
ORIGINAL RESEARCH
published: 03 May 2022

doi: 10.3389/fneur.2022.809391

Frontiers in Neurology | www.frontiersin.org 1 May 2022 | Volume 13 | Article 809391

Edited by:

Karsten Wrede,

University of

Duisburg-Essen, Germany

Reviewed by:

Jefferson W. Chen,

University of California, Irvine,

United States

Edgar A. Samaniego,

The University of Iowa, United States

Zhang Dong,

Xinqiao Hospital, China

*Correspondence:

Norman Juchler

norman.juchler@zhaw.ch

Sven Hirsch

sven.hirsch@zhaw.ch

Specialty section:

This article was submitted to

Endovascular and Interventional

Neurology,

a section of the journal

Frontiers in Neurology

Received: 04 November 2021

Accepted: 29 March 2022

Published: 03 May 2022

Citation:

Juchler N, Schilling S, Bijlenga P,

Kurtcuoglu V and Hirsch S (2022)

Shape Trumps Size: Image-Based

Morphological Analysis Reveals That

the 3D Shape Discriminates

Intracranial Aneurysm Disease Status

Better Than Aneurysm Size.

Front. Neurol. 13:809391.

doi: 10.3389/fneur.2022.809391

Shape Trumps Size: Image-Based
Morphological Analysis Reveals That
the 3D Shape Discriminates
Intracranial Aneurysm Disease
Status Better Than Aneurysm Size
Norman Juchler 1,2*, Sabine Schilling 1,3, Philippe Bijlenga 4, Vartan Kurtcuoglu 2,5,6,7 and

Sven Hirsch 1*

1 School of Life Sciences and Facility Management, Institute of Computational Life Sciences, Zurich University of Applied

Sciences, Wädenswil, Switzerland, 2 The Interface Group, Institute of Physiology, University of Zurich, Zurich, Switzerland,
3 Lucerne School of Business, Institute of Tourism and Mobility, Lucerne University of Applied Sciences and Arts, Lucerne,

Switzerland, 4Neurosurgery Division, Department of Clinical Neurosciences, Geneva University Hospital and Faculty of

Medicine, Geneva, Switzerland, 5 Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland,
6National Center of Competence in Research, Kidney.CH, Zurich, Switzerland, 7Neuroscience Center Zurich, University of

Zurich, Zurich, Switzerland

Background: To date, it remains difficult for clinicians to reliably assess the disease

status of intracranial aneurysms. As an aneurysm’s 3D shape is strongly dependent on

the underlying formation processes, it is believed that the presence of certain shape

features mirrors the disease status of the aneurysm wall. Currently, clinicians associate

irregular shape with wall instability. However, no consensus exists about which shape

features reliably predict instability. In this study, we present a benchmark to identify shape

features providing the highest predictive power for aneurysm rupture status.

Methods: 3D models of aneurysms were extracted from medical imaging data (3D

rotational angiographies) using a standardized protocol. For these aneurysm models,

we calculated a set of metrics characterizing the 3D shape: Geometry indices (such as

undulation, ellipticity and non-sphericity); writhe- and curvature-based metrics; as well as

indices based on Zernike moments. Using statistical learning methods, we investigated

the association between shape features and aneurysm disease status. This processing

was applied to a clinical dataset of 750 aneurysms (261 ruptured, 474 unruptured)

registered in the AneuX morphology database. We report here statistical performance

metrics [including the area under curve (AUC)] for morphometric models to discriminate

between ruptured and unruptured aneurysms.

Results: The non-sphericity index NSI (AUC = 0.80), normalized Zernike energies

ZsurfN (AUC = 0.80) and the modified writhe-index W
L1
mean (AUC = 0.78) exhibited the

strongest association with rupture status. The combination of predictors further improved

the predictive performance (without location: AUC = 0.82, with location AUC = 0.87).

The anatomical location was a good predictor for rupture status on its own (AUC =

0.78). Different protocols to isolate the aneurysm dome did not affect the prediction

performance. We identified problems regarding generalizability if trained models are

applied to datasets with different selection biases.
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Conclusions: Morphology provided a clear indication of the aneurysm disease status,

with parameters measuring shape (especially irregularity) being better predictors than

size. Quantitative measurement of shape, alone or in conjunction with information

about aneurysm location, has the potential to improve the clinical assessment of

intracranial aneurysms.

Keywords: intracranial aneurysms, image-based analysis, rupture status prediction, quantitative morphology,

shape irregularity

INTRODUCTION

Intracranial aneurysms (IAs) have a complex pathobiology
and are therefore difficult to assess clinically. Confronted with
an increased rate of incidentally diagnosed unruptured IAs,
clinicians are in need of a marker for disease instability to better
balance the risks of rupture against the risks of treatment. This
marker could ideally be acquired non-invasively in the context of
routine examinations.

In this context, aneurysm shape has been proposed as
a candidate for such an imaging-derived marker for several
reasons. Firstly, pathophysiological evidence suggests that
structural changes in the aneurysmal wall are linked to
macroscopic deformations of the wall (1, 2). The presence of
vasa vasorum or the formation of organized luminal thrombosis,
which frequently accompany IAs and are believed to unfavorably
affect disease progression, do also leave an imprint in the vascular
lumen as seen in contrast enhanced imaging (1, 3, 4).

Secondly, shape can be seen as an expression of hemodynamic
flow patterns. The local geometry of aneurysms governs the blood
flow and the fluidic forces exerted on the vessel wall. Variations
of these forces have been associated with wall damage, aneurysm
initiation and growth (4–8). Shape and flow dynamics are
interrelated: changes in morphology influence the flow patterns
in the vicinity of the aneurysm, which in turn can stimulate
wall remodeling that eventually can lead to new morphological
variations (4).

Thirdly, angiographic imaging is a non- or low-invasive utility
readily available in clinics. It is the primary source of information
for the diagnosis and treatment of IAs. In addition to its
location, the anatomical embedding and the size of an aneurysm,
radiologists can also infer its shape from medical images.

This wealth of evidence is contrasted by the paucity of
guidelines that address morphology quantitatively. To date, the
assessment of aneurysm shape is based mainly on the subjective
opinion of the clinician.

The purpose of this study is to investigate and benchmark
different methods to quantify aneurysm morphology and to
examine how shape relates to the disease status.

