
www.embedded-world.eu 
 

 
Secure Boot Concept on the Zynq Ultrascale+ 

MPSoC 
Thierry Delafontaine 

ZHAW School of Engineering 
Institute of Embedded Systems 

Winterthur, Switzerland 
thierry.delafontaine@zhaw.ch 

Matthias Rosenthal 
ZHAW School of Engineering 
Institute of Embedded Systems 

Winterthur, Switzerland 
matthias.rosenthal@zhaw.ch

 
 

Although many embedded devices lack the required security, 
manufacturers realize that security is becoming an issue. 
Following the Platform Security Architecture (PSA) framework 
from Arm® various security features of the Xilinx Zynq 
Ultrascale+ were analyzed and implemented. The outcome is a 
modular reference design, where different security features can be 
added, depending on the individual use-case. 
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I.  INTRODUCTION 
Security is a significant challenge in industrial systems. 

Attacks against critical systems are a harsh reality and can cause 
much harm to customers and the production companies. The 
security level of such systems is often very low. This is mainly 
due to the lack of know-how and the missing maturity in the 
market. According to Kaspersky [1], the maturity in the 
industrial market is low but increasing, due to the strong 
negative impact of incidents. Limiting factors are the lack of 
skill and collaborations. Thus, security has to take up a more 
critical role in the development of future systems. 

This work focuses on the Zynq Ultrascale+ produced by 
Xilinx. This device is a System on Chip (SoC), which combines 
a multitude of different processors, as well as Programmable 
Logic (PL/FPGA) and hardened cores dedicated, to specific 
functions. The Zynq Ultrascale+ is equipped with up to four 
Arm® Cortex™-A53 Application Processing Unit (APU) cores, 
a dual-core Arm® Cortex™-R5 Realtime Processing Unit 
(RPU) and an Arm® Mali™-400 MP2 Graphical Processing 
Unit (GPU). The chip is equipped with a dedicated Platform 
Management Unit (PMU) for system and power management to 
ensure functional safety. A dedicated Configuration Security 
Unit (CSU) handles the hardened security features like the AES 
core, the RSA core, and the hashing core. It provides secure key 
storage and different methods to minimize key usage. 
Additionally, different parameters can be monitored, like 
voltage and temperature, to detect tampering and prevent data 
disclosure. The chip also integrates the Arm® TrustZone 
technology, as well as the Arm® Cryptography Extension to 
support different cryptography methods [2]. 

II. RELATED WORK AND LITERATURE 
Previous related work and literature There is a lot of good 

documentation about a security-aware design process, which 
originates from the IT world. This [3] preceding master thesis 
applies such concepts, e.g. Data Flow Diagram (DFD), to IoT 
devices. In a previous project, we also analyzed the Xilinx 7000 
SoC and programmed a Linux driver to use the hardened AES 
core within Linux to decrypt sensitive user data. 

Provided product documentation and implementation 
examples Xilinx provides a lot of documentation [2, 4, 5], as 
well as implementation examples [6, 7, 8, 9]. However, the 
examples are usually restricted to bare-metal applications. In 
contrast, this project concentrates on the implementation with 
Linux as an Operating System (OS) and U-Boot as a Second 
Stage Boot Loader (SSBL). 

III. SECURE DEVELOPMENT 
Fig. 1 shows the four steps in the PSA framework [10] 

provided by Arm®. In a first step, the future product is analyzed 
regarding, its assets, environment, and connectivity. 

 
Fig. 1. Development steps in the PSA framework 



 

Theoretical security requirements are translated to hardware 
specifications in the second step. These specifications influence 
the hardware and the software implemented in step three. The 
implemented solutions for identified problems are tested in the 
fourth step. 

A. Thread Modelling 
Define security goals Defining security goals is necessary, 

to focus on the important threats. Security goals are common 
specifications for a product. They can emerge from industry or 
company standards. Usually, three to six security goals should 
be specified. Security goals can be different for each company 
or system and are heavily dependent on the environment, the 
customer, and his specifications. 

Visualize the product and its assets Concerning the 
complexity of systems, the easiest way to understand them is to 
visualize them in a simple representation. A Data Flow Diagram 
(DFD) is created to point out intersections between various 
subcomponents. These subcomponents range from databases to 
servers to external human interaction like a system 
administrator. A simple example is given in Fig. 2. 

 
Fig. 2. Example of a DFD 

In the visualization, important assets can be identified. Trust 
boundaries can be determined, where two components should 
not automatically trust each other. Thus, access to important 
assets or infrastructure can be restricted. Trust boundaries 
usually mark, where an attacker may try to access the system. 

