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In software engineering, the developers’ joy of decomposing and recomposing microservice-based
applications has led to an enormous wave of microservice artefact technologies. To understand
them better, researchers perform hundreds of experiments and empirical studies on them each
year. Improving the reuse and reproducibility of these studies requires two ingredients: A system to
automate repetitive experiments, and a research data management system with emphasis on making
research reproducible. Both frameworks are now available via the Microservice Artefact Observatory
(MAO) and Renku. In this paper, we explain the current capabilities of MAO as a global federated
research infrastructure for determining software quality characteristics. Moreover, we emphasise the

integration of MAO with Renku to demonstrate how a reproducible end-to-end experiment workflow
involving globally distributed research teams looks like.
©2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
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1. Motivation and significance

Microservice artefacts are basic units of software which are
composed to yield executable, distributable and scalable appli-
cations. Often appearing as single (atomic) files or compound
archives, the characteristics of each of them influences the overall
characteristics of the resulting applications at runtime. Software
technology researchers are thus interested in code analysis, static
property determination at the artefact level, and dynamic run-
time assessment at one point in time, as well as in evolution of
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these metrics over time. From the plethora of already published
works, one can estimate the multidimensional space of research
0N MICroservices:

1. Artefact types: There are conventional artefact types per
programming language (for Platform-as-a-Service, or PaaS),
such as Java's web application archives (WAR), Python's egg
files or Ruby’'s gems [2], and the respective source files.
Often, they are set up as microservices using glue code.
There are also directly executable language- and provider-
specific cloud function artefacts (for Function-as-a-Service,
or FaaS), such as Google Cloud Functions and AWS Lambda,
and smart contracts (for Blockchain-as-a-Service, or BCaaS),
such as Solidity [3]. Polyglot artefact types further encom-
pass container and virtual machine images (e.g. Docker,
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Fig. 1. Reproducibility spectrum.

Source: [1].

OVA) and their build documents (e.g. Dockerfiles [4]). Fi-
nally, there are composition documents (e.g. Docker Com-
pose, Kubernetes manifests) and even bundled composi-
tions (e.g. Helm charts).

2. Artefact repositories: The spectrum ranges from generic
software hosting (e.g. private and public GitLab/GitHub
instances) over specialised repositories (e.g. Docker Hub,
Maven Central) to hybrid solutions (e.g. Artifactory). Often,
there are quality and activity differences between them,
making it necessary to use many of them in combination
as representative sample.

3. Lifecycle: There are works concerned with the design and
proper abstraction levels and factors [5], implementation
techniques, code transformation, deployment [6], live mi-
gration, benchmarking [7] and self-management.

4. Research methods: There are empirical studies with inter-
views [8], quantitative studies based on data collection [9],
simulation [ 10], experiments [11], as well as design science
approaches [12].

5. Research data handling: Several authors publish no data
at all. Others point to datasets, in some cases even re-
producible or evolvable ones. They fall into different cate-
gories of the reproducibility spectrum. In contrast to other
communities, there are no standard repositories for in-
sights into microservices, and few widely accepted refer-
ence datasets. Feeding machine-readable data back into
development and runtime tools around microservices is
however considered useful, as evidenced by the prolifer-
ation of knowledge bases [13]. Furthermore, several stud-
ies make wide assumptions that can be tightened with
representative data samples.

The Microservice Artefact Observatory (MAQO) has been de-
signed to overcome the differences and difficulties in automated
acquisition, aggregation, verification and analytics of the research
data related to microservices. Its main features are federation
of independently operated nodes involving several research in-
stitutions to established ground truth based on consensus, re-
silient operation to ensure the data analysis pipeline is working
flawlessly, and extensibility for new microservice technologies.

At the single node level, there is apparent overlap with other
data management and monitoring frameworks existing in the
cloud-native space. However, MAQ's main feature is the dis-
tributed and collaborative environment it enables. MAO inte-
grates data acquisition tools, but those are meant to be generic
tools scheduled for automated operation, therefore differentiating
it from monitoring frameworks, such as SonarQube [14]. While
MAO has a basic data workflow automation system, similar to
frameworks such as Airflow [15], Dagster [16] or Prefect [17],
it is primarily a distributed collaboration tool, rather than an
automation framework. MAQ’s primary feature is the ability to
share experiment code and configurations between collaborators,

and arrange the resulting reproduced data in a way that it can
easily be compared and cross-verified and to partially automate
this verification.

Once all data has been aggregated and confirmed, the scope
of MAO ends. In this article, after presenting MAO itself, we thus
demonstrate how to complement it with Renku. As opposed to
static data repositories, Renku serves not only as one-time sink
but rather as long-term platform for other researchers to curate,
augment and engage with the data continuously injected by MAO
for increased reproducibility (see Fig. 1).

