
“Won’t We Fix this Issue?” Qualitative Characterization and
Automated Identification of Wontfix Issues on GitHub

Sebastiano Panichellaa, Gerardo Canforab, Andrea Di Sorbob

aZurich University of Applied Science, Switzerland
bUniversity of Sannio, Italy

Abstract

Context: Addressing user requests in the form of bug reports and Github issues represents a crucial task of any successful software
project. However, user-submitted issue reports tend to widely differ in their quality, and developers spend a considerable amount of
time handling them.
Objective: By collecting a dataset of around 6,000 issues of 279 GitHub projects, we observe that developers take significant time
(i.e., about five months, on average) before labeling an issue as a wontfix. For this reason, in this paper, we empirically investigate
the nature of wontfix issues and methods to facilitate issue management process.
Method: We first manually analyze a sample of 667 wontfix issues, extracted from heterogeneous projects, investigating the com-
mon reasons behind a “wontfix decision”, the main characteristics of wontfix issues and the potential factors that could be connected
with the time to close them. Furthermore, we experiment with approaches enabling the prediction of wontfix issues by analyzing
the titles and descriptions of reported issues when submitted.
Results and conclusion: Our investigation sheds some light on the wontfix issues’ characteristics, as well as the potential factors
that may affect the time required to make a “wontfix decision”. Our results also demonstrate that it is possible to perform prediction
of wontfix issues with high average values of precision, recall, and F-measure (90%-93%).

Keywords: Issue Tracking, Issue Management, Empirical Study, Machine Learning.

1. Introduction

The complexity of modern software systems is growing fast
and software developers need to continuously update their source
code [1] to meet users’ expectations and market requirements [2].
In this context, fixing bugs or addressing feature requests and
enhancements, reported by users in the form of bug reports [3,
4] and Github issues [5], represents a crucial task of any suc-
cessful software project [6, 7]. Indeed, during software devel-
opment and maintenance, issue reports are valuable sources of
information for developers interested in improving the quality
of the software produced [4, 8].

Nevertheless, software changes that are performed to ad-
dress user-submitted reports often occur under time pressure [9,
10], with negative effects on the developers’ workloads [11]. In-
deed, user-submitted reports tend to widely differ in their qual-
ity [12, 13], and software developers have to spend a signifi-
cant amount of time in handling these reports (e.g., verifying
their content or relevance [14, 15] and coordinating the team-
work [16]) for implementing the required changes [17, 18, 19].

In the last decade, research has developed automated solu-
tions to facilitate the issue management and fixing processes,
with techniques able to prioritize the requested changes [15,

Email addresses: panc@zhaw.ch (Sebastiano Panichella),
canfora@unisannio.it (Gerardo Canfora), disorbo@unisannio.it
(Andrea Di Sorbo)

20], to detect potential issue misclassifications [21, 22] and bug
duplications [17]. Hence, most of the proposed tools and proto-
types are used to answer critical and relevant questions related
to reported issues, e.g., “Who should fix this bug?” [4] or “Is It
a Bug or an Enhancement?” [21]. However, to the best of our
knowledge, only few works investigated the nature of wontfix
issues, known as “bugs that will never be fixed” [23]. By ana-
lyzing more than 6,000 issues from the history of 279 GitHub
projects, we observe that developers require time (i.e., about
five months, on average) before closing an issue with the wont-
fix status. This means that, in general, developers take about
five months to answer the question: “Won’t We Fix this Issue?”.
Starting from this preliminary result, we decided to study the
main characteristics of this specific type of issues, thus investi-
gating the main reasons behind a “wontfix decision”. In addi-
tion, we further explored potential factors that could be related
to the time to close a general wontfix issue and experimented
automated approaches to identify with high accuracy the issues
that will be labeled as wontfix, by only analyzing issue titles
and descriptions. To the best of our knowledge, no prior work
proposed approaches to automatically determine whether an is-
sue will be likely marked (or labeled) as a wontfix.

Our goal is to support “community members”1 during the
issue management process. As pointed out by Guo et al. [24],

1With the term “community members” we refer to developers participating
in the discussion of the issues, e.g., by assigning labels, answering to issues

Preprint submitted to Information and Software Technology July 22, 2021

ar
X

iv
:1

90
4.

02
41

4v
3

 [c
s.S

E]
 2

1
Ju

l 2
02

1

unfixed bugs receive almost the same amount of attention as
fixed bugs: e.g., in the Eclipse bug database the average num-
bers of comments that unfixed bugs and fixed ones receive are
4.5 and 5.8, respectively. Similarly, the average number of com-
ments received by wontfix issues in our dataset is 5.14. Thus,
approaches for timely identifying the issues that will likely be
not addressed allow to reduce the unproductive effort (and asso-
ciated costs) required for triaging and resolving such issues [25].
In particular, early identification of issue success can help (i)
project managers allocating resources, (ii) developers focusing
their attention on the issues that will be actually addressed, and
(iii) customers knowing early if their requirements would be
satisfied [26]. Indeed, the longer the issue that will be likely
not fixed remains open, the more it could catch the attention of
developers, making them spending efforts in gathering informa-
tion for attempting to resolve it [27]. Furthermore, being aware
of the reasons why developers decide to not fix specific issues
could help understanding the software changes that developers
consider less relevant. This information could be very useful
for improving issue prioritization and triaging mechanisms, in
order to better support developers to focus on the issues that
will actually get addressed.

Hence, this paper aims at answering the following research
questions:

• RQ1: What are the main reasons for closing Github is-
sues with the wontfix status? In this research question
we qualitatively characterize wontfix issues, by manu-
ally analyzing a sample comprising 667 wontfix issues
extracted from 97 different projects (developed in C#)
hosted on GitHub, with the aim of understanding the main
reasons behind a “wontfix decision”. As initial outcome,
we design two different taxonomies. The first taxonomy
encompasses the main reasons that pushed users to open
issues that later were marked with the wontfix label. The
second taxonomy models the main motivations given by
developers when they decide to close these issues (as
wontfix).

• RQ2: What factors relate with the resolution time of
wontfix issues? This research question is a follow-up
of the previous one. However, while in RQ1 we look
more at the nature of wontfix issues (e.g., investigating
the reasons behind a wontfix decision), here we investi-
gate the factors that could be related to the time to close
a wontfix issue, observing also whether different wontfix
issue types (i.e., having different resolution motivations)
present different characteristics and, consequently, differ-
ent resolution times. As the time elapsed between the
opening and closing of an issue is not necessarily linked
to the actual effort spent by developers on the issue itself,
RQ2 is also aimed at better characterizing the effort spent
on each wontfix issue type.

• RQ3: Can machine learning be used to automatically
identify issues that are likely to be closed as wontfix?

change requests, and identifying also potential issues containing erroneous re-
ports, or requesting features or changes that are out of the project’s purposes.

In our work we observed that developers take, on aver-
age, about five months to figure out that an issue is not
worth to be fixed and therefore be labeled as a wontfix. In
this research question, we want to explore an automated
method to anticipate this decision, thus helping develop-
ers recognize wontfix issues earlier in the issue manage-
ment process. During our investigation (RQ1 and RQ2)
we observed that most wontfix issues talk about specific
aspects (e.g., feature enhancements/request, not critical
bugs), and that different wontfix issue types tend to expe-
rience different resolution times. We conjecture that the
topics discussed in the title and the description of an issue
report are discriminant and relevant aspects to consider
for the fixing of an issue. Based on this consideration
we experimented approaches that leverage textual anal-
ysis and machine learning techniques to predict whether
an issue will be marked (or labeled) as wontfix, by ana-
lyzing only the titles and descriptions of reported issues.

Results of our study provide insights into the nature of wont-
fix issues, and, in particular, we found that developers mainly
tend to close issues (with the wontfix label) containing erro-
neous reports, or requesting features (or changes) that are not
relevant or out of the project’s scopes. In addition, the time re-
quired to close issues, that developers deliberately decide not
to consider, is mainly connected with (i) the issue type, and
(ii) the number of participants involved in the related discus-
sions. Finally, our evaluation shows that it is possible to predict
whether developers will close an issue as a wontfix by analyz-
ing only the titles and the descriptions of the reported issues and
using machine learning and textual analysis techniques. The
proposed methodology achieves an average value of precision,
recall, and F-measure ranging between 90% and 93%. Pragmat-
ically speaking, the high effectiveness of the experimented ML
models in automatically identifying the issues that will likely be
closed with the wontfix status could improve the issue manage-
ment processes allowing developers to focus on more critical
issues. Indeed, on GitHub, although the use of labels has been
envisaged to mark and manage issue reports [28], no automated
mechanisms have been provided to support humans during is-
sue labeling. It is worth pointing out that our work has the only
aim of providing developers with a tool to more easily identify
issues that developers will deliberately avoid to fix by label-
ing them as wontfix. Other issues may remain open for a long
time without any fix [27], or developers could mark them as
“invalid”, or close them for any other reason [4]. All these situ-
ations are out of the scope of this paper.

