
www.embedded-world.eu

Secure Boot Concept on the Zynq Ultrascale+

MPSoC
Thierry Delafontaine

ZHAW School of Engineering
Institute of Embedded Systems

Winterthur, Switzerland
thierry.delafontaine@zhaw.ch

Matthias Rosenthal
ZHAW School of Engineering
Institute of Embedded Systems

Winterthur, Switzerland
matthias.rosenthal@zhaw.ch

Although many embedded devices lack the required security,
manufacturers realize that security is becoming an issue.
Following the Platform Security Architecture (PSA) framework
from Arm® various security features of the Xilinx Zynq
Ultrascale+ were analyzed and implemented. The outcome is a
modular reference design, where different security features can be
added, depending on the individual use-case.

Security; Embedded Devices; Trusted Electronics & Secure
Elements

I. INTRODUCTION
Security is a significant challenge in industrial systems.

Attacks against critical systems are a harsh reality and can cause
much harm to customers and the production companies. The
security level of such systems is often very low. This is mainly
due to the lack of know-how and the missing maturity in the
market. According to Kaspersky [1], the maturity in the
industrial market is low but increasing, due to the strong
negative impact of incidents. Limiting factors are the lack of
skill and collaborations. Thus, security has to take up a more
critical role in the development of future systems.

This work focuses on the Zynq Ultrascale+ produced by
Xilinx. This device is a System on Chip (SoC), which combines
a multitude of different processors, as well as Programmable
Logic (PL/FPGA) and hardened cores dedicated, to specific
functions. The Zynq Ultrascale+ is equipped with up to four
Arm® Cortex™-A53 Application Processing Unit (APU) cores,
a dual-core Arm® Cortex™-R5 Realtime Processing Unit
(RPU) and an Arm® Mali™-400 MP2 Graphical Processing
Unit (GPU). The chip is equipped with a dedicated Platform
Management Unit (PMU) for system and power management to
ensure functional safety. A dedicated Configuration Security
Unit (CSU) handles the hardened security features like the AES
core, the RSA core, and the hashing core. It provides secure key
storage and different methods to minimize key usage.
Additionally, different parameters can be monitored, like
voltage and temperature, to detect tampering and prevent data
disclosure. The chip also integrates the Arm® TrustZone
technology, as well as the Arm® Cryptography Extension to
support different cryptography methods [2].

II. RELATED WORK AND LITERATURE
Previous related work and literature There is a lot of good

documentation about a security-aware design process, which
originates from the IT world. This [3] preceding master thesis
applies such concepts, e.g. Data Flow Diagram (DFD), to IoT
devices. In a previous project, we also analyzed the Xilinx 7000
SoC and programmed a Linux driver to use the hardened AES
core within Linux to decrypt sensitive user data.

Provided product documentation and implementation
examples Xilinx provides a lot of documentation [2, 4, 5], as
well as implementation examples [6, 7, 8, 9]. However, the
examples are usually restricted to bare-metal applications. In
contrast, this project concentrates on the implementation with
Linux as an Operating System (OS) and U-Boot as a Second
Stage Boot Loader (SSBL).

III. SECURE DEVELOPMENT
Fig. 1 shows the four steps in the PSA framework [10]

provided by Arm®. In a first step, the future product is analyzed
regarding, its assets, environment, and connectivity.

Fig. 1. Development steps in the PSA framework

Theoretical security requirements are translated to hardware
specifications in the second step. These specifications influence
the hardware and the software implemented in step three. The
implemented solutions for identified problems are tested in the
fourth step.

A. Thread Modelling
Define security goals Defining security goals is necessary,

to focus on the important threats. Security goals are common
specifications for a product. They can emerge from industry or
company standards. Usually, three to six security goals should
be specified. Security goals can be different for each company
or system and are heavily dependent on the environment, the
customer, and his specifications.

Visualize the product and its assets Concerning the
complexity of systems, the easiest way to understand them is to
visualize them in a simple representation. A Data Flow Diagram
(DFD) is created to point out intersections between various
subcomponents. These subcomponents range from databases to
servers to external human interaction like a system
administrator. A simple example is given in Fig. 2.

Fig. 2. Example of a DFD

In the visualization, important assets can be identified. Trust
boundaries can be determined, where two components should
not automatically trust each other. Thus, access to important
assets or infrastructure can be restricted. Trust boundaries
usually mark, where an attacker may try to access the system.

Identify adversaries Now that the assets are known, the
adversaries can be identified and analyzed. There is a multitude
of threat agents described in the ENISA threat landscape [11].
Each threat agent has a certain level of motivation, resources,
and skills.

Identify threats STRIDE can be used for a structured
approach to threat identification. STRIDE was introduced and
used by Microsoft to find threats in their services and products
[12]. Because of that, it is not a native threat identification
approach for embedded systems. However, it can be easily
applied. STRIDE is an acronym and stands for:

• Spoofing: Impersonating something or someone else to
gain a non-legitimate advantage. Spoofing violates the
authenticity of an application.

