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Abstract— With edge-AI finding an increasing number of 
real-world applications, especially in industry, the question of 
functionally safe applications using AI has begun to be asked. In 
this body of work, we explore the issue of achieving dependable 
operation of neural networks. We discuss the issue of 
dependability in general implementation terms before 
examining lockstep solutions. We intuit that it is not necessarily 
a given that two similar neural networks generate results at 
precisely the same time and that synchronization between the 
platforms will be required. We perform some preliminary 
measurements that may support this intuition and introduce 
some work in implementing lockstep neural network engines.  

Keywords—edge-AI, neural networks, lockstep processing, 
functional safety, dependability 

I. INTRODUCTION 

A. Motivation 
Edge-AI, apart from being something of a buzzword, has 

obvious potential in industrial, specifically factory 
automation, applications. These potential applications vary 
from condition monitoring through to functionally safe zoning 
of (stationary) robot work areas. Most of these application 
domains are associated with some form of dependability or 
functional safety, for which dependability of operation is 
necessary, yet there has been very little concrete said about 
dependability in neural networks, our area of concern.  

In this paper we examine the case for Field Programmable 
Gate Array (FPGA) and Graphics Processing Units (GPU) 
implementations of neural networks (NN.) We argue, based 
on two example architectures, that FPGA implementations 
appear to be affine to both tightly- and loosely-coupled 
lockstep circuits whereas discrete GPU implementations are 
more affine to loosely-coupled lockstep circuits. Whereas 
tightly-coupled lockstep architectures by their nature, deliver 
results within a few clock cycles of each other, it is not clear 
that loosely-coupled lockstep architectures do so. We present 
the results of some naïve experiments illustrating the problem. 
Finally, we present on-going work in the area of tightly-
coupling lockstepping on an FPGA.              

B. Previous Work 
Previous work in the domain of safety and neural networks 

is sparse although the problem has long been recognised [1]. 
A survey paper [2] provides an overview of literature which is 
less safety, in the context of IEC 61508, focused but more on 
the input perturbation and adversarial training/classification 

problem. The two main application domains are aeronautics 
[3] and autonomous driving [4]. The industry domains of 
factory automation and the like have, apart from some 
preliminary papers [5], received little attention so far. 
Integrated circuit and related manufacturers have not been 
idle, both Nvidia [6] and ARM [7] have released silicon or IP 
to support functional safety/neural network applications.  

C. Workflows and Dependability  
The work-flow from a product idea to a functionally safe, 

or at least dependable, product is well understood and 
demands dependability work-packets in three distinct phases. 
Design: where a model of the product, including any 
dependability factors, is envisioned and specified. The 
implementation: where the specifications are synthesised into 
hardware and software according to a (safe and) dependable 
workflow and appropriately verified and validated. The run-
time phase: where the integrity of operation is secured – of and 
by circuits previously modelled and implemented. The work 
flow from a neural network based product to an actual running 
implementation is much more complex and encompasses the 
choice of neural network model, number of neurons, number 
of layers as well as the choice of training data reflect the biases 
of the designer as much as any other factors [8]. The training 
environment takes chosen input data and runs a number of 
algorithms on it producing a result that the designer checks by 
hand, aiming for a classification rate close to the specified 
limit. It is an iterative process and depends as much on 
experience to get the targeted result as to any scientific 
methodology [9]. Next, some tooling is used to produce a 
synthesisable – in the generic meaning of the term - 
implementation from the output of the learning system. In a 
safe and dependable work flow we would expect all stages to 
produce inspectable results, which is clearly not currently the 
case. In other words, no causal chain can be guaranteed let 
alone validated. Finally the run-time integrity must be 
guaranteed, a significant challenge for such complex circuitry. 

We currently concern ourselves with the last phase, that is 
the run-time phase and ensuring the integrity of operation.  

