simple strategy based on the content sentiment scores outper-
forms the S&P 500 stock market index. A closer look shows that an outperformance is
generated at the end of 2011, which explains the outperformance of this strategy since, in
the following years, all price downturns are taken along and are not correctly reflected by
the content sentiment scores, as it is the case for example in the price decline in 2015. The
strategy based on the title sentiment scores is generally poor and even shows a negative
performance in this period. This also resonates with findings from previous research [21]
that the content of the news should also be considered rather than just the title for senti-
ment scoring.

Figure 8. Performance based on sentiment scores.

Table 7 gives an overview of the relevant numbers. The simple strategy based on the
sentiment of the text content leads to a higher return and is also preferable in terms of the
risk-return ratio.

Table 7. Performance measures of strategies based on sentiment scores from 1 January 2011 to 16
August 2016.

S&P 500 Content SC 1 Title SC 1

Return p.a. 12.045% 15.208% −0.934%
Volatility 15.108% 15.097% 15.128%
Return/Risk 0.797 1.008 −0.062
Max. Drawdown 18.641% 20.598% 32.089%

1 The abbreviation SC stands for sentiment scores.

4.3. Random Forest Classifier Based on Sentiment Scores

Figure 9 shows that no strategy can outperform the S&P 500 stock market index, when
the sentiment of the title is solely considered. In this strategy, such random forest classifiers
are trained which are based on different sets of features, in particular, ones related to
sentiment, are trained. It is worth mentioning that the strategy “RFC Title SC” stands for
random forest classification based on title sentiment scores and takes a short position when
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a negative return is predicted. In the second strategy, “RFC Title SC2”, if a negative return
is predicted, only divestment is done, which means that the simulated return on such days
is zero. Between the two strategies, strategy 2 performs better because in the case of a false
negative prediction, only divestment is done, and no short position is taken.

Figure 9. Out-of-sample performance of random forest classification based on title sentiment scores.

Table 8 shows that despite using a random forest classifier, title sentiment leads to
worse results than the previous strategy, which is based solely on text content sentiment
and does not use a classification model at all. However, when it comes to using the title
sentiment, the advantage of the random forest classifier is clearly visible. For instance,
compare the returns in Table 8 with those in the last column of Table 7.

Table 8. Performance measures of strategies based on RF on title sentiment scores from 1 January
2011 to 16 August 2016.

S&P 500 RFC Title SC RFC Title SC2

Return p.a. 12.045% 7.673% 9.920%
Volatility 15.108% 15.119% 14.606%
Return/Risk 0.797 0.508 0.679
Max. Drawdown 18.641% 25.518% 18.669%

Next, we consider the results for the sentiment predicted solely on the content of the
news items, while using a random forest classifier in Figure 10.

Figure 10. Out-of-sample performance random forest classification based on content sentiment scores.

Table 7 shows that the use of text content sentiment in a simple strategy leads to
promising results even without using a machine learning classifier. The comparison in
terms of title sentiment also showed a significantly better result using a random forest
classifier over using the simple strategy solely based on the sentiment. Table 9 shows that
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the classifier also improves performance for text content, although the difference is not as
large as in the cases mentioned previously.

Table 9. Performance measures of strategies based on RF classification on content sentiment scores
from 1 January 2011 to 16 August 2016.

S&P 500 RFC Content SC RFC Content SC2

Return p.a. 12.045% 16.261% 14.226%
Volatility 15.108% 15.089% 14.442%
Return/Risk 0.797 1.078 0.985
Max. Drawdown 18.641% 28.187% 20.755%

Now, we consider the usage of the sentiment based on the title and the content of
news items in combination.

Due to the relatively weak performance of all the models based on the title sentiment,
one might suspect that this feature will have a negative impact on models also when used
in combination with the text content sentiment. Figure 11 shows that the results of the two
strategies do not differ much from the stock market index. Nevertheless, both strategies
show a slight outperformance. Therefore, it can be concluded that both strategies have a
more attractive return characteristic, as shown in Table 10.

Figure 11. Out-of-sample performance random forest classification based on title and content senti-
ment scores.

Table 10. Performance measures of strategies based on RF classification on title and content sentiment
scores from 1 January 2011 to 16 August 2016.