MATERIALS AND METHODS

Imaging and Patient Data
Between September 2006 and July 2015 data from 1,164 patients
were collected prospectively and consecutively at the Geneva
University Hospital (HUG), continuing the data collection

scheme initiated and implemented during the @neurIST project
(9, 10). From this initial cohort, we recruited the patients
investigated by 3D rotational angiography (3DRA) because they
were considered at risk for rupture or suffered from a ruptured
aneurysm. A significant proportion of the cohort (41%, 482
patients) was followed up only usingmagnetic resonance imaging
(MRI) or computed tomography (CT) imaging and was therefore
not available for this study. Of the remaining 59% of the cohort
(682 patients), we processed the data from 502 patients for
whom image reconstructions were available. This data was split
randomly between two independent teams of data curators by
ignoring any prior information about the cases (Figure 1). In
180 cases no reconstructions were available for the 3DRA and
therefore were excluded. While team 1 processed the 3DRA from
all assigned 247 patients, team 2 selected from the total of 255 the
110 patients that visited the HUG for aneurysm repair or post-
treatment follow-up examinations (scheduled 6 weeks, 3 months,
1, 2, and 5 years after treatment) during a fixed time frame
of 1 year (Figure 1). Both teams processed only angiograms of
aneurysms before treatment.

In addition to angiographic data, the datasets included sex,
age, rupture status and anatomical location (per aneurysm) for
all the cases.

To test whether our findings generalize to other datasets,
we expanded the database by two external datasets: From the
@neurIST project (9, 11), we included 164 aneurysms (151
patients) acquired in Barcelona, Geneva and Sheffield. From
the publicly available Aneurisk database (12) we used 101
aneurysms (97 patients) retrospectively collected at the Ca’
Granda Hospital, Niguarda, Milano between 2002 and 2006 (13).
The data processing was described by Piccinelli et al. (14, 15).

Data Processing
Figure 2 depicts the processing pipeline we used to extract 3D
models of aneurysms from 3DRA images. The exact processing
varied slightly for the different data sources, but generally
followed the protocol proposed by the @neurIST consortium
(11), which puts a special emphasis on the standardization of
medical data collection.

The processing of the image data yielded geometric models
of the aneurysms, cut free from the parent vasculature in four
different configurations as shown in Figure 3: dome, cut1, cut2,
ninja. Related studiesmade use of similar dome isolation schemes
[dome: Ma et al. (16), cut1: Berti et al. (11), ninja: Mut et al.
(17)]. For this processing step, an in-house cut tool based on
VTK (18) was used. A final sanitization step ensured similar
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FIGURE 1 | Acquisition process for the HUG dataset. Starting from the same set of recruited patients, two teams of data curators segmented the vascular structures

in 3DRA images following similar protocols.

FIGURE 2 | Data processing pipeline applied to all aneurysms in the AneuX morphology database: Using robust vessel lumen segmentation techniques, a geometric

model of the aneurysm and the surrounding vasculature is extracted from the 3DRAs. Subsequently, the aneurysm is isolated by means of (planar or non-planar) cuts.

For the resulting aneurysm models, morphometric features were computed, which were then analyzed and compared with additional clinical information about the

cases (classification/discrimination). 3DRA, 3D rotational angiogram.

mesh properties for all 750 geometric models used in this
study. Further details about the processing are provided in the
Supplementary Material.

Morphometric Description of the
Aneurysms
Morphological features or morphometrics quantitatively describe
the shape of 3D objects, ideally meeting the following
requirements: (1) invariance to translation and rotation of the
reference coordinate frame, (2) efficiency in encoding relevant
morphological information, and (3) robustness with respect to

imaging or surface mesh quality. While requirement (1) was
satisfied by all morphometric features presented below, one of the
purposes for this study was to examine if the candidate features
fulfill requirement (2) and (3).

The shape features considered for this study (Table 1) can be
grouped into three different categories: Geometry indices (GIs)
quantify specific geometrical properties of the aneurysm and
are typically scalar valued. Distribution-derived features include
information on the variation of local morphological properties
across points (or mesh cells). Zernike Moment Invariants are
based on a transformed representation of the 2D manifold
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FIGURE 3 | Cut configurations of the AneuX morphology database. Cut lines are shown in red. The dome cut disjoins the aneurysm dome from the parent

vasculature by one single planar cut. For cut1 and cut2, cut planes are placed perpendicularly to the local centerline in one or two vessel diameters distance from the

dome. If the rule could not be applied because of an adjacent bifurcation, the closest valid cut before or after the bifurcation was chosen. The non-planar ninja cut was

placed along the boundary (the so-called neck) of the aneurysmal protrusion. Like the dome cut, a ninja cut captures the aneurysm dome, but permits a more natural

isolation of the aneurysm as assessed by the operator.

allowing to derive a set of coefficients capturing the entirety of
the geometry under observation.

Geometry Indices
Geometry indices (GIs) are designed to capture very specific
properties of a 3D shape. Advantages of GIs are their geometric
interpretability and their low computational complexity. For
these reasons, someGIs such as the aneurysm size, neck diameter,
or aspect ratio are already routinely measured manually by
clinicians. In this study, we used 6 indices for size (dome
volume, dome surface area, neck diameter, maximum diameter,
aneurysm height, aneurysm size) and 6 indices for shape (aspect
ratio, ellipticity index, non-sphericity index, undulation index,
conicity parameter, bottleneck factor). These well-established
GIs have been previously reviewed by Ma et al. (16), Raghavan
et al. (19), and Berkowitz (23). Table 1 provides a summary of
these features.

Several metrics require a reference plane at the aneurysm
neck. The intersection of this plane with the aneurysm is referred
to as ostium. For dome cuts, this reference plane coincides with
the cut-plane. For the non-planar ninja cuts, we defined the neck
plane as the best-fit plane through the cut line (17).

Distribution Derived Features
Distribution-derived features characterize the variation of local
shape properties evaluated across points p of a surface S . For
this study, we considered two such properties, curvature and
writhe, both of which have been used already to characterize IAs
(16, 19, 20).

The curvature at a point p of a surface S can be expressed
by means of Gaussian curvature KG

(

p
)

and mean curvature
KM

(

p
)

. We used VTK (18) to compute the local curvature values
for discrete surface meshes, which we subsequently aggregated
as described in Table 1. A total of 8 different curvature-derived
features are evaluated, which include the well-known metrics for
total Gaussian and Mean curvature GLN and MLN (16), and two
novel metrics.

The writhe number measures surface asymmetries and
“twisting forces” as seen from a surface point p (20). Originally
introduced in knot-theory to characterize curves, the writhe
number was generalized by Lauric et al. (20) for 3D surfaces.

We distinguished between writhe WL2 (p) and writhe W
L1 (

p
)

normalized by surface area, resulting in a total of 4 different
writhe-based shape features (Table 1). Curvature and writhe
features were evaluated for all cut types (dome, ninja, cut1, cut2).

Zernike Moment Invariants
3D Zernike moments (ZMs) and the Zernike moment invariants
(ZMIs) were first described by Canterakis (24) and applied by
Novotni and Klein (25) in the context of 3D shape retrieval.
Millán et al. (22) introduced the ZMI for the assessment of
intracranial aneurysm morphology.