We believe that our findings not only shed some more light
on the nature of wontfix issues, but have the potential to build
and/or improve future recommender systems aimed at prioritiz-
ing and supporting the issue fixing and the management pro-
cesses of modern software projects.

In summary, the main contributions of this paper are:

• Two taxonomies modelling the reasons for opening and
closing wontfix issues, along with a manually-labeled dataset
(available for replication purposes) of 667 wontfix issues
extracted from heterogeneous GitHub projects.

2

• Results of our study on the characteristics of the different
types of wontfix issues.

• An automated approach (available for research purposes)
able to accurately identify the issues that will likely be
not fixed.

Paper structure. Section 2 discusses the current issue man-
agement cycle (with specific reference to GitHub), while Sec-
tion 3 illustrates the related literature. Section 4 details the data
extraction process and the evaluation methodology adopted to
answer our research questions. Section 5 discusses the results
achieved in our study, while threats to its validity are reported in
Section 6. Finally, Section 7 concludes the paper and outlines
directions for future work.

2. Background

An issue tracking system is a repository where users and
team members can submit and discuss issues (e.g., bugs and
feature requests), ask for advice and share opinions useful for
maintenance activities or design decisions [29]. GitHub is a
social coding platform hosting more than 57 million of repos-
itories2 which provides advanced version control mechanisms
and an integrated issue tracker.

Any GitHub user can create an issue in a public repository
in order to report bugs, require enhancements, or make other
kinds of requests. Thus, issues are the primary mean through
which GitHub communities collect user feedback. A typical is-
sue on GitHub is described through a title and a description. It
is worth noticing that, differently from other bug trackers (e.g.,
JIRA or Bugzilla), the GitHub issue tracker does not provide
an explicit description field and the issue description is usually
provided in the issue’s first comment. Here and in the remain-
der of the paper, we refer to the first comment of an issue as the
issue description. Moreover, one or more predefined labels are
used to help in categorizing the issue. Each issue is assigned to
one assignee that is responsible for working on it, but comments
allow anyone to provide feedback. In order to offer high flexi-
bility, GitHub only provides two issue states (open and closed),
while any other state must be realized via labels. The GitHub
issue tracker provides a set of default labels in each repository,
including the wontfix label which indicates that work will not
continue on an issue3. The wontfix label is among the most
used labels in GitHub projects [30]. Although labeling has a
positive impact on the effectiveness of issue processing [31],
the labeling mechanism is scarcely used on GitHub [30]. Thus,
automated approaches able to predict the correct labels to as-
sign to issues could stimulate the use of such a mechanism.

In this study we are interested in extracting issues from het-
erogeneous projects hosted on GitHub, having the closed status
and the wontfix label assigned, in order to investigate common
characteristics of this kind of documents.

2https://goo.gl/JbS6RE
3https://help.github.com/articles/about-labels/

3. Related Work

3.1. Issue Management Process and Practices
Fixing bugs and addressing feature requests or enhance-

ments, reported in the form of bug reports [3, 4] and Github
issues [5], are crucial tasks for the success of any software
project [6, 7, 32]. For this reason, researchers investigated fac-
tors characterizing or affecting the issue management process
and practices.

Previous work investigated the aspects that should charac-
terize an informative (or “good”) bug report [12, 13, 33]. Specif-
ically, Hooimeijer et al. [12] presented a first descriptive model
of bug report quality, which is based on a statistical analysis
of over 27,000 bug reports of Mozilla Firefox. The evaluation
of the model showed its usefulness in reducing the overall cost
of software maintenance, suggesting, at the same time, poten-
tial features that should be considered when composing bug re-
ports. Bettenburg et al. [13] conducted a survey involving 466
developers and reported that there is a huge information mis-
match between what developers need and what users provide in
the reported issues. Their results suggest that future bug track-
ing systems should focus on engaging bug reporters, with tools
handling bug duplicates. These findings have pushed, in later
years, researchers to find solutions to handle the bug duplica-
tion problem [17, 34].

Recent research studied socio-technical dynamics [35] con-
cerning the management and fixing of issues [31] or the han-
dling of pull requests [36, 8]. For instance, Aranda et al. [16]
investigated coordination activities around bug fixing tasks by
surveying professional developers and found that, even for sim-
ple bugs, an inefficient coordination among developers impacts
the efficiency of the issue fixing process. These co-ordination
problems [11] are generally caused by the wrong assignment [37]
or re-assignment of bug reports [18] to developers. However,
in other cases, inefficient bug resolutions are influenced by the
length and complexity of issue discussions [38, 39], the ac-
tual knowledge/skills of developers [40, 5], and other socio-
technical dynamics [41, 42, 43]. In this context, Breu et al. [33]
pointed out that an active participation of developers represents
a crucial aspect for making progress on the reported bugs. For
this reason, other work proposed strategies for determining the
appropriate person to assign the reported issues [4, 44, 45].

Differently from the aforementioned work, this paper em-
pirically investigates the main characteristics of wontfix bugs
and the common reasons behind a wontfix decision.

3.2. Issue Reports Classification and Prioritization
As reported by Cosentino et al. [46], even if issues are gen-

erally sent to popular projects, the number of pending issues
constantly grows [43] and, despite the use of labels has a posi-
tive impact on the issue evolution [30], they are scarcely used by
GitHub developers. Thus, researchers proposed automated so-
lutions to ease the issue management and fixing processes, with
techniques that leverage well-known methods based on textual
analysis [17], machine learning [21, 47, 48], natural language
parsing (NLP) [49, 50], and summarization approaches [51, 52,
53] to analyze bug reports information.

3

https://goo.gl/JbS6RE
https://help.github.com/articles/about-labels/

Figure 1: Overview Research Approach

Important results in this direction are related to the defi-
nition of approaches that automatically classify or analyze the
textual content of reported issues [54] to derive potential mis-
classifications [21, 22], detecting duplicated bugs [17] or pre-
dicting reopened issues [55]. In recent years, tools have been
designed to automatically predict the severity of bug reports [14,
56, 57, 58], to support the prioritization of reported issues [15,
20], and to estimate the issue life time [9, 59, 60, 61]. Finally,
to facilitate the process of fixing issues, recent strategies have
been proposed to translate bug reports into test cases [62], gen-
erating auto-fixes [63], or recommending relevant classes [64]
for these reports.

In the context of these related studies, this paper empiri-
cally investigates the combination of machine learning and tex-
tual analysis techniques to automatically predict whether issues
will be not fixed, by analyzing (only) the titles and descriptions
of reported issues. The closest works to ours are (i) the one
by Cabot et al. [30] who proposed labels to classify issues in
open source projects, and (ii) the one by Guo et al. [24] pre-
senting an approach to determine the bugs that will be actually
fixed. Finally, recent research [25] started investigating the rea-
sons behind wontfix bugs. By manually analyzing a sample of
600 wontfix bugs (extracted from Bugzilla) pertaining to three
open-source projects (i.e., Eclipse, Mozilla, and OpenOffice),
the author identified 12 categories of reasons. Similarly to this
research, we perform a manual inspection of wontfix issues.
However, we identify, for each inspected issue, both the reason
behind the issue opening and the motivation for issue closing, to
better understand the co-occurrences between the different sorts
of reasons. Besides, we (i) investigate wontfix issues pertaining

to 279 heterogeneous projects (hosted on GitHub), identifying
further categories of reasons that have not been considered in
previous work, (ii) explore the factors that could be related to
the time to close a wontfix issue, and (iii) propose an approach
able to automatically identify wontfix issues with high effec-
tiveness. To the best of our knowledge, no prior work inves-
tigated the nature of wontfix issues on GitHub and proposed
approaches to automatically determine whether an issue will be
marked as wontfix.

4. Study Design

The goal of our study is to shed some light on the nature of
wontfix issues, with the purpose of building and/or improving
recommender systems aimed at prioritizing and supporting the
issue fixing and the management processes of modern software
projects. Hence, we qualitatively investigate the main reasons
behind a “wontfix decision” and explore potential factors that
could be correlated with the time to close a general wontfix is-
sue. Finally, we experimented with potential strategies to pre-
dict whether an issue will be labeled as a wontfix. Figure 1 de-
picts the research approach we followed to answer our research
questions.

4.1. Data Collection
The context of the study consists of 6,330 issues extracted

from the history of 279 open source projects hosted on GitHub,
whose characteristics are summarized in Table 1. The selec-
tion process we applied for this study is based on a “criterion
sampling”[65], according to the following steps:

4

1. Language selection: As reported in [66], projects on
GitHub developed in C# usually have a higher number
of external users, and core developers tend to ignore re-
ports from outsiders [67, 68]. Besides, in a study involv-
ing about 100,000 GitHub projects, Bissyandé et al. [5]
found that GitHub projects developed in C# usually have
higher numbers of issues filed (see Figure 7 in [5]). Hav-
ing a higher number of issues to deal with could increase
the likelihood that developers overlook some of these is-
sues due to lack of resources or low priority [69]. Thus,
in this type of projects (C# projects), we expect to find
higher amounts of wontfix issues. For this reason, we
selected projects mostly developed through the C# pro-
gramming language.