D. Dependable Operation and Redundancy 
 Redundant execution is a well-known technique that 

seeks to verify the integrity of an executed operation by 
executing that operation more than once and comparing the 
execution process or results of execution Figure 1. We take 
tightly-coupled lockstep systems, the term is not precisely 
defined, to mean systems where the unit of execution is 
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executed synchronously more than once and the execution 
process (load-execute-store) visible on the system bus is 
compared. Well-known articulations of this method are 
lockstep processors on offer from various integrated circuit 
manufacturers [10, 11] whose synchronicity is fixed within 
typically 0 to 2 clock edges. The real-time-processors on one 
of the target platforms, the Xilinx ZU3EG A484, [12] can also 
be optionally tightly lockstepped. The term loosely-coupled 
lockstepping encompasses a range of circuits but is generally 
understood to consist of redundant circuits that can be 
described as asynchronous. Asynchronous execution places 
an additional burden on the entire circuit as the checker must 
be informed when checking can occur. Whilst we currently 
only consider 1oo2 configurations we will be working with 
MooN configurations which is why we use the term 
“voter/checker” for NN output comparison and “safety-
switch-off” for a sub-circuit that checks the functional 
integrity of other component blocks.    

 
Figure 1: Simplified Schematic of a Redundant System. The 
Processing Elements can be either tightly- or loosely coupled and 
the configuration could be either 1oo2 or 2oo2 depending on the 
voter implementation 

Neural networks are implemented using processing 
elements, these can be a CPU or, more commonly, some form 
of GPU or other parallel signal processing architecture. Neural 
networks are easily decomposed into single instruction 
multiple data (SIMD) kernels that can be re-grouped into 
threads, termed single thread multiple data (STMD.)  

If we assume for the sake of simplicity the OpenCL [13] 
model of operations, a host, typically a CPU, will transfer 
these kernels to a compute device, composed of compute units 
in turn composed of processing elements. In a GPU, the 
compute unit is generally understood to be a STMD streaming 
processor composed of multiple SIMD cores (processing 
elements,) so the compute unit will decompose the threads 
back into individual instructions for execution across the 
SIMD cores. This latter process is known as fine-grained 
scheduling whereas the distribution of thread packages to the 
compute units is known as coarse-grained scheduling. These 
scheduling systems are native to the compute unit which are 
generally accessed by a driver supplied by the GPU vendor. 
The effect of this is that under naïve circumstances, the only 
influence the application implementer has over the scheduling 
is the order of submission of kernels to the compute unit. The 
driver may give the implementer the option of overriding the 
order of execution by stipulating in-order execution after 
which the coarse-grained and fine-grained scheduling is left to 
the compute unit. Scheduling schemes imply synchronisation 
points especially if the results of computation under two 
independent schedulers are to be compared. We therefore 
intuit that it is feasible that output results from redundant 
execution may differ in timing. 

II. REDUNDANT NEURAL NETWORK IMPLEMENTATIONS         

A. Introduction 
In this body of work, we largely confine ourselves to the 

naïve approach, that is the use of off-the-shelf components. 
Given the large variation in possible approaches and circuits 
we model two example architectures, based on Figure 1, from 
which we derive the experimental setup and further work. We 
examine two architectures, namely Graphics Processing Units 
(GPU) and Field Programmable Gate Arrays (FPGA) which 
are well accepted to handle the computational expense and 
hence fulfil any real-time deadlines that may exist, as expected 
in factory automation systems.  

B. Graphics Processing Unit 
The GPU most often used in embedded AI solutions is a 

collection of streaming multiprocessors each featuring an 
array of dedicated functional units including arithmetic, load-
and-store and other assorted special functions. This array is 
driven by a dispatcher that issues instructions in an order 
determined by the on-chip schedulers. The GPU package will 
generally be fitted with a CPU which, according to the 
OpenCL model, functions as a feeder, delegating 
computationally expensive kernels to the GPU. This makes 
for a complex circuit requiring its own infrastructure circuitry, 
memory, I/O ports, power supply and the like. For a redundant 
execution model, whilst it is not impossible to develop a 
circuit where these infrastructure components are shared, it is 
not an expected use for the processor-packages which 
intuitively implies that modules must be architected into 
redundant computing units. 