The goal of 3D Zernike transformation is to describe an
input geometry in terms of the so-called Zernike basis: a set
of (complex-valued) polynomials strongly related to spherical
harmonics. The Zernike theory resembles Fourier theory in that
a forward transformation yields a set of coefficients (the ZMs)
that can be used as weights to reconstruct the original surface
through a weighted summation of its basis functions (inverse
transformation). The method permits to decompose a geometry
into morphological “modes” of gradually increasing complexity.
The maximum mode order n is chosen so as to capture enough
morphological details by the ZMs. ZMs can be made invariant
to translation and isotropic scaling (25), but only an additional
transformation (the calculation of the Euclidean norm of the ZMs
of the same order) yields the rotation-invariant ZMIs, forming a
viable shape descriptor.

For this study, we included ZMIs up to order n = 20,
corresponding to a shape descriptor of 121 independent values.

In addition, we introduced the novel metric ZMI energy Z
surf
N

(weighted sums-of-squares of ZMIs, divided by the ratio of the
aneurysm volume and the volume of the minimal bounding
sphere), which we evaluated for five different maximal orders
N = 3, 6, 10, 15, 20. We focused on surface-based ZMIs [as
opposed to volume-based ZMIs (21, 22)], as they carried a slightly
stronger signal in our experiments.

Shape Descriptors and Aneurysm Location
We computed the features listed in Table 1 for all 750 aneurysms
and all available cut types. We based our analysis primarily
on features computed for dome cuts unless otherwise noted.
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TABLE 1 | Overview of the shape features considered in this study.

Geometry indices (size) Count: 6; availability: dome, ninja; references: (16, 19)

Volume V Volume of aneurysm dome.

Surface area S Surface area of the aneurysm dome (without neck area).

Neck diameter Dn Characteristic diameter of the contour in the neck plane: Dn = 4 · Sn/Pn

Max. diameter Dmax Diameter of the largest cross-section parallel to the neck plane.

Aneurysm height H Maximal extent perpendicular to the cut plane.

Aneurysm size aSz Diameter of the minimum bounding sphere containing the dome.

Geometry indices (shape) Count: 6; availability: dome, ninja; references: (16, 19)

Aspect ratio AR Ratio between height and neck diameter: AR = H/Dn

Bottleneck factor BF Ratio between max. diameter and neck diameter: BF = Dmax/Dn

Conicity parameter CP Measures where the widest cross-section occurs: CP = 0.5−
HDmax
H

Non-sphericity index NSI Measures elongation and undulation; compares the aneurysm to a half-sphere: NSI = 1− (18π)
1
3 ·

V2/3

S
. For

perfect half-sphere: NSI = 0

Ellipticity index EI Measures elongation; like NSI, but evaluated for the dome’s convex hull.

Undulation index UI Measures undulation: UI = 1− (V/VCH ). For convex shapes: UI = 0

Curvature-based indices Count: 8; availability: any cut; references: (16, 19)

Total curvature GLN, MLN Total Gaussian and mean curvature, normalized by surface area.

Total neg. curvature NGLN, NMLN Same as GLN and MLN, but counting only points with negative curvature. Measures the presence of dents and

“saddle-like” regions.

Total curvature normalized

by CH

GLNCHMLNCH Total curvature normalized by total curvature of the convex hull. Measures the undulation or blebbiness of an

aneurysm.

Entropy of curvature GH, MH Measures how much the curvature varies along the surface (20).

Writhe-based indices Count: 8; availability: any cut; references: (20)

Mean writhe W
L2
mean Empirical mean of writhe numbers W

L2
i

Writhe entropy W
L2
H Empirical entropy of writhe numbers W

L2
i

Mean writhe, norm. W
L1
mean Empirical mean of area-normalized writhe numbers W

L1
i = W

L1
i / S

Writhe entr., norm. W
L1
H Empirical entropy of area-normalized writhe numbers W

L1
i .

Indices based on Zernike Moments (ZMIs) Count: 126; availability: any cut; references: (21, 22)

ZMIs ZMIsurfn,l Surface-based ZMI, n ≤ 20 and l such that n− l > 0 and even.

ZMI energy norm. ZsurfN Squared sum of surface-based ZMIs, normalized by fill ratio; evaluated for five different maximum orders

N = 2, 3, 6, 10, 20.

Note that the GIs can only be computed for dome and ninja cuts. Details: Sn, Pn are the perimeter and the surface area of the neck orifice. The curvature metrics come in pairs because

we considered two types of curvature: Gaussian curvature (symbol: G) and mean curvature (symbol: M). Writhe numbers can be computed with different inner norms (L1- and L2-norms)

and with or without normalization by surface area. ZMIs are identified by two indices: the order n and degree l. The fill ratio is defined as the ratio between the volume of the aneurysm

and the volume of the minimal bounding sphere. A total of 150 indices were available for these cut types (12 GIs + 12 DDFs + 126 ZMIs). For cut1 and cut2, a total 138 indices (12

DDFs + 126 ZMIs). CH, convex hull; GIs, geometry indices; DDFs, distribution-derived features; ZMIs, Zernike moment invariants.

Any sequence of one or more morphological features is termed
shape descriptor.

Motivated by the fact that morphology and the associated
risks vary with the anatomical location of IAs (10, 26–28), we
added location as the single non-morphometric predictor to our
feature pool. The 12 locations considered for this study are listed
in Table 3. The categorical variable “anatomical location” was
represented in the numerical feature space using 12 one-hot-
encoded dummy variables, which are all zero, except for the
one variable representing the sample’s location. The resulting
vector containing the dummy variables was used to augment

the aneurysm’s shape descriptor in experiments that included
location as a predictor.

Benchmarking of Shape Descriptors for
Diagnostic Capability
We examined the morphological features for a relation with the
aneurysm rupture status. In a first step, we assessed the univariate
properties of all morphometric features, and then trained and
validated multivariate classification models for the prediction
of the aneurysms’ rupture status. Our setup was designed as
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TABLE 2 | Summary of the cases included into the AneuX morphology database, stratified by data source.

HUG1 HUG2 @neurIST Aneurisk Overall

Number of patients 247 110 151 97 605

Sex F: 197 (77%)

M: 57 (33%)

F: 81 (74%)

M: 29 (26%)

F: 109 (67%)

M: 42 (33%)

F: 61 (63%)

M: 36 (37%)

F: 445 (73%)

M: 164 (27%)

Patient age in years (mean ± SD) F: 56.4 ± 14.0

M: 54.3 ± 13.8

F: 54.4 ± 12.7

M: 50.6 ± 12.2

F: 53.4 ± 12.2

M: 49.8 ± 10.6

F: 53.6 ± 15.2

M: 55.5 ± 10.8

F: 55.0 ± 13.6

M: 52.8 ± 12.2

Number of sIAs 350 135 164 101 750

Ruptured/unruptured R: 87 (25%)

U: 263 (75%)

R: 41 (30%)

U: 79 (59%)

R: 89 (54%)

U:75 (46%)

R: 44 (44%)

U: 57 (56%)

R: 261 (35%)

U: 474 (65%)

Note that for HUG2, the rupture status of 15 aneurysms was not available. SD, standard deviation; sIAs, saccular intracranial aneurysms.

a benchmark to identify feature configurations that have the
strongest association with rupture status.