2. Projects selection: Recent studies demonstrated that a
higher number of issues co-occurs with (i) a higher num-
ber of stars received by a GitHub repository[70], and (ii)
a faster growth of a GitHub project in terms of stars[71].
Thus, in line with recent empirical studies in software
engineering [72, 73, 74, 75], we selected projects relying
on stars information. In particular, in order to consider
projects with reliable amounts of issues, the 1000 most
popular ones (i.e., top starred) have been selected from
GitHub.

3. Metadata extraction: We collected all closed issues meta-
data (e.g., URL, title, description, resolution date, etc.)
from the projects selected according to the aforementioned
criteria.

The aforementioned steps were performed using the R scripts
available in our replication package (under the folder
“1 Scripts/1 Data Collection”). In particular, a first script was
employed for selecting the projects according to the (1) lan-
guage selection and (2) projects selection criteria. This R script
addressed the following technical issues: (i) we selected the
projects having the higher number of stars; (ii) we selected
projects having issues closed, filtering out projects having no
issue labels (not all project had issue labels); (iii) we handled
the Github download limits (setting in R a timeout with
“Sys.sleep(40)”). As result, the script collected the first initial
information about the identified projects such as project name,
project Github url, project program language, and issue labels.
The other three R scripts we implemented are responsible to
collect more detailed information about the issues of the se-
lected projects (e.g., issue url, issue title, and issue description),
double-checking that no other issues have been closed as wont-
fix during the extraction analysis (we added few more wontfix
issues with this check). It is worth noticing that during our in-
vestigation we observed that specific projects may use custom
labels for designating issues that will be not addressed (e.g., sta-
tus:wontfix, Resolution-Won’t Fix, won’t fix, resolved: wontfix,
closed:wontfix, wont-fix, Won’t Fix, not-fixing, Status-WontFix,
WontFix, status: will not fix and Cannot fix). Thus, our scripts
consider issues having the wontfix labels described above.

Table 1 reports the number of projects, total number of wont-
fix and non-wontfix closed issues mined from these projects.

Table 1: Characteristics of the analyzed C# projects.

#Projects #Issues #Wontfix #Non-wontfix Med.#Issues.

279 6,330 1,844 4,486 22.69

We also report, in the last column of Table 1, the median num-
ber of issues per project.

Replication package. We make available in our replication
package4 (i) the scripts developed to extract the data used for
this research, (ii) all raw data, used to generate the data and
tables reported in the paper. In the replication package, we also
include the research prototype we used to answer RQ3.

4.2. Analysis Method
In the following, we discuss the research methods used to

address each specific research question.

4.2.1. RQ1: What are the main reasons for closing Github is-
sues with the wontfix status?

Answering RQ1 required, as a first step, to derive a manual
labeled golden set of wontfix issues, in order to build two tax-
onomies: (i) a first taxonomy, Mopening, summarizing the main
reasons that pushed users to open issues that later were marked
with the wontfix label; and (ii) a second taxonomy, Mclosing,
modelling the main motivations of developers to close these
issues as wontfix. Therefore, with the aim of manually in-
specting a representative sample (99% confidence level and a
margin of error below 4%), Tsample, of the collected wontfix is-
sues (see Section 4.1), we randomly selected 667 issues from
the entire set of wontfix issues. These 667 issues belong to
97 projects. Concerning the 667 wontfix issues in our Tsample,
we observed that 286 of them (42.88%) have been opened by
end-users (not contributors to the projects), while the remaining
381 issues have been opened by users with different roles in the
analyzed projects. In particular, 61 (16.01%) out of these 381
issues have been opened by repositories’ owners, 225 (59.06%)
by organizations’ members, 78 (20.47%) by contributors who
had previously committed to the repositories, and 17 (4.46%)
by collaborators invited to contribute to the repositories.

To derive the two taxonomies we used card sort, a technique
to derive taxonomies from input data [76]. We organized card
sort in three steps [77]: (i) preparation, (ii) execution, and (iii)
analysis.
Preparation: In this step, we created the cards related to each
wontfix issue in Tsample. Each card represents a wontfix issue
and includes: (i) the issue title, (ii) the issue description, (iii) all
the messages exchanged in the related discussion, and (iv) all
the labels (further to wontfix) assigned to the issue by original
developers.
Execution: Two authors of the paper analyzed the cards apply-
ing open (i.e., without predefined groups) card sort. In particu-
lar, the two authors performed an iterative content analysis [78],

4https://github.com/wontfixRP/wontfixDetection

5

https://github.com/wontfixRP/wontfixDetection

starting with two empty lists (one for Mopening and the other for
Mclosing) of issue categories. Each time they found a new wont-
fix issue type to add to one of two taxonomies, a new category
was added to the connected list. The two authors used pair-
sorting [77], to discuss discrepancies in their thoughts for each
card during the card sorting itself and avoid checking the con-
sistency of the sorting and merging the cards in a later phase.
Analysis: To guarantee the integrity of the emerging categories
and remove potential redundancies, the two authors performed
a second iteration on all the analyzed cards and redefined some
of the categories identified in the previous step. Through the
card sorting process 22 reasons for Mopening and 26 reasons for
Mclosing emerged. During the sorting process we reflected on
how they could be further clustered into higher level groups.
At the end of this phase, for each taxonomy we identified five
high level groups. The resulting taxonomies are described in
Section 5.1, where the set of 667 issues manually validated ac-
cording to the taxonomies represents our golden set.

4.2.2. RQ2: What factors relate with the resolution time of
wontfix issues?

In order to characterize wontfix issues and answer RQ2, we
computed the following factors concerning all issues in our golden
set (i.e., All):

• descriptionLength: Issue description length (number of
characters);

• maxAuthorPercentage: The proportion of messages posted
by the author who posted the majority of messages in the
issue discussion;

• majorAuthors: Number of unique authors who have posted
more than one-third of the overall messages present in the
issue discussion;

• meanCommentSize: Average length of comments (num-
ber of characters) in the issue discussion;

• minorAuthors: Number of unique authors who have posted
less than one-third of the overall messages present in the
issue discussion;

• nActorsT: Number of distinct authors participating in
the issue discussion;

• nCommentsT: Number of total comments in the issue
discussion;

• timeToCloseIssue: Time lapse (in days) between issue
opening and closing (with the wontfix label);

• timeToDiscussIssue: Time lapse (in days) between issue
opening and last comment posted in the issue discussion.

These factors allowed us to investigate different issue di-
mensions, namely (i) the level of participation of the commu-
nity members to the issue discussion (nActorsT, maxAuthorPer-
centage, minorAuthors and majorAuthors), (ii) the discussion’s
size (descriptionLength, nCommentsT and meanCommentSize),

as well as (iii) timing information about the issue (timeToClo-
seIssue and timeToDiscussIssue).

Moreover, we studied how these factors vary when con-
sidering the different Mclosing categories (i.e., Bug, Feature re-
quest/enhancement, Not suitable and Change). In particular, to
verify whether statistically significant differences could be ob-
served between the different Mclosing categories, for each metric
m ∈ {descriptionLength, maxAuthorPercentage, majorAuthors,
meanCommentSize, minorAuthors, nActorsT, nCommentsT, time-
ToCloseIssue, timeToDiscussIssue}, we compared the value dis-
tributions obtained for m across the different Mclosing categories,
through the Mann-Whitney U test, a widely used non-parametric
test for comparing independent samples [79]. After checking
that all the variables of interest (i.e., descriptionLength, maxAu-
thorPercentage, majorAuthors, meanCommentSize, minorAuthors,
nActorsT, nCommentsT, timeToCloseIssue and timeToDiscus-
sIssue) are not well-modeled by normal distributions (as ver-
ified through the Shapiro-Wilk test [80]), we decided to use a
non-parametric test (i.e., Mann-Withney), as the assumptions
for this test are satisfied by each considered variable. For cop-
ing with multiple comparisons, the Benjamini-Hochberg cor-
rection procedure [81] has been adopted to adjust p-values.

In addition, in order to investigate if some of the considered
metrics may influence the time required to close the issue, sim-
ilarly to the work by Linares-Vásquez et al. [82], for each met-
ric m we grouped the issues in our golden set in different sub-
sets, on the basis of specific values of m (e.g., nActorsT ≤ 2,
3 ≤ nActorsT ≤ 4 and nActorsT ≥ 5) and verified (through
the Mann-Whitney U test) whether statistically significant dif-
ferences can be observed in the timeToCloseIssue distributions
obtained for the different subsets. Again, this investigation has
been carried out for (i) all the issues in our golden set (i.e., All),
as well as (ii) the various Mclosing categories.