• Tampering: Modification of data or code while it is
transmitted or stored. Thus, tampering violates the
integrity of an application.

• Repudiation: Deny to have performed an action and
leaving no evidence to prove against. No evidence can be

linked to an attacker. This violates the non-repudiation of
an application.

• Information disclosure: Exposing information to
someone not authorized to see it or getting access to data
without authorization. Information disclosure violates
the confidentiality of an application.

• Denial of Service: Deny or degrade service to legitimate
users and violating the availability of an application.

• Elevation of Privilege: Gain capabilities without proper
authorization. This violates the authorization of an
application.

All six categories can be applied to the elements of the DFD.

Evaluate threats The identified threats are usually too
many. Thus, the threats have to be prioritized. In a good threat
evaluation, the threats are prioritized according to the asset
value, the adversaries, and the security goals.

Define requirements Finally, the requirements have to be
defined. Requirements are simple statements and have to contain
the least amount of technical details. The technical details will
later be defined. For example, the tread is information
disclosure, thus the requirement would be to encrypt data. How
the data is encrypted and whether the chosen encryption is
sufficient, is decided in the second step of the PSA framework.

IV. FEATURE ANALYSIS
In contrary to IoT specific microcontroller units (MCU), the

Zynq Ultrascale+ SoC combines a multitude of systems on a
single chip. Therefore, only the most prominent features are
described in this section.

A. Secure Boot
The boot-process of the Zynq Ultrascale+ device can be

divided into four stages. Because the Zynq Ultrascale+ contains
multiple processing Units, the boot process takes place on
various processors. Fig. 3 shows the boot process.

Fig. 3. Bootflow of the Xilinx Zynq Ultrascale+

www.embedded-world.eu

Secure boot heavily depends on the principle root of trust.
Root of trust ensures that each software in the “boot tree” is
authenticated and therefore, trusted to execute the correct
follow-up software. Up until stage two, the executed code is
loaded from on-device ROMs. Thus, the code executed is
trusted. Starting with stage three, the software is loaded from
external sources and can be changed by the user. The first stage
boot loader (FSBL), is the changing point where we decide if we
want to follow a secure boot flow and what type. The Zynq
Ultrascale+ offers two secure boot options.

Encryption only When you choose the “encryption only”
boot process, AES encryption is enforced for images loaded
from external memory. However, because the implemented AES
mode is the Galois Counter Mode (GCM) the images are not
only encrypted but also authenticated, with the Galois Message
Authentication code (GMAC). The drawback of this mode is,
that the AES key has to be stored in the eFuse.

Root of Trust This mode enforces RSA authentication of
the images loaded from external memory. The key source for the
optional AES encryption is choosable. Additionally, this secure
boot mode offers a lot more features, like key revocation.

Stage four and the following programs are user-specific and
can be either loaded by the first stage boot loader if they are
small enough. Or by a following second-stage bootloader (SSL)
like U-Boot.

B. Key Storage
The Zynq Ultrascale+ mainly offers two cryptography

methods with keys. RSA as an asymmetric method for
authentication and AES as a symmetric method for encryption
and authentication.

For AES the key storage plays an important role because the
key has to be kept secret to maintain security. The Zynq
Ultrascale+ offers various key sources and modes to reduce key
usage. The following table shows different modes and sources.

TABLE I. AES KEY SOURCES

For RSA the key storage does not play an important role,
because only the public key is used during boot. It only has to be
ensured, that the correct public key is enforced. Therefore, a
hash of the public key can be stored inside the eFuse register,
which will be checked when the authentication is enforced.

C. Crypto API
To improve the performance of cryptography algorithms,

processors have hardware support to accelerate cryptography
functions. A user-space software can calculate cryptography
functions in software at any time, but only the kernel provides
access to the cryptography hardware. Therefore the Linux kernel
provides the Linux Crypto API to user-space programs, to make
the cryptography hardware available in user-space.

Fig. 4 shows, that the Linux Crypto API is a layer between
the applications requiring the cryptography hardware and the
drivers for the cryptography hardware. This has the advantage,
that the Crypto API provides a unified interface for hardware
drivers and applications. A unified interface simplifies
development and helps to keep applications portable between
different platforms [13].

AES Key
Source Description

BBRAM

Plain text key stored in Battery Backup RAM
(BBRAM). This key can be reprogrammed

and is lost in case the battery power is
removed.

eFUSE

The key in the eFuse is either stored plain
text, encrypted with the PUF key (black key),
or obfuscated with the family key. The eFuse

key can only be programmed once.

AES_KUP
register

The key update register serves as an interface
to hand over a user-provided key. A user-
provided key can only be used during run-

time and not during boot.

Operational
Key

This key is stored in the encrypted boot
header on the external storage. Therefore,
this key is either decrypted with the key in

the eFuse or the BBRAM key.