We evaluated unpaired Student’s t-tests between ruptured
and unruptured aneurysms for each of the 150 features. The
significance level was set to α = 0.05/d, with Bonferroni
corrector d = 150 to correct for multiple testing (29).

For better comparability of the results, we used the same
statistical learning scheme for both univariate and multivariate
shape descriptors. All reported results are based on regularized
(LASSO) logistic regression models.

Preprocessing
We centered and scaled the morphometric features to 0-mean
and a standard deviation of 1, which improved convergence
rates during classifier training (The submatrix of dummy
variables encoding aneurysm location was not standardized). For
multivariate models, we optionally reduced the feature space
dimensionality by means of a principal component analysis
(PCA), selecting the k first principal components retaining 90%
of the total variance in the (training) data.

Model Development and Internal Validation
All logistic regression models were trained and validated using
a 5-fold cross-validation (CV) scheme with 20 repetitions,
resulting in a total of 100 model evaluations. For training and
(internal) validation of the classification models, only HUG data
was used. A feasible value for the regularization strength λ,
the only tuning parameter of the LASSO cost function, was
identified using a grid search. To avoid information leakage
between training and test data, the parameters for feature space
standardization and optional PCA were computed on training
data only.

Performance Metrics
For all 100 models trained in this CV setup, we evaluated the
ROC-AUC (the area under the receiver operating characteristic
(ROC) curve) using the test data and report mean and standard
deviation. We further calculated prediction accuracy, sensitivity
and specificity at the optimal classifier threshold, characterized by
the point on the ROC curve closest to the point (0,1).

External Validation
In a final step, we externally validated each of the 100 prediction
models using the @neurIST and Aneurisk datasets. Again, we
report the average AUC, accuracy, sensitivity and specificity.

Feature Space< Configurations
This learning pipeline was applied to all univariate and
multivariatemodels.Table 4 summarizes themultivariatemodels
considered in this study. Besides the maximal model including
all 150 morphometric features (with PCA), a multivariate model
was assembled by selecting the best-performers in the univariate
model with an AUC > 0.7.

Software Tools
Whilst the implementation of the ZMI was based on C++ code,
all other computations were performed in Python 3.6. For the
mesh-based operations, we employed VTK [the Visualization
Toolkit (18)] and VMTK [the Vascular Modelling Toolkit (30)].
Several utilities to develop, compute and analyze morphometric
descriptors have been assembled in our Geometric Modelling
Toolkit (GMTK). For the statistical analysis and machine
learning, we relied on the Python packages SciPy v1.3 (31),
scikit-learn v0.22 (32), and statsmodels v0.11 (33).

RESULTS

We report here the results for our basic dataset configuration
using the two HUG datasets consisting of 470 aneurysms (128
ruptured, 342 unruptured, Table 2), and the morphometric
features evaluated for the dome cut. Statistical learning
was performed using LASSO-LR and cross-validation scheme
described above, resulting in 100 model evaluations. Deviations
from this setup are marked explicitly. The dataset for external
validation consisted of 265 cases from the @neurIST and
Aneurisk projects. Table 3 summarizes all data used, stratified by
aneurysm location and rupture status.

Univariate Analysis
Figure 4 visualizes the morphometric data on the aneurysms
stratified by rupture status (ZMI data was excluded for lack of
space). Asterisks indicate if the class differences between the
sample means were statistically significant.
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TABLE 3 | Summary of all datasets stratified by aneurysm location and rupture status.

HUG1 HUG2 @neurIST Aneurisk Total

Location U R U R U R U R U R Σ

MCA bif 57 8 19 4 19 21 14 9 109 42 151

PComA 21 17 9 10 16 38 8 11 54 76 130

AComA 33 43 8 11 0 1 6 17 47 72 119

ICA oph 48 1 16 3 21 5 18 2 103 11 114

ICA bif 15 1 5 0 6 9 2 0 28 10 38

MCA 23 1 5 1 3 0 4 0 35 2 37

BA tip 11 4 4 3 2 7 3 3 20 17 37

ICA cav 28 0 3 0 2 0 1 0 34 0 34

ACA 9 5 5 3 1 3 0 1 15 12 27

VB other 10 2 3 4 1 2 0 1 14 9 23

ICA chor 7 4 2 1 3 2 1 0 13 7 20

PCA 1 1 0 1 1 1 0 0 2 3 5

Total 263 87 79 41 75 89 57 44 474 261 735

The taxonomy of locations follows Bijlenga et al. (10). U, unruptured; R, ruptured.

Table 5 presents the predictive accuracy of the 12 best
performing features plus aneurysm size (aSz). For the sake of
brevity, we refer to AUC as the principal comparison accuracy
metric. Values for AUC ranged from 0.80± 0.06 (forNSI) to 0.40
± 0.08 (for volume V).

Multivariate Analysis
Table 6 summarizes the internal validation results for the
multivariate models fromTable 4. For better handling of the high
dimensionality of the MAX models, PCA was applied, retaining
90% of the total variance present in the data. For the BUP
models (best univariate performers), we included the features
from Table 5. The LOC model used only location (Table 3) as
predictor and served as reference.

Validation Using External Data
All univariate and multivariate models were trained and
internally validated using HUG data only. After cross-validation
based on subsets of training data, final models were computed
including all data. These final models were then externally
validated using the @neurIST and Aneurisk datasets. We
report the resulting metrics of a bootstrapped ROC analysis
(with 100 re-samplings of the validation dataset). Tables 7, 8
summarize the external validation results for the univariate and
multivariate models. Figure 5 compares the results with the
internal validation using four exemplary models.

Dependency on the Cut Configuration
We computed the morphometrics for different cut types
(Figure 3). Note that the geometry indices (GIs) are defined only
for the two cut-configurations solely including the aneurysm
dome (planar dome, non-planar ninja). Features based on
curvature, writhe and ZMI were computed on all cuts (dome,
ninja, cut1, cut2).