4.2.3. RQ3: Can machine learning be used to automatically
identify issues that are likely to be closed as wontfix?

After investigating the nature of wontfix issues, we propose
an approach, to automatically predict or classify whether an is-
sue will be labeled as a wontifx. For achieving this goal, we
considered all non-wontfix (4,486) and wontfix (1,844) issues
in our dataset (see Table 1), collected through the metadata
analysis explained in Section 4.1. Specifically, our approach
leverages machine learning (ML) techniques and consists of
four main steps:

1. Preprocessing: All terms contained in the titles and de-
scriptions of all 6,330 (4,486 non-wontfix plus 1,844 wont-
fix) issues in our dataset are used as an information base
to build a textual corpus that is preprocessed applying
stop-word removal (using the English Standard Stop-word
list) and stemming (i.e., English Snowball Stemmer) to
reduce the number of text features for the machine learn-
ing techniques [83]. In addition, we use the R package
textclean, which contains a function called replace html
that allows the automated removal of html tags from the
text. The output of this phase corresponds to a Term-
by-Document matrix M where each column represents

6

an issue of our dataset and each row represents a term
contained in title and or description of the various issues.
Thus, each entry M[i, j] of the matrix represents the weight
(or importance) of the i−th term contained in the j−th is-
sue.

2. Textual Feature Weighting: Words are weighted using
the tf-idf score [83], as opposed to simple frequency counts,
because it assigns a higher value to rare words (or group
of words) appearing in issues, and a lower value to com-
mon ones. This allows identifying the most important
words in the issue titles and descriptions. The weighted
matrix M represents the output of this phase.

3. Training and Test sets: For the classification step, we
split the matrix related to all issues of our dataset in two
parts (50% each), i.e., training and test sets. As train-
ing set we considered the sub-matrix, Mtraining, obtained
by randomly selecting from the original matrix M the
columns associated to a half of wontfix issues and a half
of non-wontfix issues. Vice versa, for the test set we
considered the sub-matrix, Mtest, obtained by consider-
ing from the original matrix M the columns associated to
the remaining half of wontfix issues and the remaining
half of non-wontfix issues.

4. Classification: We automatically classify wontfix issues
in the test set by relying on the output data obtained from
the previous step consisting of the matrix Mtraining and
Mtest. Specifically, to increase the generalizability of our
findings, we experimented (relying on the Weka tool 5)
different machine learning techniques, namely, the stan-
dard probabilistic Naive Bayes classifier, the sequential
minimal optimization (SMO) algorithm6, and the J48 tree
model. It is important to note that, the choice of these
techniques is not random since they were successfully
used for bug reports [21, 84] or vulnerability [85] classi-
fication, recent work on user reviews analysis [86, 2, 87],
and several works on bug prediction [88, 89].

It is worth highlighting that, as stated in Section 1, for pre-
dicting whether an issue will be labeled as wontfix, the machine
learning models have been trained by exclusively using infor-
mation that are immediately available at the issue opening (i.e.,
issue title and description, without considering the other fea-
tures), this to simulate a more realistic scenario in which the
automated classification can really help developers identifying
the issues that will likely be not fixed.

To evaluate the performance of the experimented ML tech-
niques, we adopted well-known information retrieval metrics,
namely precision, recall, and F-measure [83]. It is important to
specify that, as described in the steps 3 and 4 of our approach,
we apply a cross-projects setting to train the ML models on data
coming from different projects. This choice was made to ensure

5https://www.cs.waikato.ac.nz/ml/weka/
6https://goo.gl/BwMjzS

Table 2: Motivations for issue opening (only wontfix issues)
Category Motivation Freq.

Functional Aspects

Feature enhancement 42.6%
Reported a bug 29.1%
Feature Request 24.3%
Unexpected/unclear functionality
behaviour 1.0%

Unknown crash 0.1%

Problem

Performance Issue 2.1%
Testing related issue 1.2%
Security issue 0.6%
Compilation issue 0.4%
Browser issue 0.3%
Persistence issue 0.3%

Configuration
Tool version no longer supported 0.6%
Configuration Problem 0.1%
Backup problems 0.1%

Documentation
Question 2.8%
Request of adding an example in
the documentation 0.6%

Not clear or incorrect code/software
examples 0.1%

Other

Development aspects 1.3%
Comment on the software (Not a
real issue post) 0.9%

Improvement of graphical aspects 0.4%
Current feature beyond the scope of
the library 0.1%

General comment 0.1%

that a more general classification model is trained. To comple-
ment the evaluation process and alleviate concerns related to
overfitting and selection bias, we also provide the classification
results of the experimented machine learning models, by com-
puting a 10-fold validation strategy.

5. Results

This section discusses the results of our empirical study.

5.1. RQ1: Reasons for Wontfix Issues
To explore the common motivations for closing issue re-

ports which developers deliberately avoid to consider/fix (i.e.,
wontfix), and answer RQ1, we performed a manual analysis of
a sample of issues extracted from our data collection (as de-
scribed in Section 4.2.1). More specifically, such golden set en-
compasses 667 closed issues (with the wontfix label) extracted
from 97 distinct projects hosted on GitHub.

Each issue in the sample has been marked with two labels:
(i) the motivation behind the issue opening, as stated by the is-
sue reporter (i.e., the motivation for issue opening, Mopening),
and (ii) the reason for its closing (with the wontfix status), as
declared by developers within the issue discussion (i.e., the mo-
tivation for issue closing, Mclosing).

For Mopening, we found 22 different motivations (reported in
Table 2 along with their frequencies within the analyzed sam-
ple), that have been grouped in five distinct categories. It is
worth to highlight that 64 (9.6%) issues have been assigned to
more than one Mopening category, since they have been opened
for multiple purposes (this explains why the sum of percent-
age values in Table 2 is higher than 100%). For Mclosing, we

7

https://www.cs.waikato.ac.nz/ml/weka/
https://goo.gl/BwMjzS

Table 3: Motivations for issue closing (only wontfix issues)
Category Motivation Freq.

Feature request/
enhancement

Feature request/enhancement already
implemented or not needed 47.8%

Not relevant request 4.5%
It was fixed in the context of previous
bug fixes 0.7%

Too expensive feature request 0.3%
Feature request that will be implemented
in the near future 0.1%

Already Implemented feature request by
an external contributor of the project 0.1%

Change
Not relevant change 14.5%
No time to work on this change 1.0%
Requested change leading to further
problems 0.7%

Not suitable

Not a bug 10.8%
Configuration/backup problem on the
user side 3.9%

Duplicated issue 2.4%
Unclear wrong/usage of a functionality 1.6%
Problem already fixed with the new ver-
sion 1.3%

Problem fixed updating the new version
of a dependent library/tool 0.7%

Tool version no longer supported 0.4%
Not replicable bug 0.1%

Bug

Impossible to fix the issue or too expen-
sive change 4.9%

Not a critical bug 2.5%
It will be fixed in future 1.8%
Difficult to fix or to replicate 1.6%
Unknown crash 0.1%

Other

General comment from a user 0.4%
Closed by the user 0.1%
It was a test failure 0.1%
Updated the documentation on wiki 0.1%

found 26 distinct motivations (reported in Table 3). Such mo-
tivations have been clustered in five categories. Only 23 issues
(3.4%) have been marked with multiple Mclosing motivations,
this is mainly due to the fact that community members usually
tend to provide a precise indication for not fixing an issue.

In most cases, the reasons for opening an issue are related to
bugs reporting, feature requests or enhancements, and only in
few cases, by other requests (e.g., clarification questions, per-
formance, and testing related aspects). As expected, the major-
ity (i.e., 648, 97.15%) of issues in our sample have been opened
in order to signal troubles dealing with functional aspects (see
Table 2). As illustrated in Table 2, many of the issues belonging
to the Functional Aspects category are opened in order to (i) re-
quest improvements for specific features (i.e., Feature enhance-
ment, 42.6%), (ii) report a bug (i.e., Reported a bug, 29.1%),
or (iii) require a new feature to be implemented (i.e., Feature
request, 24.3%). As anticipated, requests for fixing defects not
strictly related with the software features (i.e., Problem in Table
2), the requests about software documentation (i.e., Documen-
tation in Table 2), and configuration problems (i.e., Configura-
tion in Table 2) resulted in rare motivations for opening issues.

Community members usually decide to ignore issues (i) con-
taining erroneous reports, or (ii) requesting features or changes
that are out of the project’s purposes (e.g., requests of improv-
ing the performance or GUI associated to a feature, or adding
a functionality that is already present in the system). As a

matter of fact, 319 (47.8%) issues in our sample, have been
closed with the motivation that the requested features/enhance-
ment were not needed or had been already implemented, while
142 (21.3%) issues erroneously reported problems, which have
been proved to be not suitable (see Table 3). Indeed, only 63
(9.4%) issues revealed actual bugs, which developers decided
to not fix, as they have been often evaluated as (i) too expensive
to fix (i.e., Impossible to fix the issue or too expensive change,
52.4% of issues signaling actual bugs), (ii) not critical (i.e., Not
a critical bug, 27% of issues signaling actual bugs), or (iii) that
will be fixed in the future (i.e., It will be fixed in future, 19%
of issues signaling actual bugs). In addition, issues reporting
change requests (i.e., Change in Table 3) are mainly closed (i.e.,
14.5% of issues) because the change they propose are judged
as not strategically relevant by community members. We argue
that results in Table 3 could be useful to implement more ac-
curate analysis (not necessarily based on binary classification)
for future work, such as multi-label issue classification [90] and
issue prioritization [91].