Our example architecture (Figure 2) thus features two 
GPU modules connected to an I/O source and a voter/checker 
circuit. Complicating, in terms of design simplicity and hence 
validation of causality, is the I/O circuitry – the input arrival 
time to the modules ought to be synchronised such that the 
arrival time of data is not a contributing factor to the two 
modules drifting temporally apart. Additional complicating 
factors include that the input will be routed over the CPU 
which delegates kernels and data to, and receives results from, 
the GPU. The CPU will also feed the voter/checker with this 
data. Under these conditions the CPU must also exhibit 
dependability characteristics.   

 
Figure 2: Example Architecture of a GPU-Module based Loosely-
Coupled Lockstepping Scheme for Dependable Operation  

C. Field Programmable Gate Array  
The field programmable gate array, in its SoC articulation, 

will feature programmable fabric as well as, often a plurality 
of, hard-core processors which can be directly connected to 
circuitry located in the fabric. In our example architecture two 
NN implementations fit into the FPGA fabric (Figure 3) along 

        

          
       

           
               

             

     

         
          

      
 

                 

        
          

         

      

       
   

   

               

         

      

       
   

   

               



 

 

with the voter and the I/O connects directly to the fabric, a 
considerable simplification over the GPU-module. Isolation-
design workflows are available for FPGAs so it is possible to 
floorplan, isolate and independently execute two NNs with 
defined input and output interfaces thus securing the causality 
chain of operation. Under this configuration the classification 
by redundant NNs could conceivably run without CPU 
intervention, thus possibly absolving CPUs of the requirement 
to utilise dependability features. Further analysis will 
determine whether this is feasible in practice. 

 
Figure 3: Example Architecture of an FPGA-Based Tightly-Coupled 
Lockstepping Scheme for Dependable Operation 

D. Experimental results 
We build two experimental systems. The first with two 

Nvidia Jetson TX1 development boards [14] and the second 
with an Avnet U96 board featuring a Xilinx MPSoC 
XZCU3EG Zynq device [15]. The former features a quad-core 
ARM Cortex A-57 (1.7 MHz.) platform in combination with 
a Maxwell-architecture GPU with 256 CUDA cores (998 
MHz.) The latter features an ARM Cortex A-53 (1.2 GHz.) 
for the NN implementation we use a Xilinx Deep Learning 
Processing Unit (DPU – 210 MHz.) in the FPGA fabric. The 
relatively low speed of the DPU is because the power supply 
of the U96 board cannot support the DPU running at higher 
frequencies.  

Both systems run under a nativized version of Linux, 
(Jetpack 4.4.1/LinuxTegra V 32.4.4 and Petalinux 
2020.1/Vitis AI 1.2). In each case the CPU application is a 
single process, pinned to one core and scheduled with priority 
99 under a FIFO scheduler.  

In keeping with the naïve approach, both systems use 
network versions of the SSD Mobilenet V2 object detection 
network, pretrained by their respective vendors/community. 
For experimentation we used images in the range 200-799 
from the EPFL dataset [16]. 

To measure the temporal execution-profile we loaded 500 
images from the experimental dataset into the respective 
compute devices and executed inference 100 times for each 
image. The turnaround time was measured for each image 
inference using the chrono library.          

The results of the GPU measurement are shown below 
(Figure 4) and show two noteworthy features. The two 
modules, which were not fresh out-of-the-box but had been 
used in other projects, display varying execution-time profiles 
and different outliers. The outliers themselves are presumed 
to come from some, as yet unexplained, CPU scheduling 
effect and indeed, varying the CPU frequency, where 
architecturally possible, affects the absolute time of these 
outliers. The difference between the two execution-time 
profiles is not understood.  

The results from the FPGA measurement are shown below 
(Figure 5.) In this case we only measured one DPU sized to fit 
in the available FPGA fabric. Reasons are discussed below. 
Here also we see outliers that we attribute to scheduling 

effects, although the execution-time profile exhibits 
substantial kurtosis. 