Because dome and ninja cuts both capture the aneurysm
dome, the metrics computed for these cut configurations

are directly comparable. Some metrics deviated considerably
between dome and ninja cuts. For instance, the aneurysm height
H varied by up to +50% (for small aneurysms) and +10% in
average when going from dome to ninja cuts. Other metrics also
were susceptible to variations in the cut, most notably aspect
ratio AR (measured as the height-to-neck ratio), the writhe
metrics, and the ZMI (with larger differences for higher orders
n). Aneurysm size aSz, NSI, and the important curvature metrics
GLN and MLN were comparatively stable. The normalized ZMI

energies Z
surf
N were considerably more stable with respect to

alteration in the cutline than the single ZMIs. To summarize the
differences di,j = xdome

i,j − xniniai,j of metric j evaluated for the two
cut types per (HUG) dataset i, we computed the ratio δj′ between
median and interquartile range (IQR):

δj′ = δ
[

di,j=j′
]

=
median

(

di,j=j′
)

IQR
(

di,j=j′
)

We report here the mean δ[δj′ ] per feature category: GI size

(δ = 0.10), GI shape (δ = 0.21, δ = 0.17 without AR), curvature
(δ = 0.17), writhe (δ = 0.22), ZMI (δ = 0.43), ZMI energies
(δ = 0.20).

Despite the marked differences between the shape features
evaluated for dome and ninja cuts, their univariate predictive
capacity [AUC(xdome

i,j ) vs. AUC(xniniai,j )] was not significantly
affected (unpaired t-tests, two-sided, α = 0.05, corrected for
multiple testing). For the relevant predictors reaching an AUC
> 0.7 in the univariate models (cf. Table 5), differences in AUC
amounted only to fractions of the AUC standard deviation.

Metrics based on cut configurations including segments of
the parent vasculature (cut1, cut2) generally performed worse
than metrics computed for dome and ninja. Curvature metrics,
writhe indices and single ZMIs played no significant role in
these experiments (cut1: AUC < 0.65, cut2: AUC < 0.60). Only

the normalized ZMI energies Z
surf
N maintained their predictive
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FIGURE 4 | Boxplots summarizing the morphometric data of the 470 HUG samples stratified by rupture status. For easier comparison, each metric was centered and

scaled such that the overall median and interquartile range mapped to 0 and 1, respectively. ZMI data was omitted. Single asterisks *, double asterisks **, triple

asterisks ***, and quadruple asterisks **** indicate significance for t-tests at the α = 0.05, 0.01, 0.001 and 0.0001 level, under consideration of the Bonferroni

correction for multiple testing (correction factor 150). The morphometric parameters are described in Table 1.
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TABLE 4 | Description of multivariate models considered in this study and their number d of predictors.

Identifier d PCA Details

MAX 10 Yes All morphometric features except for ZMIs of order n ≥ 10

MAX+LOC 11 Yes Same as MAX, extended by anatomical location

BUP 12 No Independent selection of the best univariate performers with an AUC > 0.7

BUP+LOC 13 No Same as BUP, extended by anatomical location

NSI+LOC 2 No NSI and location

Zsurf6 +LOC 2 No Normalized ZMI energy for maximum order 6 and location

LOC 1 No Location only

BUP refers to the “best univariate performers,” see Table 5. Note that the categorical location predictor expands to 12 (hot-one-encoded) dummy variables.

TABLE 5 | Internal validation results of the best univariate classification models, ordered by decreasing ROC-AUC.

Univariate models (internal validation, cut dome)

Category Predictor AUC Accuracy Sensitivity Specificity

Shape NSI, non-sphericity 0.80 ± 0.05 0.73 ± 0.04 0.75 ± 0.08 0.72 ± 0.05

ZMI norm. energy Zsurf6 0.80 ± 0.05 0.74 ± 0.04 0.75 ± 0.08 0.74 ± 0.06

ZMI norm. energy Zsurf3 0.78 ± 0.04 0.73 ± 0.04 0.61 ± 0.09 0.78 ± 0.05

Writhe W
L1
mean 0.78 ± 0.04 0.72 ± 0.04 0.71 ± 0.09 0.72 ± 0.05

Shape UI, undulation 0.77 ± 0.05 0.74 ± 0.04 0.61 ± 0.10 0.79 ± 0.05

Curvature GLN 0.75 ± 0.05 0.71 ± 0.04 0.59 ± 0.08 0.76 ± 0.05

Curvature MLN 0.75 ± 0.05 0.69 ± 0.04 0.63 ± 0.08 0.71 ± 0.05

Shape AR, aspect ratio 0.75 ± 0.05 0.70 ± 0.04 0.61 ± 0.11 0.74 ± 0.05

ZMI ZMIsurf3,1 0.74 ± 0.05 0.66 ± 0.04 0.71 ± 0.09 0.64 ± 0.06

ZMI ZMIsurf5,1 0.72 ± 0.05 0.66 ± 0.05 0.68 ± 0.09 0.66 ± 0.06

Writhe W
L2
mean 0.72 ± 0.05 0.70 ± 0.04 0.58 ± 0.10 0.74 ± 0.05

Size aSz 0.64 ± 0.05 0.65 ± 0.04 0.46 ± 0.10 0.72 ± 0.06

We only considered models with an AUC > 0.7 and removed highly correlated features (with a Pearson correlation ρ > 0.95). The list is extended by the best performing size metric:

aneurysm size. We report mean and standard deviation (mean ± std) for 100 model evaluations of our cross-validation scheme. The data compares to the blue lines in Figure 5.

ability, with Z10 reaching AUC = 0.77 ± 0.06 for cut1 and AUC
= 0.66± 0.6 for cut2.

DISCUSSION

Here we examined different aspects of quantitative morphology
with the goal to identify shape features that best reflect disease
status. With a dataset comprising 470 ruptured and unruptured
intracranial aneurysms, we were able to extend several findings
from peer literature. We validated the generated univariate
and multivariate models against external data provided by the
@neurIST and Aneurisk dataset. These findings, as well as the
methodological setup per se, warrant careful discussion.

In the following, we first comment on the insights from
the univariate analysis, mostly focusing on the quantitative
description of the aneurysms. We then proceed to compare
univariate and multivariate models. Finally, we address
some concerns with respect to the methodology, and derive
recommendations for future research.

Throughout this discussion, we use ROC-AUC, the area
under the receiver operating characteristic curve, as the principal
quality metric for diagnostic accuracy of the models. Other

metrics such as prediction accuracy, sensitivity and specificity
have also been provided (Tables 5–8). In our subsequent
reasoning we exploit the fact that the training/validation
procedures were strictly the same in all experiments, thereby
making the results comparable.