In Figure 2 we illustrate the frequency with which issues
opened with the most recurrent purposes in Mopening (i.e., Fea-
ture enhancement, Reported a bug and Feature Request) are
closed with one of the motivations in Mclosing (see Table 3). In
Figure 2 the thickness of the lines is proportional to the amount
of issues opened with a specific reason (on the left) and closed
with a specific Mclosing motivation (on the right). In particular,
146 (89%) issues opened for requiring a new feature (i.e., Fea-
ture Request) have been closed with the motivation Feature re-
quest/enhancement already implemented or not needed, while
173 issues (60.1%) requiring feature enhancements (i.e., Fea-
ture Enhancement) have been closed due to the same motiva-
tion. Moreover, 83 (28.8%) issues having the same purpose
(i.e., Feature Enhancement) have been closed, since they pro-
posed Not relevant changes. Finally, issues reporting bugs (i.e.,
Reported a bug) are mainly closed because (i) they do not signal
actual bugs (i.e., Not a bug, 33.5%), (ii) the bugs reported are
too expensive or impossible to fix (i.e., Impossible to fix the is-
sue or too expensive change, 12%), or (iii) the signaled defects
mainly depend on configuration/backup problems on the user
side (i.e., unset backup or other configurations required on the
user side for enabling the main functionalities of the project,
11.5%).

RQ1 summary: Developers mainly tend to close issues (with the
wontfix label) containing erroneous reports, or requesting features (or
changes) that are not relevant or not needed.

5.2. RQ2: Factors Related with the Wontfix Issues Resolution
Time

As reported in Table 4, wontfix issues are mainly discussed
among limited numbers of major actors and such discussions
encompass 4.43 comments, on average. As anticipated, wontfix
issues are closed very long time after their opening (i.e., about
five months on average) and continue to be discussed even after
their closing.

8

Figure 2: Co-occurrences of motivations for issue opening and closing (only wontfix issues)

Figure 3: Distributions of nActorsT for the Mclosing categories, All (median =

2), Bug (median = 2), Feature (median = 2), Change (median = 3), Not suitable
(median = 2)

Figure 4: Distributions of nCommentsT for the Mclosing categories, All (me-
dian = 3), Bug (median = 3), Feature (median = 3), Change (median = 5), Not
suitable (median = 3)

9

Table 4: Summary of wontfix issues characteristics

Metric Median Average
nCommentsT 3.00 4.43
nActorsT 2.00 2.34
maxAuthorPercentage 0.50 0.63
minorAuthors 0.00 0.82
majorAuthors 2.00 1.54
timeToCloseIssue 42.60 153.59
timeToDiscussIssue 76.05 201.33
DescriptionLength 470.00 847.49
meanCommentSize 380.00 495.68

Figure 5: Distributions of descriptionLength for the Mclosing categories, All
(median = 470), Bug (median = 459), Feature (median = 408.5), Change (me-
dian = 720), Not suitable (median = 535.5)

In order to investigate differences in the different types of
wontfix issues, we study the extent to which the collected met-
rics vary across the specific Mclosing categories, and discuss the
most interesting peculiarities. More specifically, to study the
differences occurring between the different kinds of wontfix is-
sues, and verify whether the observed differences are statisti-
cally relevant, we tested the following null hypothesis:

H0: The distributions of values of the metric m for the
populations of wontfix issues of the types ti and t j are equal

∀m ∈ {descriptionLength, maxAuthorPercentage, majorAuthors,
meanCommentSize, minorAuthors, nActorsT, nCommentsT, time-
ToCloseIssue, timeToDiscussIssue}, ∀ti, t j ∈ {All, Bug, Not suit-

Figure 6: Distributions of timeToCloseIssue for the Mclosing categories, All (me-
dian = 42.60), Bug (median = 52.06), Feature (median = 73.59), Change (me-
dian = 39.19), Not suitable (median = 15.67)

able, Feature request/ enhancement, Change} and i , j.
H0 has been tested with Mann-Whitney test and the p-value

was fixed to .05. Table 5 reports the results of the Mann-Whitney
test. This investigation is aimed at understanding whether spe-
cific types of wontfix issues exhibit more unproductive (or longer)
discussions, before their closing. In particular, for each met-
ric (on the rows) and each pair of wontfix issue types (on the
columns) Table 5 reports the p-value obtained when testing the
null hypothesis H0 through the Mann-Withney U test. The
Benjamini-Hochberg correction procedure [81] has been adopted
to adjust p-values, since multiple comparisons are performed
simultaneously.

Figures 3, 4, 6 and 5 report the respective distributions of
nActorsT, nCommentsT, timeToCloseIssue and descriptionLength
obtained for the overall issues in our dataset (i.e., All), as well as
the various Mclosing categories. Change requests (i.e., Change)
(i) are usually described through longer texts (see Figure 5), (ii)
require to be discussed between a greater number of actors (as
illustrated in Figure 3) and, consequently, (iii) the related issue
discussions comprise a greater amount of comments (see Fig-
ure 4), than other kinds of issues. As shown in Figure 6, not
suitable reports (i.e., Not suitable) are closed much faster than
the other types of issues: 50% of issues of this type are closed in
less than 16 days, while the 50% of the issues belonging to the
other categories require more than 39 days to be closed. Prob-
ably, this is due to the fact that developers are more resolute in
closing the issue, once verified that the signaled defect is not
actually suited to be addressed.

On the contrary, Feature requests/enhancement issue types
usually require more time to be closed (the median value of
timeToCloseIssue obtained for issues of this type is 73.59 days),
probably because developers have greater uncertainty on de-
ciding if the required improvements could be in line with the
project’s purposes. In general, the number of participants dis-
cussing the issues may influence, with statistical evidence (see
Table 6), the time required to close a wontfix issue, while for
the other collected factors we do not observe significant re-
lationships. Specifically, as illustrated in Figure 7, when the
numbers of actors participating in the issue discussions con-
cerning wontfix issues of the Feature request/enhancement and
Change types increase, we observe a longer timeToCloseIssue,
while for wontfix issues of the Bug and Not suitable types, no
statistically significant differences between the different subsets
are revealed. It is worth noticing that we verified whether sig-
nificant relationships exist between the other metrics and the
timeToCloseIssue, by using similar analyses. However, such
analyses did not produce noteworthy results.

In a study involving more than 4000 GitHub projects and
about 1 million issues, Kikas et al. [59] found that the median
lifetime of about 70% of the investigated issues is 3.7 days. We
observe that the median closing time for wontfix issues is about
11.5 times slower than the median lifetime of most issues in-
vestigated in prior work, confirming (i) our intuition that wont-
fix issues usually remain open for a longer time compared to
other types of issues, and (ii) the need for early detection of is-
sues that will probably remain unfixed. Our study also partially
confirms some of the findings reported in prior research [59],

10

Table 5: Hypothesis testing results: All (A), Bug (B), Not suitable (NS), Feature request/enhancement (FR), Change (C)
Metric A-B A-NS A-FR A-C B-NS B-FR B-C NS-FR NS-C FR-C
nCommentsT p > 0.1 p > 0.1 p < 0.05 p < 0.05 p > 0.1 p < 0.05 p > 0.1 p < 0.05 p < 0.05 p < 0.05
nActorsT p > 0.1 p > 0.1 p > 0.1 p < 0.05 p > 0.1 p > 0.1 p < 0.05 p > 0.1 p < 0.05 p < 0.05
maxAuthorPercentage p > 0.1 p > 0.1 p < 0.05 p < 0.05 p > 0.1 p > 0.1 p < 0.05 p > 0.1 p < 0.05 p < 0.05
minorAuthors p > 0.1 p > 0.1 p > 0.1 p < 0.05 p > 0.1 p > 0.1 0.05 ≤ p ≤ 0.1 p > 0.1 p < 0.05 p < 0.05
majorAuthors p > 0.1 p > 0.1 p > 0.1 p > 0.1 p > 0.1 p > 0.1 p > 0.1 p > 0.1 p > 0.1 p > 0.1
timeToCloseIssue p > 0.1 p < 0.05 p > 0.1 p > 0.1 p > 0.1 p > 0.1 p > 0.1 p < 0.05 p > 0.1 p > 0.1
timeToDiscussIssue p > 0.1 p > 0.1 p > 0.1 p > 0.1 p > 0.1 p > 0.1 p > 0.1 0.05 ≤ p ≤ 0.1 p > 0.1 p > 0.1
DescriptionLength p > 0.1 p > 0.1 p > 0.1 p < 0.05 p > 0.1 p > 0.1 p > 0.1 p > 0.1 p > 0.1 p < 0.05
meanCommentSize p > 0.1 p > 0.1 p > 0.1 p > 0.1 p > 0.1 p > 0.1 p > 0.1 p > 0.1 p > 0.1 0.05 ≤ p ≤ 0.1

Figure 7: Distributions of timeToCloseIssue for issues (labeled as wontfix) having different number of actors (x): x ≤ 2, 3 ≤ x ≤ 4, x ≥ 5

Table 6: Hypothesis testing results for issues having different number of actors
(x)

Test All Bug Feature Not suitable Change
(x ≤ 2) vs (3 ≤ x ≤ 4) p < 0.05 p > 0.1 p > 0.1 p > 0.1 p < 0.05
(x ≤ 2) vs (x ≥ 5) p < 0.05 p > 0.1 p < 0.05 p > 0.1 p < 0.05
(3 ≤ x ≤ 4) vs (x ≥ 5) p < 0.05 p > 0.1 p < 0.05 p > 0.1 p > 0.1

showing that the number of different actors involved in issue
discussion is related to the time to close the issue.
RQ2 summary: On average, about five months are required to close
issues that developers will label as wontfix. This time is mainly con-
nected with (i) the issue type (issues indicating not suitable reports are
closed much faster with respect to other kinds of issues), and (ii) the
number of participants involved in the related discussions. Such dis-
cussions typically comprise less than 6 messages and involve a limited
set of major actors.