Identify adversaries Now that the assets are known, the 
adversaries can be identified and analyzed. There is a multitude 
of threat agents described in the ENISA threat landscape [11]. 
Each threat agent has a certain level of motivation, resources, 
and skills. 

Identify threats STRIDE can be used for a structured 
approach to threat identification. STRIDE was introduced and 
used by Microsoft to find threats in their services and products 
[12]. Because of that, it is not a native threat identification 
approach for embedded systems. However, it can be easily 
applied. STRIDE is an acronym and stands for:  

• Spoofing: Impersonating something or someone else to 
gain a non-legitimate advantage. Spoofing violates the 
authenticity of an application. 

• Tampering: Modification of data or code while it is 
transmitted or stored. Thus, tampering violates the 
integrity of an application. 

• Repudiation: Deny to have performed an action and 
leaving no evidence to prove against. No evidence can be 

linked to an attacker. This violates the non-repudiation of 
an application. 

• Information disclosure: Exposing information to 
someone not authorized to see it or getting access to data 
without authorization. Information disclosure violates 
the confidentiality of an application. 

• Denial of Service: Deny or degrade service to legitimate 
users and violating the availability of an application. 

• Elevation of Privilege: Gain capabilities without proper 
authorization. This violates the authorization of an 
application. 

All six categories can be applied to the elements of the DFD. 

Evaluate threats The identified threats are usually too 
many. Thus, the threats have to be prioritized. In a good threat 
evaluation, the threats are prioritized according to the asset 
value, the adversaries, and the security goals. 

Define requirements Finally, the requirements have to be 
defined. Requirements are simple statements and have to contain 
the least amount of technical details. The technical details will 
later be defined. For example, the tread is information 
disclosure, thus the requirement would be to encrypt data. How 
the data is encrypted and whether the chosen encryption is 
sufficient, is decided in the second step of the PSA framework. 

IV. FEATURE ANALYSIS 
In contrary to IoT specific microcontroller units (MCU), the 

Zynq Ultrascale+ SoC combines a multitude of systems on a 
single chip. Therefore, only the most prominent features are 
described in this section. 

A. Secure Boot 
The boot-process of the Zynq Ultrascale+ device can be 

divided into four stages. Because the Zynq Ultrascale+ contains 
multiple processing Units, the boot process takes place on 
various processors. Fig. 3 shows the boot process. 

 
Fig. 3. Bootflow of the Xilinx Zynq Ultrascale+ 
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Secure boot heavily depends on the principle root of trust. 
Root of trust ensures that each software in the “boot tree” is 
authenticated and therefore, trusted to execute the correct 
follow-up software. Up until stage two, the executed code is 
loaded from on-device ROMs. Thus, the code executed is 
trusted. Starting with stage three, the software is loaded from 
external sources and can be changed by the user. The first stage 
boot loader (FSBL), is the changing point where we decide if we 
want to follow a secure boot flow and what type. The Zynq 
Ultrascale+ offers two secure boot options. 

Encryption only When you choose the “encryption only” 
boot process, AES encryption is enforced for images loaded 
from external memory. However, because the implemented AES 
mode is the Galois Counter Mode (GCM) the images are not 
only encrypted but also authenticated, with the Galois Message 
Authentication code (GMAC). The drawback of this mode is, 
that the AES key has to be stored in the eFuse. 

Root of Trust This mode enforces RSA authentication of 
the images loaded from external memory. The key source for the 
optional AES encryption is choosable. Additionally, this secure 
boot mode offers a lot more features, like key revocation. 

Stage four and the following programs are user-specific and 
can be either loaded by the first stage boot loader if they are 
small enough. Or by a following second-stage bootloader (SSL) 
like U-Boot. 

B. Key Storage 
The Zynq Ultrascale+ mainly offers two cryptography 

methods with keys. RSA as an asymmetric method for 
authentication and AES as a symmetric method for encryption 
and authentication. 

For AES the key storage plays an important role because the 
key has to be kept secret to maintain security. The Zynq 
Ultrascale+ offers various key sources and modes to reduce key 
usage. The following table shows different modes and sources. 

TABLE I.  AES KEY SOURCES 

 

For RSA the key storage does not play an important role, 
because only the public key is used during boot. It only has to be 
ensured, that the correct public key is enforced. Therefore, a 
hash of the public key can be stored inside the eFuse register, 
which will be checked when the authentication is enforced. 