Which Features Encode Disease Status?
Geometry Indices
Of all 12 GIs, NSI most accurately predicted rupture (AUC =

0.80 ± 0.05). Other shape metrics measuring elongation (EI,
AR) and undulation (UI) were also potent univariate predictors
for rupture, with AUC scores between 0.75 and 0.79 (Table 5).
Metrics capturing the size of the aneurysm were associated
with aneurysm rupture (aSz: AUC = 0.64 ± 0.05, H: AUC =

0.64 ± 0.05), but to a significantly smaller degree than most
of the shape metrics (with BF and CP being the exceptions).
The neck diameter Dn (AUC = 0.54 ± 0.06) was not linked
to rupture status. These findings underscore the insight that
taking into account aspects of morphology other than size can
substantially improve the assessment of aneurysms. This lies in
contrast with the argumentative line of a previous debate on
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FIGURE 5 | ROC curves summarizing the internal and external validation of four different model configurations: (A) non-sphericity NSI (B) anatomical location (C) best

univariate features according to Table 5 with location (D) NSI with location. The blue lines represent the internal model validation and constitute the mean of 100 ROC

curves (computed on test-data folds) during cross-validated training (blue line, CV). The green and red lines characterize the performance of the final model trained on

the entire HUG dataset, which was validated on 100 bootstrap samples of the HUG dataset (the training dataset, green lines) and the external validation datasets from

the @neurIST and Aneurisk projects (red lines).

treatment guidelines, in which size was givenmore attention than
morphology (34, 35).

Curvature-Based Metrics
Curvature metrics capture surface undulation and bending. Of
all curvature metrics, the well-established GLN (AUC = 0.75 ±

0.05) andMLN (AUC= 0.75± 0.05) performed the best.

Writhe-Based Metrics
Writhe-based metrics can be related to surface asymmetry and

twisting (20). Our modified definition of surface writhe W
L1 (p)

normalized by the surface area, produced better results than
the non-normalized WL2 (p) (cf. section Distribution Derived

Features). Note that W
L1 characterizes only shape, whereas the

signal contained in non-normalizedWL2 depends on both shape
and size. Indeed, the Pearson correlation coefficient ρP between
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TABLE 6 | Internal validation results of the multivariate classification models.

Multivariate models (internal validation, cut dome)

Category # AUC Accuracy Sensitivity Specificity

MAX (+ PCA) 10* 0.82 ± 0.05 0.74 ± 0.04 0.75 ± 0.09 0.74 ± 0.04

BUP (best univariate performers) 12 0.82 ± 0.05 0.74 ± 0.04 0.75 ± 0.08 0.74 ± 0.05

LOC (location only) 12 0.78 ± 0.04 0.69 ± 0.04 0.78 ± 0.10 0.65 ± 0.05

MAX + LOC (+PCA) 22* 0.87 ± 0.04 0.79 ± 0.04 0.78 ± 0.08 0.80 ± 0.04

BUP + LOC 24 0.87 ± 0.04 0.80 ± 0.04 0.77 ± 0.09 0.80 ± 0.05

NSI + LOC 13 0.87 ± 0.04 0.79 ± 0.04 0.79 ± 0.08 0.79 ± 0.04

Zsurf6 + LOC 13 0.87 ± 0.04 0.78 ± 0.04 0.76 ± 0.10 0.79 ± 0.05

Column # indicates the dimensionality of the models’ feature space, or the (average) number of dimensions retained after PCA if marked with an asterisk. Note that location adds 12

dummy features (one for each location) but represents one single predictor. The data compares to the blue lines in Figure 5. Values marked with an asterisk (*) indicate the number of

features after PCA.

TABLE 7 | External validation results of the same univariate predictors of Table 5.

Univariate models (external validation, cut dome)

Category Predictor AUC AUC-diff Accuracy Sensitivity Specificity

Shape NSI, non-sphericity 0.65 ± 0.03 −0.15 0.62 ± 0.03 0.52 ± 0.04 0.72 ± 0.04

ZMI norm. energy Zsurf6 0.67 ± 0.03 −0.14 0.61 ± 0.03 0.50 ± 0.04 0.73 ± 0.04

ZMI norm. energy Zsurf3 0.70 ± 0.03 −0.08 0.63 ± 0.03 0.47 ± 0.04 0.80 ± 0.03

Writhe W
L1
mean 0.69 ± 0.03 −0.09 0.61 ± 0.03 0.52 ± 0.04 0.71 ± 0.04

Shape UI, undulation 0.66 ± 0.03 −0.11 0.60 ± 0.03 0.44 ± 0.05 0.76 ± 0.03

Curvature GLN 0.59 ± 0.04 −0.16 0.56 ± 0.03 0.39 ± 0.04 0.73 ± 0.04

Curvature MLN 0.57 ± 0.04 −0.17 0.54 ± 0.03 0.39 ± 0.04 0.69 ± 0.04

Shape AR, aspect ratio 0.61 ± 0.04 −0.14 0.57 ± 0.03 0.46 ± 0.05 0.69 ± 0.04

ZMI ZMIsurf3,1 0.71 ± 0.03 −0.03 0.64 ± 0.03 0.64 ± 0.05 0.65 ± 0.04

ZMI ZMIsurf5,1 0.61 ± 0.03 −0.11 0.58 ± 0.03 0.51 ± 0.04 0.65 ± 0.04

Writhe W
L2
mean 0.58 ± 0.04 −0.14 0.53 ± 0.04 0.44 ± 0.04 0.61 ± 0.05

Size aSz 0.50 ± 0.04 −0.14 0.48 ± 0.03 0.36 ± 0.04 0.61 ± 0.04

The univariate models trained on HUG data were here validated using the @neurIST and Aneurisk datasets. We report mean and standard deviation (mean ± std) for 100 bootstrap

samples of the validation data. AUC-diff measures the differences between the AUC scores from the internal validation (Table 5) and the external validation. The data compares to the

red lines in Figure 5.

TABLE 8 | External validation results of the same multivariate models of Table 6.

Multivariate models (external validation, cut dome)

Category # AUC AUC-diff Accuracy Sensitivity Specificity

MAX (+ PCA) 10* 0.67 ± 0.03 −0.15 0.63 ± 0.03 0.66 ± 0.04 0.61 ± 0.04

BUP (best univariate performers) 12 0.70 ± 0.03 −0.13 0.64 ± 0.03 0.64 ± 0.05 0.64 ± 0.04

LOC (location only) 12 0.71 ± 0.03 −0.07 0.67 ± 0.03 0.66 ± 0.04 0.69 ± 0.04

MAX + LOC (+ PCA) 22* 0.73 ± 0.03 −0.14 0.67 ± 0.03 0.62 ± 0.04 0.73 ± 0.04

BUP + LOC 24 0.74 ± 0.03 −0.13 0.68 ± 0.03 0.59 ± 0.04 0.77 ± 0.03

NSI + LOC 13 0.74 ± 0.03 −0.13 0.70 ± 0.03 0.62 ± 0.04 0.78 ± 0.04

Zsurf6 + LOC 13 0.73 ± 0.03 −0.13 0.68 ± 0.03 0.61 ± 0.05 0.76 ± 0.04

The models were trained on HUG data and validated with @neurIST and Aneurisk data. AUC-diff measures the difference between the AUC scores of the internal (Table 5) and external

validation. The data compares to the red lines in Figure 5. Values marked with an asterisk (*) indicate the number of features after PCA.

aneurysm size aSz and WL1
mean was 0.93; and only 0.20 between

aSz and W
L1
mean. Also note that the unmodified definition for

surface writhe by Lauric et al. (20) did not prove useful in our
experiments (AUC= 0.57± 0.06).
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Zernike Moment Invariants
From 121 considered indices, only the indices Z

surf
2,0 , Z

surf
3,1

and Z
surf
5,1 exhibited consistent as well as significant inter-class

differences. Higher-order moments yielded either less or no
useful information with respect to rupture status. Low order ZMI
can be computed with less effort and aremore robust with respect
to mesh variations than high order ZMI.