Table 7: Evaluation of Machine Learning Classifiers

ML Technique Precision Recall F-Measure

Naive Bayes 0.731 0.698 0.708
SMO 0.758 0.768 0.760
J48 0.896 0.897 0.894

5.3. RQ3: Automated Classification of Wontfix Issues
As explained in Section 4.2.3, we experimented with dif-

ferent ML techniques, namely (i) the probabilistic Naive Bayes
classifier, (ii) SMO algorithm, and (iii) the J48 tree model. These
ML models were trained on the training data (i.e., Mtraining)
and evaluated on the test data (i.e., Mtest) illustrated in Section
4.2.3. Table 7 provides an overview of the main results ob-
tained through the different ML algorithms. For completeness,
in Table 8, Table 9 and Table 10 we also provide the actual
corresponding confusion matrices of all the three experimented
ML models.

The results in Table 7 highlight that the precision, recall,
and F-measure values are very positive for the J48 model, while
we observe lower precision and F-measure results for the Naive

11

Bayes and SMO models. Specifically, as reported in Table 7 the
J48 algorithm achieves the best classification performance, i.e.,
values close to 0.90 for precision, recall, and F-measure met-
rics. In the case of Naive Bayes and SMO, the values of preci-
sion, recall, and F-measure are lower than the ones achieved by
the J48 model, with degradation in classification performance
of more than 10%. The ML models perform a binary predic-
tion (i.e., wontfix vs. non-wontfix) relying on 14,720 textual
features. The lower classification performance obtained by the
Naive Bayes model could be due to the fact that, as reported
by previous work on bug classification [21], “the naive Bayes
classifier only exhibits a limited improvement when increasing
the number of features”, while more complex machine learning
models tend to achieve better classification performance, when
the features’ set grows up. .

Table 8: Naive Bayes: Confusion Matrix
Predicted class

wontfix non-wontfix
Actual wontfix 610 325
class non-wontfix 632 1,598

Table 9: SMO: Confusion Matrix
Predicted class

wontfix non-wontfix
Actual wontfix 482 453
class non-wontfix 282 1,948

The variability of the results can be easily explained by ob-
serving the confusion matrices of the three ML models, re-
ported in Tables 8, 9 and 10. For the J48 model the num-
bers of False Negatives (FN) and False Positives (FP) are rela-
tively low, while in the case of the Naive Bayes and SMO ML
strategies, the amount of misclassified instances is substantially
higher. Interestingly, the achieved results demonstrate that pre-
dicting whether an issue will be fixed or not (i.e., will be marked
as a wontifx) is possible with positive results, especially when
considering a tree classifier. In addition, these results confirm
our conjecture that terms occurring in the title and the descrip-
tion of issues posted on GitHub are discriminant and relevant
factors to consider for determining whether an issue will be
fixed or not.

Our results are very encouraging, especially if we consider
that we used just 50% of our dataset to train the different ML al-
gorithms and predicted on the remaining 50%, leading to equally
balancing training and test sets. Indeed, using a larger number
of examples in the training set (e.g., using 80% of our dataset
as training set and the remaining 20% as test set, as done in

Table 10: J48: Confusion Matrix
Predicted class

wontfix non-wontfix
Actual wontfix 702 233
class non-wontfix 94 2,136

Figure 8: The J48 tree model used for classification task of RQ3

Table 11: Evaluation of Machine Learning Classifiers via 10-fold validation
strategy

ML Technique Precision Recall F-Measure

Naive Bayes 0.724 0.710 0.715
SMO 0.785 0.794 0.785
J48 0.938 0.936 0.934

traditional ML applications) is likely to result in higher perfor-
mance. Thus, to check whether a larger number of points in the
training set could lead to better results and mitigate concerns
related to overfitting and selection bias, we repeated the classi-
fication experiment by using a 10-fold cross-validation strategy
(i.e., in each run of the 10-fold cross-validation the training set
was composed by 90% of items in the overall dataset). This
analysis is also important to verify that the previously discussed
results are not dependent on the specific data used for train-
ing the ML models. Indeed, one of the goals of using 10-fold
cross-validation is to flag problems like overfitting or selection
bias [92].

The results of 10-fold cross-validation are shown in Ta-
ble 11. Such results confirm that the precision, recall, and F-
measure values are very positive for J48, while lower preci-
sion, recall and F-measure results for the Naive Bayes and and
SMO models are observed. More specifically, all the consid-
ered classifiers achieve slightly higher F-measure values (i.e.,
with improvements ranging from 0.5% to 4%) than the results
previously obtained (see Table 7), confirming (i) the high per-
formance of the J48 model in identifying the issues that will
likely be not fixed by developers, and (ii) the inadequacy of
the Naive Bayes technique when used for performing the afore-
mentioned classification task.

To achieve more in-depth insights about the positive results
obtained by the J48 model, we qualitatively/manually observed
actual features that are selected by the J48 model to charac-
terize/classify wontfix issues. From part of the complex J48
tree model in Figure 8 (see the full trained tree model in the
RP7) used to perform the classification of issues, we can ob-
serve that the selected features concern in most cases textual
features semantically linked to requests for feature enhance-
ment/addition such as make, change, provide, etc. Interest-
ingly, this result is in line with the finding of RQ1, where we
discovered that one of the major motivation for closing issues

7https://bit.ly/2T2yjZG

12

https://bit.ly/2T2yjZG

Table 12: The 15 text features with the highest information gain scores

Score Feature
0.1467 X6354 issu

0.1409 X14304 work

0.1396 X9773 provid

0.1150 X13840 version

0.1058 X8222 need

0.1050 X12642 test

0.0986 X13272 type

0.0966 X1772 chang

0.0957 X12341 support

0.0957 X3896 error

0.0940 X2540 creat

0.0910 X7306 make

0.0907 X7615 method

0.0899 X12433 system

0.0859 X12182 string

with the wontfix status (see Table 3) is the presence of not de-
sired features (about 47% of wontfix issues concern requests
for features enhancement/addition). To quantitatively corrobo-
rate this observation, we computed the information gain [93]
for all the text features leveraged by our model and ranked
them according to their scores. In Table 12, the top 15 ranked
features, along with the related information gain scores are re-
ported. Looking at Table 12, it is easy to observe that many of
the features with the highest scores are conceptually linked to
requests for enhancement or feature additions (e.g., provide,
need, change, support, create, and make). However,
this could also represent a limitation of our model. Indeed, as
shown in Table 10, while the J48 model is quite effective in
recognizing issues of the non-wontfix class, a higher likelihood
of false negatives is observed for wontfix issues (i.e., the recall
for this class is about 75%). For this reason, we believe that
further efforts and tunings could be aimed at reducing the false-
negative rate for this class while keeping low the false-positive
rate.

RQ3 summary:

1. Relying on a tree classifier (i.e., J48) it is possible to automat-
ically detect issues that will be labeled as wontfix, with preci-
sion, recall, and F-measure values up to 0.93.

2. Consistently with the results of RQ1 the experimented models
select textual features semantically related to requests for fea-
tures enhancement/addition to classify wontfix issues.

6. Threats to Validity

Threats to construct validity. In order to carry out our
study, we measure different factors that could be not sufficient
to model the whole issue handling process. As pointed out by
Kalliamvakou et al. [94], many active projects do not conduct
all their software development activities in GitHub, and sepa-
rate infrastructures (e.g., mailing lists, forums, IRC channels,

etc. [95]) could be used to support decision-making processes.
This only represents a minor threat in our study, since most of
the events of our interest (e.g., opening and closing of the is-
sues, label assignments, comments) are mostly recorded in the
issue tracking system, as it is primarily used by development
teams to track issue data.

