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Abstract—Multipath Interferences (MPI) represent a signifi-
cant source of error for many 3D indirect time-of-flight (iToF)
applications. Several approaches for separating the individual
signal paths in case of MPI are described in literature. However,
a direct comparison of these approaches is not possible due to
the different parameters used in these measurements. In this
article, three approaches for MPI separation are compared using
the same measurement and simulation data. Besides the known
procedures based on the Prony method and the Orthogonal
Matching Pursuit (OMP) algorithm, the Particle Swarm Opti-
mization (PSO) algorithm is applied to this problem. For real
measurement data, the OMP algorithm has achieved the most
reliable results and reduced the mean absolute distance error up
to 96% for the tested measurement setups. However, the OMP
algorithm limits the minimal distance between two objects with
the setup used to approximately 2.7 m. This limitation cannot be
significantly reduced even with a considerably higher modulation
bandwidth.

Index Terms—indirect time-of-flight, multi path interference,
Prony method, orthogonal matching pursuit, particle swarm
optimization

I. INTRODUCTION

The 3D iToF measurement method using Continuous Wave
(CW) modulation is an established technique found in many
fields of application. A 3D iToF camera consists of an illumi-
nation and a photosensitive sensor element plus corresponding
evaluation circuity. This measurement method is shown in sim-
plified form in Fig. 1. The illumination sends an optical, CW
modulated Tx signal with modulation frequency fn, which
then is reflected by the objects in the Field of View (FoV)
of the camera. This reflected Rx signal is captured by the
sensor element and demodulated using a homodyne receiver
structure. For each pixel, the phase ϕn and amplitude an of the
demodulated signal mn, described in (1), is measured. For the
case of a single reflection K = 1, with known fn and speed of
light c, the object distance d0 can thus be estimated according
to (2).

mn =
K−1∑
k=0

ake
4jπfndk

c = ane
ϕn (1)

d0 =
cϕn

4πfn
,K = 1 (2)

This method works well for many applications. However, there
are scenes, where the assumption of only one reflexion per

Fig. 1. 3D iToF camera principle

pixel does not match the reality. Several reflexions can be
caused e.g. by semi-transparent objects, corners, or due to
straylight. In this case K > 1 signals with the same frequency
fn but different phase ϕk and amplitude ak are superimposed
and thus the resulting phase ϕn and amplitude an do not
correspond to a real path. This error is known as MPI and
is visible in the point cloud in Fig. 1 along the contour of the
person.

There are different approaches to resolve K signal paths
using N iToF measurements with different modulation fre-
quencies [1], [2]. In [3] spectral estimation for K = 2 and
N = 5 is described based on the Prony method and tested
on simulation data with modulation frequencies in the range
of 22 MHz to 66 MHz. The general case with arbitrary K
and at least N = 2K + 1 is described in [4]. In both works
the spectrum estimation is a closed form solution based on
Prony. With a measurement using N = 21 frequencies in
the range 52 MHz to 72 MHz, up to K = 2 signal paths
were separated. In [5] the spectrum is estimated with the
iterative greedy algorithm OMP for a general case with K
signal paths. The method is tested with measurements using
N = 77 frequencies in the range 0.07937 MHz to 61.1149
MHz and resolved for the case K = 3.

Each of these methods could reduce the error due to MPI
dramatically. However, a comparison is quite difficult due to
the different measurement settings. The aim of this work is
to compare three different methods for MPI separation using
the same data. In addition to the known approaches based
on Prony and OMP, the PSO algorithm, which exhibits a
certain robustness with respect to local minima due to the
stochastic component, is applied to MPI separation. To the
best of our knowledge, the PSO method has not been used for
this application so far. Furthermore, the minimum separable

© 2021 IEEE.  Personal use of this material is permitted.  Permission from IEEE must be obtained for all other uses, in any current or 
future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, 
for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.



distance difference between two objects is being investigated.
In section II the MPI separation measurement procedure

and the three methods are briefly described. Subsequently,
the results of the methods are presented in section III and
discussed in section IV. Section V concludes this work.

II. MPI SEPARATION

As a data basis for MPI separation, the test scene in the
FoV is measured with N = 14 equally distributed modulation
frequencies in the range from f0 = 10.0 MHz to fN−1 = 36.0
MHz. This results in a complex vector mmm per pixel of length
N with elements described in (1). A DME 660 from ESPROS
Photonics Corporation was used for these measurements, and
the amplitude and phase response of the camera have been
calibrated. In addition to the measured data, synthetic data
from simulations have also been used. The MPI separation
methods search for a maximum of KR = 3 signal paths. The
three methods are briefly described below. Detailed descrip-
tions of the Prony and OMP methods are provided in [2]–[5].

A. Prony Method

According to theory, the Prony method can exactly separate
K signal paths with N > 2K+ 1 modulation frequencies [4].
Since this method is not an iterative procedure but a closed
form method, the computational effort is low. To reduce the
sensitivity to measurement errors, the data are pre-processed
with the Cadzow denoising procedure as suggested in [3],
using at most five iteration steps and a final rank of KR = 3.

B. Orthogonal Matching Pursuit

The separation with the OMP algorithm according to [5] is
based on a dictionary ΨΨΨ with entries ψψψ`, which corresponds
to the normalised theoretical measurement vector mmm for the
given modulation frequencies and a discrete distance d̃`. In the
context of this work, a dictionary with L = 200 entries and
d̃` ∈ [0, 10] m was used. The OMP algorithm approximates
in iteration step i the measurement vector mmm with the linear
combination m̃mmi of a subset of ΨΨΨ. This subset is extended in
each iteration step by the single entry ψψψ` which has the highest
correlation with the current residual mmm− m̃mmi.