 
Figure 4: Comparison of Turnaround Execution-Time Profiles for 
500 Images, each Classified 100 Times, on two Similar Jetson TX1 
Development Boards 

 

 
Figure 5: Turnaround Execution-Time Profile for 500 Images each 
Classified 100 Times on a Xilinx FPGA Platform using Deep 
Learning Processing Units 

Kurtosis and bi-modality in execution-time profiles are in 
our experience attributable to the run-time platform, in this 
case primarily the operating system. It is unclear what effect, 
if any, the schedulers embedded in the GPU and FPGA have 
on execution time. On-going work will examine this point 
further.   

E. Discussion 
In conclusion we can say that once the outliers for both 

platforms are explained, a redundancy configuration for both 
GPU module and DPU appears feasible. The GPU 
configuration requires substantial engineering work in the 
synchronised feeding of data to the modules, the explanation 
and removal of the outliers and the explanation and 
rectification of the differing execution-time profiles. The latter 
two bodies of work represent work to introduce more 
determinism into the classification process, which we would 
expect a module-to-module synchronisation protocol such as 
IEEE1588 [17] to support.  

      
       

   
    

            
               

        
          

         

      

       
   

    

              

                  

                                      
         

 

   

   

   

   

    

    

  
 

  
  

        
        



 

 

III. TIGHTLY LOCKSTEPPED AI CORES   
Xilinx offers two possibilities of implementing AI cores in 

their FPGAs, the Deep Learning Processor and FINN [18], an 
experimental, dataflow-orientated framework for creating 
quantised networks. The FINN framework appears 
predestined for creating custom networks and it is feasible that 
networks including redundancy and checkers can be built and 
integrated into an industry-acceptable workflow. In the 
context of lockstep architectures, the DPU has several 
attractive features that can be leveraged to produce a tightly-
coupled lockstep architecture.     

There are multiple configuration parameters for the DPU 
and the configuration/synthesizer will then pick the numbers 
of LUTs/DSPs that suits the synthesizer/FPGA device best 
and package it into an intellectual property (IP) block. This 
packaging brings some useful characteristics. The packaged 
DPU is accessible over generic well-specified bus interfaces, 
the number of interfaces determined in part by the number of 
DPU cores in the IP block. The relevant Xilinx DPU 
documentation does mention the possibility of having 
independent tasks running on DPU cores within the IP block, 
but the architecture also lends itself to two independent IP 
blocks within the same FPGA fabric. This packaging of DPU 
cores as an independent IP block also lends itself to standard 
application of the isolation design workflow, a workflow 
designed to produce certifiably safe and dependable 
implementations. By proxy, standard verification and 
validation workflows and regression testing frameworks both 
in simulation and in implementation can also be used.   

The authors’ research team employs a python-driven Open 
Verification Methodology platform [19] for simulation-based 
verification in the context of an automated build and test 
environment coupled with a continuous deployment 
framework for automated deployment and validation on a 
range of always-online run-time platforms, currently 
numbered at eight. This infrastructure allows the mass testing 
of various configurations for both experimental and 
verification purposes.    

This reduction of the AI functionality into easily 
handleable IP blocks simplifies the lock-step design as now 
input data can be sourced from either one or n sources. The 
distribution of that data to the independent DPU cores can be 
used as a synchronising method and guarantee that the same 
data/code is presented to the cores at the same time. Given 
they are clocked at the same rate the results should be 
available at the same time – once the question of outliers noted 
above has been solved, the bus activity, data/instruction fetch 
and data-issue can be monitored to ensure the visible IP 
execution is the same for both cores. Additionally, the loosely-
coupled lockstepping method of checking output data can also 
be employed by the voter-checker. This circuit is in the 
implementation stage and verification that the isolation 
workflow can be used with this architecture has been 
completed.     

IV. CONCLUSIONS AND FURTHER WORK  
Initial experiments measuring turnaround time on two 

different platforms have shown us that the interface between 
host and compute element, whose performance is largely 

dictated by the operating system, appears to introduce 
substantial variance into the turnaround time. We have shown 
that the FPGA architecture, using DPUs, has the potential to 
be tightly lock-stepped and also applicable in an industry 
acceptable dependability workflow such as the isolation 
workflow.  

A. Future Work   
Future work is focused on optimising the DPU-based lock-

step solution but several open questions including scheduler 
performance in the GPU/FPGA processing elements need to 
answered.   
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