Threats to internal validity. Our results have been ob-
tained by analyzing wontfix issues having the closed status as-
signed and such results could be misleading if a significant per-
centage of such issues will be reopened in the future. However,
less than 9% of non-fixed bugs tend to be reopened [96] and
one of the root causes for re-opening a bug report resolved as
not fixed is due to the difficulty in reproducing the bug [97]. It is
worth to notice that in our manual inspection, the Difficult to fix
or to replicate and Not replicable bug Mclosing motivations have
been assigned only to 1.6% and 0.1% of issues in our sample,
respectively. In addition, 281 out of 667 (42.13%) wontfix is-
sues encompassed in our manually analyzed sample are related
to the aspnet/Mvc project. This could represent a threat to
internal validity, as developers of this project could adopt sim-
ilar criteria for deciding to avoid addressing a reported issue.
In our study we analyzed issues labeled as wontfix. However,
GitHub developers may indicate that a specific issue will be not
resolved directly in the issue title (e.g., by using the [WONTFIX]
prefix8). To counteract this issue, we estimated the number of
GitHub issues in C# projects where the WONTFIX keyword ap-
pears in the issue title9. Such a search returned a very limited
number of issues (i.e., < 10) and most of them (i.e., 75%) had
also the wontfix label assigned. To avoid any bias in the po-
tential evaluation of the performance of the experimented ML
techniques, we adopted well-known information retrieval met-
rics, namely precision, recall, and F-measure [83] and apply a
cross-projects setting to train the ML models on data coming
from different projects. However, since the information con-
cerning all the issues in our dataset is used for the ML model
construction, we can not exclude that characteristics related to
more recent issues are leveraged to predict the resolution of pre-
viously submitted issues.

Threats to conclusion validity. In our RQ2, we analyze
different issue clusters having different sizes in terms of issue
numbers, and some of the differences we observed could be
not significant. To mitigate this threat, we compared the val-
ues obtained for each cluster through the Mann-Whitney U test,
widely adopted for similar purposes in the software engineer-
ing community, and discussed some of the differences which
resulted statistically significant (p-value < 0.05). Since multi-
ple comparisons are performed simultaneously, the Benjamini-
Hochberg correction procedure [81] has been adopted to adjust
p-values and control the false discovery rate.

Threats to external validity relate to the generalizability of
our results. To mitigate this kind of threats our evaluation has
been performed on a dataset containing 6,330 issues, extracted
from 279 heterogeneous projects. Moreover, we manually ana-

8See https://github.com/waveform80/picamera/issues/657
9We used the following search string: “is:issue is:closed WONTFIX

in:title language:C#”

13

https://github.com/waveform80/picamera/issues/657

lyzed 667 wontfix issues of 97 different projects. However, such
sample could be not adequately representative of all the GitHub
projects. All the considered wontfix issues (1,844) are related
to projects developed using mainly the C# programming lan-
guage, and the average number of issues per projects tend to be
quite skewed for some projects. This may represent a threat to
external validity, since such issues can present common char-
acteristics that ease their identification. For these reasons, in
the future, we aim at extending our investigation by evaluating
wontfix issues in further projects developed through different
programming languages. However, on a positive side, the clas-
sifier demonstrated to achieve high performance in identifying
wontfix issues, even when not trained on issues related to any
specific project, thus this training strategy allows the classifier
to be more easily used on projects, different from the ones used
in our experimentation, without the need for re-training it. On
the other hand, the high classification performance achieved by
some ML models could depend on the fact that many wont-
fix issues encompassed in our dataset concern requests for fea-
tures enhancement/addition. Indeed, the qualitative analysis
performed in Section 5.3 highlighted that ML models leverage
syntactical features semantically related to this kind of requests
to perform the classification. Thus, it is not clear if similar re-
sults could be obtained on more balanced datasets, in which the
different types of wontfix issues are equally represented.

7. Conclusions

Software maintenance and evolution activities represent cru-
cial tasks of any successful software project, and issues re-
ported by users are a valuable source of information for devel-
opers interested in improving their systems. However, devel-
opers spend significant time handling issue reports and user re-
quests. To support developers during issue handling processes,
researchers conceived effective solutions aimed at prioritizing
requested changes, as well as detecting potential issue misclas-
sifications or duplications. However, few prior studies explored
the nature of wontfix issues, and none of these studies proposed
approaches to automatically determine whether an issue will be
marked as wontfix. We argue that a timely identification of is-
sues that are likely to be not addressed, could help (i) project
managers allocating resources, (ii) developers focusing their at-
tention on the issues that will be actually addressed, and (iii)
customers knowing early if their requirements would be satis-
fied [26]. To this aim, in this paper, by collecting more than
6,000 issues extracted from the history of 279 GitHub projects,
we (i) analyzed the common characteristics of wontfix issues,
and (ii) proposed an approach leveraging textual analysis and
machine learning techniques to predict whether an issue will be
resolved as a wontfix. Results of our study show that developers
mainly tend to close issues (with the wontfix label) containing
erroneous reports, or requesting features (or changes) that are
not relevant or out of the purposes of projects (RQ1). How-
ever, developers take a significant amount of time (about five
months, on average) to decide whether an issue should be la-
beled as a wontfix. This time is mainly connected with (i) the
issue type (issues containing erroneous bug reports, are closed

much faster), and (ii) the number of participants involved in the
related discussions (RQ2). Last but not least, the proposed ap-
proach proved to be accurate (with a F-measure up to 93%) in
identifying issues that will be likely labeled as wontfix (RQ3).

This study helps to better comprehend the issue manage-
ment dynamics in open source communities. As a future work,
we aim at investigating whether different projects tend to have
different wontfix characteristics (due to different issue manage-
ment processes), and the extent to which the automated identi-
fication of wontifx issues may impact the results produced by
issue prioritization approaches. In addition, in the future, we
aim at comparing how issues with/without wontfix label per-
form each other, in order to investigate how the presence of
wontfix issues may affect the overall issue management process.
We intend to also study further wontfix factors useful to auto-
matically identify/predict the actual potential motivations (as it
could be useful information for developers) behind an issue that
will be closed as a wontfix. Moreover, we plan to compare the
results of our approach with machine learning approaches suc-
cessfully used in the same context [28, 98] and involving other
types of labels. Finally, we plan to investigate the usage of his-
torical analysis to provide orthogonal/complementary informa-
tion that could be combined with the adopted textual features.

Differently from issue driven development, in pull-based
development developers use branches to make the desired changes
independently, and then create a pull request to ask merging
their changes into the main repository [99]. The integrators
(usually the members of the project’s core team) are asked to re-
ply to such request, evaluating the quality of the contributions,
and eventually merging or rejecting the changes [100]. Manu-
ally identifying high-quality and desirable pull requests may be
challenging [101], especially for popular projects, where tens
of pull requests are daily submitted [102, 8]. In the future we
plan to verify whether the reasons behind the rejection of spe-
cific kinds of pull requests are similar to the ones that have been
identified for wontfix issues, with the purpose of better compre-
hending the team behaviors when managing external requests.

Acknowledgment

Sebastiano Panichella gratefully acknowledges the Horizon
2020 (EU Commission) support for the project COSMOS (De-
vOps for Complex Cyber-physical Systems), Project No. 957254-
COSMOS.

References

[1] M. M. Lehman, Programs, life cycles, and laws of software evolution,
Proc. IEEE 68 (9) (1980) 1060–1076.

[2] A. Di Sorbo, S. Panichella, C. V. Alexandru, J. Shimagaki, C. A. Vis-
aggio, G. Canfora, H. C. Gall, What would users change in my app?
summarizing app reviews for recommending software changes, in: 24th
International Symposium on Foundations of Software Engineering, FSE
2016, Seattle, WA, USA, November, 2016, 2016, pp. 499–510.

[3] J. Anvik, L. Hiew, G. C. Murphy, Coping with an open bug repository,
in: Proceedings of the 2005 OOPSLA Workshop on Eclipse Technology
eXchange, eclipse ’05, ACM, New York, NY, USA, 2005, pp. 35–39.

14

[4] J. Anvik, L. Hiew, G. C. Murphy, Who should fix this bug?, in: 28th
International Conference on Software Engineering (ICSE 2006), Shang-
hai, China, May 20-28, 2006, 2006, pp. 361–370.

[5] T. F. Bissyandé, D. Lo, L. Jiang, L. Réveillère, J. Klein, Y. L. Traon, Got
issues? who cares about it? A large scale investigation of issue trackers
from github, in: IEEE 24th International Symposium on Software Reli-
ability Engineering, ISSRE 2013, Pasadena, CA, USA, November 4-7,
2013, 2013, pp. 188–197.

[6] S. Just, R. Premraj, T. Zimmermann, Towards the next generation of
bug tracking systems, in: Proceedings of the 2008 IEEE Symposium on
Visual Languages and Human-Centric Computing, VLHCC ’08, IEEE
Computer Society, Washington, DC, USA, 2008, pp. 82–85.

[7] R. Salo, T. Poranen, Z. Zhang, Requirements management in github with
a lean approach, in: Proceedings of the 14th Symposium on Program-
ming Languages and Software Tools (SPLST’15), Tampere, Finland,
October 9-10, 2015., 2015, pp. 164–178.

[8] M. I. Azeem, S. Panichella, A. Di Sorbo, A. Serebrenik, Q. Wang,
Action-based recommendation in pull-request development, in: ICSSP
’20: International Conference on Software and System Processes, Seoul,
Republic of Korea, 26-28 June, 2020, 2020, pp. 115–124.