C. Particle Swarm Optimization

With the PSO algorithm, the solution space is searched with
S = 50 particles, during I = 30 iteration steps for a global
minimum of the objective function fobj (m̃mm). The solution
space is spanned by KR = 3 amplitude and distance estimates.

m̃n =

KR−1∑
k=0

ãke
4jπfnd̃k

c (3)

fobj (m̃mm) = ‖m̃mm−mmm‖2 (4)

The behaviour of the particles is modelled on the swarm
behaviour known from nature and is controlled by particles
inertia weight ω = 0.8, weight of particles optimum η1 = 0.8
and weight of swarm optimum η2 = 0.8. For this work, the
PSO implementation of [6] is used.

III. PERFORMANCE COMPARISON

A benchmark measurement was used to compare the three
methods against each other. The setup consists of a wire grid
at a distance of d0 = 2.4 m with a wire diameter of 2
mm and a mesh size of approx. 1.0 × 1.0 cm in front of
a white wall at a distance of d1 = 8.0 m. Since the mesh
size of the grid is smaller than the pixel size in d0, two
reflections are mapped onto each pixel and thus cause MPI
as shown in Fig. 2a. The measurement data at f0 and the
results of the MPI separation based on the Prony, OMP and
PSO method are shown in Fig. 2 and Fig. 3 as 3D point cloud
and distance histogram, respectively. Whereas the standard
measurement delivers completely wrong distances between
5.0 and 7.5 m, the three methods investigated can clearly
separate the two layers at 2.4 and 8.0 m. In Table I the mean
value µe and standard deviation σe of the absolute distance
errors are presented. A 58× 74 pixel image area was used for
this evaluation. Using simulated data, the minimum separable
distance difference ∆dmin = |d0 − d1| of two objects with
similar amplitude a0 = a1 was also investigated, neglecting
stochastic and systematic measurement errors. These values
can also be seen in Table I and could be confirmed with real
measurements.

TABLE I
DISTANCE ERROR STATISTICS OF BENCHMARK MEASUREMENT

Dataset µe σe ∆dmin

standard measurement with f0 1.75 m 0.64 m
Prony 0.10 m 0.07 m > 0.00 m
OMP 0.07 m 0.04 m ≈ 2.70 m
PSO 0.16 m 0.14 m ≈ 1.50 m

IV. DISCUSSION

A. Distance Error

For all tested methods the distance error caused by MPI
can be significantly reduced and the individual signal paths
separated. In the ideal case without measurement errors, the
Prony method can be used to precisely separate the indi-
vidual signal paths with little computational effort. However,
measurement errors in the data can lead to considerable
distance errors despite pre-processing with Cadzow denoising.
In contrast, the OMP method provides the most reliable data
for all real benchmark measurements performed. The noise in
the absolute distance error of 0.04 m is below the distance
resolution d̃` − d̃`+1 = 0.05 m of the dictionary ΨΨΨ. The
PSO method has a high distance noise due to the stochastic
component of the algorithm, which can be seen in Table I and
Fig. 3d. Furthermore, the PSO method requires the highest
computational effort of the tested methods.

B. Distance Difference

Due to the closed form of the Prony method, arbitrarily
small distance differences can be separated in theory. In
contrast, ∆dmin for the PSO and OMP is limited by the used
frequency range. For the PSO method, ∆dmin is also limited



(a) measurement at f0 = 10 MHz (b) MPI separation with Prony (c) MPI separation with OMP (d) MPI separation with PSO

Fig. 2. 3D point cloud of benchmark measurement

(a) measurement at f0 = 10 MHz (b) MPI separation with Prony (c) MPI separation with OMP (d) MPI separation with PSO

Fig. 3. distance histogram of benchmark measurement

by the distance noise and is about 1.5 m in the setup used. For
the OMP method, ∆dmin is also limited by the selection of
the dictionary entries ψψψ` based on the correlation maximum
between error vector and dictionary. At the first iteration step,
the error vector corresponds to the measurement vector mmm and
thus the real-valued part of the correlation function to p(d̃`)
according to (5).

p
(
d̃`

)
= <

(∫ fN−1

f0

e−j
4πfd̃`
c

K−1∑
k=0

ake
4jπfdk

c df

)

=
K−1∑
k=0

akc
(
d̃` − dk

)
(5)

c (x) :=
c

4πx

(
sin

(
4πfN−1x

c

)
− sin

(
4πf0x

c

))
(6)

The function p(d̃`) for K = 2, ∆d = |d0 − d1| and a0 = a1
consists of the superposition of two sinc-like functions c (x)
shifted in x direction by d0 and d1 respectively. For small
∆d, the function p(d̃`) has a global maximum at d0+d1

2
and the paths are thus not properly separated. Separation is
theoretically only possible from ∆dmin, where this represents
the minimum ∆d for which the second derivative of the
function p(d̃`) exceeds 0 at the point d0+d1

2 . This limitation is
shown in Fig. 4 for different f0 and modulation bandwidths
fN−1 − f0. Note that ∆dmin does not fall below 0.5 m even
for fn ∈ [50, 150] MHz.

V. CONCLUSION

MPI can be reliably resolved with the investigated methods
and distance errors can be reduced by factors of 10 or more,
depending on the scene. The OMP algorithm achieves the

Fig. 4. ∆d limitation for OMP method

most reliable results even in case of error-prone measurements.
However, the OMP algorithm considerably limits the minimum
separable distance difference between the signal paths. For
minor errors, the Prony method can be used to accurately
separate the signal paths with low computational effort. With
less restricted computational requirements, the PSO method
with suitable optimisation of the parameters could be an
adequate method for separating erroneous measurement data
with small distance differences between the objects.
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