Normalized Zernike Energies

The Z
surf
N were good predictors for rupture status. All five

(Z
surf
1 ,Z

surf
2 ,Z

surf
3 ,Z

surf
6 ,Z

surf
10 ) achieved (univariately) an AUC

larger than 0.7. We found that some Z
surf
N were strongly

correlated (Spearman) with undulation/elongation (NSI, EI, UI),

AR and surface writhe (W
L1 ), with correlation coefficients ρSp

between 0.85 and 0.90.

Summary
All feature categories except size metrics were well-represented
among the best performing candidates (Table 5). Our suggested

Zernike energies Z
surf
N proved to be indicative of the rupture

status, which was, along with the non-sphericity index NSI
(and the highly correlated ellipticity index EI), among the
best predictors. As far as the distribution-derived metrics are
concerned, we recommend using our modified definition of

surface writhe W
L1 (p) and the corresponding index W

L1
mean. It is

worth noting that the metrics that provide good discrimination
between ruptured and unruptured aneurysms in this study have
been shown to be linked to the clinicians’ subjective assessment
of the aneurysm shape [perceived shape irregularity (36, 37)].

How Relevant Is the Cut Configuration?
The cut line separates the aneurysm from the surrounding
vasculature and has a bearing on most of the morphometric
parameters. To this end, we considered two different cut
configurations involving the aneurysm dome only: a planar one
(identifier dome) and non-planar one (ninja). The two sets of
rules for separating the aneurysm from the nearby vasculature
were applied independently by two operators (one rule for each
operator). Naturally, this led to substantial differences in the
neck region of the aneurysm geometries (illustrated exemplary
in Figure 3).

Albeit these differences, our analysis revealed that the
particular choice of the neckline on average had little impact
on the metrics’ capacity to predict rupture status, indicating
that the selected metrics are fairly robust with respect to the
cut type. Even though the ninja cut has a better physiological
justification than the dome cut, it did not substantially improve
the prediction outcome.

Metrics involving segments of the parent vasculature (cut1,
cut2) consistently produced worse results compared to dome and
ninja cuts. Themore of the parent vasculature was included in the
cut, the less accurately the diagnostic models performed (dome>

cut1 > cut2). The lack of predictiveness in some of the metrics
for cut1- and cut2-geometries does not, however, imply that the
parent vessel geometry is irrelevant for disease status prediction.
Our collection of features lacks some metrics that relate the

parent vessel geometry to the aneurysm dome, for instance size
ratio (SR), vessel angle or inclination angle (38, 39).

Summary
Both dome and ninja cuts enabled equal predictive performance
of morphometrics.

Do Combinations of Shape Predictors
Lead to a Better Model?
The combination of multiple predictors moderately improved
the prediction accuracy (Tables 5, 6), with no signs of excessive
model overfitting (green vs. blue lines in Figure 5). However, the
net improvement of the multivariate models over the univariate
models was relatively small: The best univariate predictor (NSI)
achieved an AUC of 0.80± 0.05.

The maximal model MAX (AUC = 0.82 ± 0.05) and the BUP
model using a selection of best univariate performers (AUC =

0.82 ± 0.05) achieved the same performance. This indicates that
the combination of many weak univariate predictors (MAX) does
not provide more information about the disease status than a
selection of best performers (BUP). This also held true for non-
linear classification models: We explored models such as support
vector machines with a Gaussian kernel, gradient boosted
decision trees and basic neural nets (multilayer perceptrons) (40).

That the MAX and BUP models performed equally well is
indicative of redundancy in the descriptors. To assess the level
of redundancy, we applied a PCA of the (standardized) feature
matrix for the dome cut (470 samples vs. 150 features). A
PCA retaining 50, 75, 90, 95, and 99% of the total variance
required 5, 19, 44, 62, and 98 of maximally 150 principal
components. Some data redundancy could be attributed to the
physiological processes that underlie aneurysm formation. For
instance, larger aneurysms were more likely to show irregular
structures (blebs, lobules), which was also reflected in our data:
ρSp (aSz, GLN) = 0.82.

Due to these high correlations, we were able to further reduce

the number of predictors to four: NSI, W
L1
mean, GLN and aSz.

This reducedmodel performed about the same as the BUPmodel:
AUC= 0.82± 0.04.

Summary
Multivariate models (Table 6) performed only slightly better on
the HUG dataset than the univariate models, even though the
entirety of shape features captured a relatively wide range of
morphological characteristics, despite any data redundancy. This

corroborates the value of NSI and Z
surf
N , but also of W

L1
mean and

GLN, as efficient indicators of those IA shape characteristics that
are relevant for distinguishing the rupture status.

What Is the Effect of Location as Predictor?
Because aneurysm morphology and associated risks vary
significantly with the anatomical location (10), we included
location as the only non-morphometric predictor to our models.
This resulted in a substantial increase of diagnostic accuracy
(AUC =0.87 ± 0.04 for the MAX model and AUC = 0.88 ±

0.04 for the BUP model, Table 6). Two minimal models (NSI +

location, Z
surf
6 + location) performed both with essentially the

Frontiers in Neurology | www.frontiersin.org 12 May 2022 | Volume 13 | Article 809391

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Juchler et al. Morphological Analysis of Aneurysm Shape

TABLE 9 | Summary statistics for the entire AneuX morpho database, stratified by dataset and rupture status.

aSz AR NSI

Dataset # U R U R U R

HUG1 350 5.58 ± 3.98 6.82 ± 3.86 1.01 ± 0.56 1.43 ± 0.77 0.12 ± 0.09 0.20 ± 0.08

HUG2 120 5.82 ± 3.07 7.41 ± 4.28 1.03 ± 0.38 1.37 ± 0.56 0.11 ± 0.07 0.21 ± 0.09

@neurIST 164 5.93 ± 3.44 6.83 ± 4.08 1.07 ± 0.64 1.33 ± 0.86 0.14 ± 0.11 0.19 ± 0.09

Aneurisk 101 8.78 ± 5.47 6.92 ± 4.90 1.28 ± 0.68 1.39 ± 0.57 0.15 ± 0.09 0.19 ± 0.07

Overall 735 5.91 ± 4.22 6.93 ± 4.17 1.04 ± 0.56 1.38 ± 0.68 0.13 ± 0.09 0.20 ± 0.09

We used here median ± IQR because the metrics were not normally distributed. IQR, interquartile range; U/R, unruptured/ruptured; aSz, aneurysm size; AR, aspect ratio; NSI,

non-sphericity index.

same diagnostic accuracy: AUC= 0.87± 0.04 (NSI) and AUC=

0.87± 0.04 (Z
surf
6 ).