Rolling
Key

The rolling key technique is used to prevent
key exposure with Differential Power

Analysis (DPA). In cases where partitions of
the image reach a certain length, DPA can
successfully discover the key. This mostly

targets bitstreams. In such cases, the images
can be split into small block sizes, which are
encrypted using their key. The key is always

stored inside the previous block [8].

Family Key
The family key can only be used to obfuscate

the other keys. This key is the same on all
devices and is managed by Xilinx.

PUF
The Physical Unclonable Function (PUF)
key can only be used to encrypt the other

keys. This key is device-specific.

Fig. 4. Crytpo API as interface between applications and hardware drivers

Xilinx implemented drivers for the Linux Crypto API to use
the underlying hardened cores for AES_GCM, RSA, and SHA.

D. TrustZone
TrustZone is a concept to isolate different parts of a system

in Arm® based systems. Although, Linux also implements
isolation between users and applications with different user
permissions. However, with the complexity of the Linux kernel,
the attack surface is huge. This makes it difficult to protect
critical data if untrusted applications are running alongside
trusted applications. TrustZone distinguishes between two
worlds, the secure world, and the non-secure world, shown in
Fig. 5.

Fig. 5. TrustZone’s secure and non-secure world

Most parts of the system, including Linux, are running in the
non-secure world and only the critical parts of an application are
executed in the secure world. Usually, if an attacker
compromises Linux and gains root access to the system, the
attacker has full access to the hardware. However, with
TrustZone, Linux has only access to the non-secure world, and
the applications in the secure world are safe [7].

Our implementation focuses on OP-TEE as a secure world
OS. OP-TEE is an open-source implementation of a Trusted
Execution Environment (TEE).

E. Connecting Threats, Requirements and Features
None of the previously described features would be useful if

they could not be linked to detected threats. Thus, Fig. 6 gives
an overview of features linked to the requirements and threats.

Fig. 6. Linking of threats, requirements, and security features

V. RESULT
Prove of concept The implemented features were only

tested according to their described functionality. No extensive
penetration testing has been performed to show the reliability of
the implementations in real-world usage.

Reference design The work resulted in an open-source
reference design. The project is accessible via Github (a link can
be found at the end of this article). The idea of this reference
design is to provide a basic implementation to build upon.
Additionally, the instructions to the various features should

www.embedded-world.eu

serve as a knowledge base, a summary, or as a pointer to the
description provided in the product documentation.

VI. CONCLUSION
Security is a part of the development process, which cannot

be neglected. The PSA framework helps with a structured
approach. The analysis of the features shows that the Zynq
Ultrascale+ has well built-in security. The modular reference
design created eases the expense to quickly build a secure boot
image and implement other additional security-related features.

For further information, please contact
matthias.rosenthal@zhaw.ch, hans.gelke@zhaw.ch or visit the
GitHub page at https://github.com/InES-
HPMM/ZYNQ_USplus_secure_boot_reference_design.

REFERENCES
[1] W. Schwab, M. Poujol, “The state of industrial cyber security”, Kaspesky,

2018.
[2] “Zynq UltraScale+ device technical reference manual” (UG1085), Xilinx,

2019.

[3] T. Schläpfer, A. Rüst, “Embedded security with secure MCUs”, Zurich
University of Applied Science, Institute of Embedded Systems, 2018.

[4] “Zynq UltraScale+ MPSoC software developer guide” (UG1137), Xilinx,
2019.

[5] “Isolate security-critical applications on Zynq UltraScale+ devices”
(WP516), Xilinx, 2019.

[6] “Programming BBRAM and eFUSEs” (XAPP1319), Xilinx, 2017.
[7] “Isolation methods in Zynq UltraScale+ MPSoCs” (XAPP1320), Xilinx,

2019.
[8] “Developing tamper-resistant designs with Zynq UltraScale+”

(XAPP1323), Xilinx , 2018.
[9] “External secure stroage using the PUF” (XAPP 1333), Xilinx, 2018.
[10] “ENISA threat landscape report 2018”, ENISA, 2019.
[11] “Platform security achitecture overview”, Arm Limited, 2019.
[12] L. Osterman, “Threat modelling again”, Microsoft,

https://docs.microsoft.com/de-ch/archive/blogs/larryosterman/threat-
modeling-again-stride, Accessed 2020.

[13] S. Mueller, M. Vasut, “Linux kernel Crypto API”,
https://www.kernel.org/doc/html/latest/crypto/index.html, Accessed
2020.

https://github.com/InES-HPMM/ZYNQ_USplus_secure_boot_reference_design
https://github.com/InES-HPMM/ZYNQ_USplus_secure_boot_reference_design
https://docs.microsoft.com/de-ch/archive/blogs/larryosterman/threat-modeling-again-stride
https://docs.microsoft.com/de-ch/archive/blogs/larryosterman/threat-modeling-again-stride
https://www.kernel.org/doc/html/latest/crypto/index.html