2. Software description
2.1. Microservice Artefact Observatory

The task of the observatory is to gather information and in-
sights on software artefacts in the form of metrics which allow
assessing entire software applications in which these artefacts
are used as microservices. The metrics may refer to completeness
of metadata, code quality, presence of security vulnerability, unit
test coverage, startup latency, robustness in the presence of fuzz
testing or elasticity, among other characteristics. The specifics of
these metrics are user-defined. To convert an observation tool for
deployment to MAO, it only needs to adhere to a specific folder
structure and be accompanied with a simple metadata file that
acts as a specification for the data the tool produces. As with all
automated solutions, the long-term aim is to remove the need to
conduct isolated and error-prone data acquisition for each study.
Instead, researchers can just query a set of metrics over a set
of artefact repositories within a time window, and base their
analysis on the query result which is guaranteed to be stable,
verified and citable.

The observatory consists of an generic underlying federated
infrastructure in which nodes are operated independently and
coordinated via consensus voting. Nodes fetch new data and/or
create new data through aggregation and analytics. All opera-
tions are meant to be resilient, automatable and auditable in
the interest of providing a ground truth knowledge about the
software artefacts with the highest possible level of verification
from trusted operators. This knowledge is then suitable to be
cited and used for further studies by researchers. Specifically,
MAO aims at these factors:

1. Automation: Repetitive data acquisition and exploration
should be repeated with fixed time periods to yield a
precise representation. A task scheduler is therefore a key
component, while still allowing ad-hoc invocation for early
experiments.

2. Resilience: In case a network connection fails or a sched-
uled task produces no or evidently unusable results, it
should be marked for repetition within a tolerance win-
dow after the originally scheduled time. To tolerate more
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extended failure scenarios, redundancy can be achieve by
scheduling an experiment on multiple nodes.

3. Voting: If there are gaps or conflicts in the output data
of nodes that are running the same experiment, a conflict
resolution system based on simple voting algorithms will
attempt to provide a solution that acts as the ground truth.
Researchers can specify which algorithm they wish to be
used for this in their metric specification file. At this stage
the prototype implementation supports majority voting,
weighted mean voting or the option to list all diverging
values instead of resolving the conflict automatically.

4. Audits: Information about when which data were acquired
or which experiments were conducted is logged along with
hardware information about the node so that a comparison
of for instance different runtime behaviour can be further
investigated.

A number of observatory modules have been implemented
specifically to address microservice artefacts. Thus, each MAO
node is capable to schedule a daily retrieval of metadata from
Docker Hub or a weekly download of serverless applications from
the AWS Serverless Application Repository, among other types of
artefacts. The determination of aggregate values, such as the aver-
age number of maintainers per artefact, is part of these modules
but can also be implemented as dedicated aggregation modules
that are scheduled in succession. Moreover, MAO ensures that
all metrics are kept in a timeline so that the evolution of the
software artefacts as well as developer/maintainter activities can
be tracked over time.

MAO is primarily driven by Zurich University of Applied Sci-
ences, although with increasing participation of interested re-
searchers from other institutions, as evidenced on its website.!
Available publications cover the framework itself [19,20] as well
as artefact type-specific quantitative assessments, covering Helm
charts [21], SAM applications [22], DApps [23], Docker images and
Dockerfiles [24].

2.2. Renku
The Renku platform consists of RenkuLab, a web-based appli-

cation and Renku, a command-line tool for managing code, data,
workflows and making practical use of the knowledge graph. It

1 MAO website: https://mao-mao-research.github.io/.
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Fig. 3. Integrated Workflow.

focuses on three pillars: reproducibility, reusability and collabo-
ration. A public instance of RenkuLab is available? but institutions
can also host their own instances and federate them.

Renku workspaces are divided into projects, which are further
linked with datasets and interactive environments as well as an
integrated GitLab instance in which the Renku project is persisted
as versioned Gitlab project (Fig. 2). Environments such as R
Studio, Jupyter Notebooks and interactive shells are available.

The backbone of Renku is the knowledge graph, used to record
and query the relationships between data and code. The analysis
workflows are linked with a knowledge graph in the following
way: 1. Inputs and outputs of analysis steps are recorded into a
knowledge graph while the work is being done. 2. These steps can

2 RenkuLab website: https:/[/renkulab.io/.
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be repeated or integrated into more complex workflows. 3. The
provenance of all data products is always accessible via simple
tools. 4. Version control is built-in for data, code and workflows.