We trained also a location-only model, which performed
with an AUC = 0.78 ± 0.04 (Figure 5B). Comparison with the
univariate performance of shape predictors (Table 5) suggests
that aneurysm location alone is as informative about an
aneurysm’s rupture status as its morphology.

The probability of rupture varies considerably with location
(Table 3). Adding location as a predictor therefore incorporates
prior information about the probability of rupture into
the classifier.

Summary
The addition of aneurysm location improved the predictive
accuracy substantially because this enables the classifier to
account for varying rupture probabilities. Amodel relying onNSI
and location as predictors excelled other models in terms of AUC,
prediction accuracy and parsimony.

External Validation Results
All investigated models performed markedly worse on the
external datasets @neurIST and Aneurisk (Tables 7, 8). This
indicates that the models do not generalize well to these datasets.

A closer inspection of the two external datasets revealed
several differences that may explain this loss of predictive
accuracy. Both @neurIST and Aneurisk datasets exhibited a
relatively balanced ratio of ruptured and unruptured cases
(Table 3). In total, the validation dataset consisted of 132
unruptured and 133 ruptured aneurysms (1:1), as opposed to
342 unruptured and 128 (3:1) in the HUG training dataset.
Furthermore, the distribution of the different locations differed
between training and validation datasets. Most notably, the
@neurIST dataset comprised only one AComA case, and an
equally disproportionate number of PComA cases. Aneurisk
matched the HUG datasets in terms of location distribution
more closely. However, its unruptured cases were about 50%
larger than the average of all unruptured HUG cases (Table 9).
Aneurisk’s unruptured aneurysms were even larger than the
ruptured ones, which was not the case for the HUG datasets.

All this indicates that the validation dataset (@neurIST +

Aneurisk) differed significantly in its structural composition
and characteristics from the training dataset (HUG1 + HUG2),

with strong repercussions for predictive accuracy. To further
substantiate this finding, we repeated the entire analysis using
HUG1 as the training and HUG2 as the external validation
dataset. Even though HUG1 and HUG2 were processed by
different persons, the medical data were collected by the same
medical staff in the same period of time, which is likely to have
led to a very comparable case selection. This structural data
homogeneity in this validation setup translated into substantially
improved predictive accuracy, with AUC = 0.84 ± 0.04 for
the bivariate model NSI+location, AUC = 0.88 ± 0.03 for

Z
surf
6 +location, and AUC = 0.72 ± 0.05 for the location-

only model.

Summary
To ensure predictive accuracy, models require that the data they
process for prediction possess the same characteristics as the data
they have been trained with. However, the HUG datasets and
the datasets used for external validation differed in at least three
key characteristics: rupture rates, and distributions of size and
aneurysm locations.

Limitations
This study adopts an approach that has recently experienced
broader use: Statistical learning schemes are deployed to identify
a functional relationship between the quantitative descriptions of
aneurysms and a probabilistic assignment of their disease status
(19, 20, 22, 38, 41–44). This approach has been criticized, not
for the method per se, but for the data that are used to train
the models (45). In particular, it is doubted whether the insights
gained from analyzing the differences between unruptured and
ruptured aneurysms can serve as the basis for reliable proxies
of “risk” or “instability.” To account for this, we refrained from
using such terms in our study and focused on benchmarking
the sensitivity of morphological features with respect to the
aneurysm’s rupture status.

This study is based on data from 3DRA, an angiographic
method offering high contrast and resolution when compared
with computed tomography angiography (CTA) and magnetic
resonance angiography (MRA). Because 3DRA is usually
employed only in the context of treatment, datasets that include
3DRAs likely do not adequately reflect the natural distribution of
IA characteristics in the general population. While we deem our
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morphometry benchmarking feasible for 3DRA data in general,
we encourage a subsequent study based on MRA and CTA
data. In particular, it should be investigated how morphometry
depends on image quality (resolution, artifacts).

To assess the generalizability of the findings, it is critical
to use multicentric data, as we did in this study. Different
selection criteriamay apply for different clinical centers, however.
Furthermore, characteristics of aneurysm datasets vary over time.
For instance, the increased availability of imaging facilities has
increased the number of incidentally diagnosed unruptured IAs.
As a consequence, the ratio of ruptured to unruptured aneurysms
in clinical databases has decreased in recent years. Likewise,
the treatment guidelines have evolved, which also affected the
selection of cases available for such studies. Trends like these
contribute to the above data disparities observed in this study
between the HUG, @neurIST, and Aneurisk datasets.

It was conjectured that the morphology of aneurysms might
change as a result of rupture (46–48). While this cannot be
excluded in general, several studies have suggested that for the
majority of ruptured cases this does not apply (19, 27, 35, 49, 50).

A future study could investigate whether the insights
of this study remain valid for distinguishing stable and
unstable aneurysms (which is clinically more relevant than the
ruptured/unruptured dichotomy) and how large the differences
must be to detect instability. A dataset based on follow-up data
would be very advantageous for a study like the one carried out
here. However, as discussed by Ramachandran et al. (51), such
datasets can also suffer from selection biases.

CONCLUSIONS

We have conducted a comprehensive study to examine the
potency of morphology to encode the disease status of IAs.
Based on the AneuX morphology database consisting of 470
aneurysms acquired at the HUG and 265 additional cases
from external databases, we investigated how various aspects
of the morphometric description of aneurysms relate to
rupture status.

Morphology is a good predictor for the aneurysm disease

status. Metrics for shape irregularity such as NSI, Z
surf
N

and W
L1are able to capture relevant shape characteristics to

distinguish between ruptured and unruptured cases. In our
experiments, these indices performed significantly better than
metrics measuring only the size of the aneurysm (e.g., H or aSz).
Quantitative measurement of shape characteristics (especially
irregularity) rather than size therefore has the potential to

improve the clinical assessment of IAs. The conjunction with
aneurysm location favorably affects the predictive power of
aneurysm morphology with respect to disease status.
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