S&P 500 RFC Title & Content SC RFC Title & Content SC2

Return p.a. 12.045% 14.143% 13.093%
Volatility 15.108% 15.096% 14.975%
Return/Risk 0.797 0.937 0.874
Max. Drawdown 18.641% 18.810% 17.587%

4.4. Comparison to Random Walk Model

Above, we discussed and compared the different strategies and forms of sentiment
scores used. For a more nuanced comparison, we next compare the price direction pre-
diction of the sentiment-based random forest classifier with the benchmark random walk
model. Figure 12 clearly shows that the prior outperforms the random walk model.
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Figure 12. Comparison of the random forest classifier with the random walk model.

To get sufficient proof of the superiority of our models, several scores are com-
puted and compared. Besides accuracy, binary classification models are judged through
scores such as Brier scores, and Matthews Correlation Coefficient (MCC), among others
(see [23,24,29]).

It was highlighted in [24] that MCC is more informative than Brier scores and that,
especially for Brier scores of around 0.25, the results cannot be interpreted unambiguously
(they can be either very good or very bad). Given the nature of the prediction task, one
would not expect overly high accuracy or MCC, yet the results in Table 11 show significant
differences between the models. The model that uses the random forest classifier based on
content sentiment produces the best results. This is evident not only in accuracy, but also in
MCC, showing a strong enough difference between using a random forest classifier for title
sentiment and for content sentiment.

Table 11. Summary of performance measures.

Accuracy Binary Brier Score Matthews Correlation Coefficient

Content Sentiment 0.518 0.482 0.026
Title Sentiment 0.206 0.794 0.007
RFC Title 0.535 0.465 −0.023
RFC Content 0.561 0.439 0.069
RFC Title & Content 0.554 0.446 0.039
RFC Title, Content &
MA 0.552 0.448 0.045

Random Walk Model 0.499 0.501 −0.011

Additional to the above results, Tables A1 and A2 in Appendix A summarize the
results for all models and strategies as optimized by the weighted precision score and the
weighted F1-score, respectively.

5. Discussion

As already mentioned, the random forest classification models were optimized with
respect to the performance measures weighted precision and weighted F1-score. The results
are listed in two tables in Appendix A. Another useful optimization would be to optimize
the random forest models according to the performance measure recall or weighted recall,
because this performance measure minimizes the number of false negative predictions.
Since the random forest models minimized the number of false negative predictions by
classifying all or almost all predictions into the label positive, their results are not listed in
this chapter.

Based on the findings of this paper, it can be said that the sentiment scores calculated by
state-of-the-art NLP methods can aid stock price forecasting through the lens of sentiment.
In practice, there are different scenarios where the models shown here can be used. Since
the sentiment scores should also reflect the market sentiment, the scores can be used for a
risk-based approach, whereby a combination with other proven indicators is recommended.
Another possibility arises from the use of the NLP methods shown in relation to sustainable
investing. For example, reports can be used to find out whether the company takes ethical
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or ecological aspects into account, and, accordingly, by automating the reading of the
reports, a pre-selection of sustainable and less sustainable companies can be made.

Recommendations for further research can be made on various levels. First and
foremost, we did not take transaction costs into consideration. This is a significant limitation
and should be addressed in future studies. From a data perspective, the author proposes to
use news on all companies included in the stock market index. In this way, the company-
specific sentiment scores can be considered features. From the methods standpoint, further
machine learning models can be used for the classification task. Additionally, other past
time series information such as a moving value at risk or a moving expected shortfall of
the previous days can be added as input for improving the quality of the predictions.
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Appendix A

Table A1. Summary of empirical results, random forest classification optimized by the weighted
precision score.
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Sentiment 0.518 0.307 0.518 0.386 0.482 0.026 15.21 15.10 1.01 20.60

Title Sentiment 0.206 0.308 0.206 0.247 0.794 0.007 −0.93 15.13 −0.06 32.0
RFC Title 0.535 0.487 0.535 0.437 0.465 0.023 7.67 15.12 0.51 25.52
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RFC Title &
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Table A2. Summary of empirical results, random forest classification optimized by the weighted
F1-score.
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Content
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Title Sentiment 0.206 0.308 0.206 0.247 0.794 0.007 −0.93 15.13 −0.06 32.0
RFC Title 0.534 0.509 0.534 0.482 0.466 0.006 4.20 15.13 0.28 −37.92
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RFC Title,
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* Measurements are in %.
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