2.3. Integrated system

There are two alternative designs to integrate MAO with
Renku: Running MAO as interactive environment within Renku,
or using Renku'’s API to store the output data of MAO and perform
data aggregation and analysis as a reproducible Renku workflow.
We have implemented the latter design due to the loose coupling
advantage. MAQ’s interfacing with a regular Git repository is
substituted by interfacing with the repository provided by the
configured Renku project. In addition, the MAO orchestrator will
use Renku's command-line interface to run the reproducible
workflow (Fig. 3) and update the output datasets.

3. Ilustrative example

We demonstrate the capabilities of MAO with an end-to-end
data analysis pipeline. We start with a standard pipeline including
data acquisition, aggregation and analysis. Then we outline the
conversion of said pipeline to take advantage of the automation
features of MAO and Renku.

3.1. Standard pipeline

The standard pipeline for this example (Fig. 4) will include the
following stages:

1. Data acquisition: Execution of a tool that gathers raw
data, such as a downloader for software artefacts and code
repositories or a web scraper for software metadata. This
can be scheduled periodically with the use of cron jobs or
similar tools.

2. Aggregation: Once enough data is collected, a user-
provided aggregation script will generate a dataset from
the raw data, converting them to a useable format for
analysis.

3. Analysis: The dataset can now be used for analysis in vari-
ous ways, for example with R scripts or Jupyter notebooks.

3.2. Converting to a Renku project

The first step to convert this pipeline is to setup a Renku
project. The raw data can be used as input data, and the aggre-
gation and analysis scripts can be added to the project. Then, the
aggregation and analysis steps of the pipeline can be recorded as
a Renku reproducible workflow. This will allow the dataset to be
regenerated and the analysis to be updated, whenever new input
data is pushed to the repository.

3.3. Data acquisition with the MAO orchestrator

The researchers will need to setup a MAO orchestrator in-
stance. While the system can be started as standalone via Docker-
Compose, it can also be configured to join an existing MAO
federation, in which case it will have access to the shared registry
of data acquisition tools (corresponding to stage 1 of the pipeline
above) and datasets of the federation (corresponding to Renku
projects).

The data acquisition tool will need to be containerised so that
the orchestrator can interact with it via the Docker APIL After
that the tool can be registered into the orchestrator which will
add it to the registry, so that other members of the federation
can deploy it as well. The new tool can now be scheduled with
standard crontab syntax to run periodically via the orchestrator
interface.

3.4. Renku reproducible workflow

Once the data acquisition is completed, the orchestrator will
update the Renku repository with the new input data. Then it can
automatically invoke Renku's update functionality and run the
previously recorded reproducible workflow, updating both the
aggregated dataset and the analysis results.

This means that with every scheduled execution of the data
acquisition tool, the entire pipeline will run automatically, from
the raw data to the analysis results. The knowledge graph (Fig. 5)
is updated on each run.

4. Impact

While our research around MAQ maintains the focus on mi-
croservices, the underlying framework could also modernise
quantitative research on other discrete data points retrieved
through the network in regular intervals. This encompasses fi-
nance data (e.g. foreign exchange rates or stock tickers), health
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data (e.g. pandemic cases per administrative region), weather
and social networks. We expect that beyond the current focus
of funding agencies on the existence of a data management
plan, increasingly the emphasis will shift towards highly capable
research infrastructures and research data management systems.
With MAO and its option to interface with Renku, this concern
can be addressed. MAQ's containerised tool sharing feature allows
data acquisition tools to be reproducible, and experiments to thus
be repeated and verified with minimal setup. Renku, on the other
hand can handle the data management in a reproducible manner
and automate the analysis, granting easy access to replication and
verification studies, as well as collaborations. For the software
example we discussed above, MAO can automate the acquisition
and also allow anyone to reproduce it, while Renku can automate
the process of repeating the analysis when new data is acquired,
while maintaining data provenance and versioning. In the col-
laborative example, different institutions can pool aggregate data
using MAO from their own monitoring infrastructures (e.g. soft-
ware defects, weather or pandemic related data) and easily share
a Renku workflow to manage and analyse it in the same way.

5. Conclusions

MAOQ delivers a federated infrastructure to perform inde-
pendent quantitative software metrics observations, to foster a
shared ground truth by comparing the observations, and to gain
insights through reproducible experiments. The reproducibility is
ensured by Renku, the usage of which is transparently integrated

into MAO for this matter. Software engineering researchers look-
ing for appropriate tools to perform long-term observations,
evolution/trend studies and assessments of recently emerging
artefact technologies should consider the use of MAO to benefit
from these characteristics.
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