C. Crypto API 
To improve the performance of cryptography algorithms, 

processors have hardware support to accelerate cryptography 
functions. A user-space software can calculate cryptography 
functions in software at any time, but only the kernel provides 
access to the cryptography hardware. Therefore the Linux kernel 
provides the Linux Crypto API to user-space programs, to make 
the cryptography hardware available in user-space. 

Fig. 4 shows, that the Linux Crypto API is a layer between 
the applications requiring the cryptography hardware and the 
drivers for the cryptography hardware. This has the advantage, 
that the Crypto API provides a unified interface for hardware 
drivers and applications. A unified interface simplifies 
development and helps to keep applications portable between 
different platforms [13]. 

AES Key 
Source Description 

BBRAM 

Plain text key stored in Battery Backup RAM 
(BBRAM). This key can be reprogrammed 

and is lost in case the battery power is 
removed. 

eFUSE 

The key in the eFuse is either stored plain 
text, encrypted with the PUF key (black key), 
or obfuscated with the family key. The eFuse 

key can only be programmed once. 

AES_KUP 
register 

The key update register serves as an interface 
to hand over a user-provided key. A user-
provided key can only be used during run-

time and not during boot. 

Operational 
Key 

This key is stored in the encrypted boot 
header on the external storage. Therefore, 
this key is either decrypted with the key in 

the eFuse or the BBRAM key. 

Rolling 
Key 

The rolling key technique is used to prevent 
key exposure with Differential Power 

Analysis (DPA). In cases where partitions of 
the image reach a certain length, DPA can 
successfully discover the key. This mostly 

targets bitstreams. In such cases, the images 
can be split into small block sizes, which are 
encrypted using their key. The key is always 

stored inside the previous block [8]. 

Family Key 
The family key can only be used to obfuscate 

the other keys. This key is the same on all 
devices and is managed by Xilinx. 

PUF 
The Physical Unclonable Function (PUF) 
key can only be used to encrypt the other 

keys. This key is device-specific. 



 
Fig. 4. Crytpo API as interface between applications and hardware drivers 

Xilinx implemented drivers for the Linux Crypto API to use 
the underlying hardened cores for AES_GCM, RSA, and SHA. 

D. TrustZone 
TrustZone is a concept to isolate different parts of a system 

in Arm® based systems. Although, Linux also implements 
isolation between users and applications with different user 
permissions. However, with the complexity of the Linux kernel, 
the attack surface is huge. This makes it difficult to protect 
critical data if untrusted applications are running alongside 
trusted applications. TrustZone distinguishes between two 
worlds, the secure world, and the non-secure world, shown in 
Fig. 5. 

 
Fig. 5. TrustZone’s secure and non-secure world 

Most parts of the system, including Linux, are running in the 
non-secure world and only the critical parts of an application are 
executed in the secure world. Usually, if an attacker 
compromises Linux and gains root access to the system, the 
attacker has full access to the hardware. However, with 
TrustZone, Linux has only access to the non-secure world, and 
the applications in the secure world are safe [7]. 

Our implementation focuses on OP-TEE as a secure world 
OS. OP-TEE is an open-source implementation of a Trusted 
Execution Environment (TEE). 

E. Connecting Threats, Requirements and Features 
None of the previously described features would be useful if 

they could not be linked to detected threats. Thus, Fig. 6 gives 
an overview of features linked to the requirements and threats. 

 

 
Fig. 6. Linking of threats, requirements, and security features 

V. RESULT 
Prove of concept The implemented features were only 

tested according to their described functionality. No extensive 
penetration testing has been performed to show the reliability of 
the implementations in real-world usage. 

Reference design The work resulted in an open-source 
reference design. The project is accessible via Github (a link can 
be found at the end of this article). The idea of this reference 
design is to provide a basic implementation to build upon. 
Additionally, the instructions to the various features should 
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serve as a knowledge base, a summary, or as a pointer to the 
description provided in the product documentation. 

VI. CONCLUSION 
Security is a part of the development process, which cannot 

be neglected. The PSA framework helps with a structured 
approach. The analysis of the features shows that the Zynq 
Ultrascale+ has well built-in security. The modular reference 
design created eases the expense to quickly build a secure boot 
image and implement other additional security-related features. 

For further information, please contact 
matthias.rosenthal@zhaw.ch, hans.gelke@zhaw.ch or visit the 
GitHub page at https://github.com/InES-
HPMM/ZYNQ_USplus_secure_boot_reference_design. 
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