[9] S. Kim, E. J. Whitehead, Jr., How long did it take to fix bugs?, in:
Proceedings of the 2006 International Workshop on Mining Software
Repositories, MSR ’06, ACM, New York, NY, USA, 2006, pp. 173–174.

[10] U. Ashraf, C. Mayr-Dorn, A. Egyed, S. Panichella, A mixed graph-
relational dataset of socio-technical interactions in open source systems,
in: MSR ’20: 17th International Conference on Mining Software Repos-
itories, Seoul, Republic of Korea, 29-30 June, 2020, 2020, pp. 538–542.

[11] D. Bertram, A. Voida, S. Greenberg, R. Walker, Communication, col-
laboration, and bugs: The social nature of issue tracking in small, collo-
cated teams, in: Proceedings of the 2010 ACM Conference on Computer
Supported Cooperative Work, CSCW ’10, ACM, New York, NY, USA,
2010, pp. 291–300.

[12] P. Hooimeijer, W. Weimer, Modeling bug report quality, in: Proceed-
ings of the Twenty-second IEEE/ACM International Conference on Au-
tomated Software Engineering, ASE ’07, ACM, New York, NY, USA,
2007, pp. 34–43.

[13] N. Bettenburg, S. Just, A. Schröter, C. Weiss, R. Premraj, T. Zimmer-
mann, What makes a good bug report?, in: Proceedings of the 16th ACM
SIGSOFT International Symposium on Foundations of Software Engi-
neering, SIGSOFT ’08/FSE-16, ACM, New York, NY, USA, 2008, pp.
308–318.

[14] A. Lamkanfi, S. Demeyer, Q. D. Soetens, T. Verdonck, Comparing min-
ing algorithms for predicting the severity of a reported bug, in: 2011
15th European Conference on Software Maintenance and Reengineer-
ing, 2011, pp. 249–258.

[15] Y. Tian, D. Lo, C. Sun, Drone: Predicting priority of reported bugs by
multi-factor analysis, in: Proceedings of the 2013 IEEE International
Conference on Software Maintenance, ICSM ’13, 2013, pp. 200–209.

[16] J. Aranda, G. Venolia, The secret life of bugs: Going past the errors and
omissions in software repositories, in: Proceedings of the 31st Interna-
tional Conference on Software Engineering, ICSE ’09, IEEE Computer
Society, Washington, DC, USA, 2009, pp. 298–308.

[17] X. Wang, L. Zhang, T. Xie, J. Anvik, J. Sun, An approach to detect-
ing duplicate bug reports using natural language and execution informa-
tion, in: 30th International Conference on Software Engineering (ICSE
2008), Leipzig, Germany, May 10-18, 2008, 2008, pp. 461–470.

[18] O. Baysal, M. W. Godfrey, R. Cohen, A bug you like: A framework for
automated assignment of bugs, in: The 17th IEEE International Con-
ference on Program Comprehension, ICPC 2009, Vancouver, British
Columbia, Canada, May 17-19, 2009, 2009, pp. 297–298.

[19] Y. Zhou, Y. Su, T. Chen, Z. Huang, H. C. Gall, S. Panichella, User
review-based change file localization for mobile applications, IEEE
Transactions on Software Engineering (2020) 1–1.

[20] J. Uddin, R. Ghazali, M. M. Deris, R. Naseem, H. Shah, A survey on
bug prioritization, Artif. Intell. Rev. 47 (2) (2017) 145–180.

[21] G. Antoniol, K. Ayari, M. Di Penta, F. Khomh, Y.-G. Guéhéneuc, Is it
a bug or an enhancement?: A text-based approach to classify change
requests, in: Proceedings of the 2008 Conference of the Center for Ad-
vanced Studies on Collaborative Research: Meeting of Minds, CAS-
CON ’08, ACM, New York, NY, USA, 2008, pp. 23:304–23:318.

[22] K. Herzig, S. Just, A. Zeller, It’s not a bug, it’s a feature: how misclas-
sification impacts bug prediction, in: 35th International Conference on
Software Engineering, ICSE ’13, San Francisco, CA, USA, May 18-26,
2013, 2013, pp. 392–401.

[23] Bug status wontfix (2016).
URL https://en.opensuse.org/Bug_Status_WONTFIX

[24] P. J. Guo, T. Zimmermann, N. Nagappan, B. Murphy, Characterizing and
predicting which bugs get fixed: An empirical study of microsoft win-
dows, in: Proceedings of the 32Nd ACM/IEEE International Conference
on Software Engineering - Volume 1, ICSE ’10, ACM, New York, NY,
USA, 2010, pp. 495–504.

[25] Q. Wang, Why is my bug wontfix?, in: 2020 IEEE 2nd International
Workshop on Intelligent Bug Fixing (IBF), IEEE, 2020, pp. 45–54.

[26] S. L. Ramirez-Mora, H. Oktaba, H. Gómez-Adorno, Descriptions of is-
sues and comments for predicting issue success in software projects, J.
Syst. Softw. 168 (2020) 110663.

[27] R. K. Saha, S. Khurshid, D. E. Perry, An empirical study of long lived
bugs, in: 2014 Software Evolution Week - IEEE Conference on Software
Maintenance, Reengineering, and Reverse Engineering, CSMR-WCRE
2014, Antwerp, Belgium, February 3-6, 2014, 2014, pp. 144–153.

[28] R. Kallis, A. Di Sorbo, G. Canfora, S. Panichella, Ticket tagger: Ma-
chine learning driven issue classification, in: 2019 IEEE International
Conference on Software Maintenance and Evolution, ICSME 2019,
Cleveland, OH, USA, September 29 - October 4, 2019, 2019, pp. 406–
409.

[29] A. Murgia, M. Ortu, P. Tourani, B. Adams, S. Demeyer, An exploratory
qualitative and quantitative analysis of emotions in issue report com-
ments of open source systems, Empirical Software Engineering 23 (1)
(2018) 521–564.

[30] J. Cabot, J. L. C. Izquierdo, V. Cosentino, B. Rolandi, Exploring the
use of labels to categorize issues in open-source software projects, in:
22nd IEEE International Conference on Software Analysis, Evolution,
and Reengineering, SANER 2015, Montreal, QC, Canada, March 2-6,
2015, 2015, pp. 550–554.

[31] Z. Liao, D. He, Z. Chen, X. Fan, Y. Zhang, S. Liu, Exploring the char-
acteristics of issue-related behaviors in github using visualization tech-
niques, IEEE Access 6 (2018) 24003–24015.

[32] S. Panichella, Supporting newcomers in software development projects,
in: R. Koschke, J. Krinke, M. P. Robillard (Eds.), 2015 IEEE Inter-
national Conference on Software Maintenance and Evolution, ICSME
2015, Bremen, Germany, September 29 - October 1, 2015, IEEE Com-
puter Society, 2015, pp. 586–589.

[33] S. Breu, R. Premraj, J. Sillito, T. Zimmermann, Information needs in
bug reports: Improving cooperation between developers and users, in:
Proceedings of the 2010 ACM Conference on Computer Supported Co-
operative Work, CSCW ’10, ACM, New York, NY, USA, 2010, pp. 301–
310.

[34] Y. Yu, Z. Li, G. Yin, T. Wang, H. Wang, A dataset of duplicate pull-
requests in github, in: Proceedings of the 15th International Confer-
ence on Mining Software Repositories, MSR ’18, ACM, New York, NY,
USA, 2018, pp. 22–25.

[35] S. Panichella, G. Canfora, M. D. Penta, R. Oliveto, How the evolution of
emerging collaborations relates to code changes: an empirical study, in:
C. K. Roy, A. Begel, L. Moonen (Eds.), 22nd International Conference
on Program Comprehension, ICPC 2014, Hyderabad, India, June 2-3,
2014, ACM, 2014, pp. 177–188.

[36] D. Ford, M. Behroozi, A. Serebrenik, C. Parnin, Beyond the code itself:
how programmers really look at pull requests, in: Proceedings of the
41st International Conference on Software Engineering: Software En-
gineering in Society, ICSE 2019, Montreal, QC, Canada, May 25-31,
2019, 2019, pp. 51–60.

[37] P. J. Guo, T. Zimmermann, N. Nagappan, B. Murphy, ”not my bug!” and
other reasons for software bug report reassignments, in: Proceedings of
the ACM 2011 Conference on Computer Supported Cooperative Work,
CSCW ’11, 2011, pp. 395–404.

[38] D. Kavaler, S. Sirovica, V. Hellendoorn, R. Aranovich, V. Filkov, Per-
ceived language complexity in github issue discussions and their effect
on issue resolution, in: Proceedings of the 32nd IEEE/ACM Interna-
tional Conference on Automated Software Engineering, ASE 2017, Ur-
bana, IL, USA, October 30 - November 03, 2017, 2017, pp. 72–83.

15

https://en.opensuse.org/Bug_Status_WONTFIX
https://en.opensuse.org/Bug_Status_WONTFIX

[39] G. Destefanis, M. Ortu, D. Bowes, M. Marchesi, R. Tonelli, On mea-
suring affects of github issues’ commenters, in: Proceedings of the 3rd
International Workshop on Emotion Awareness in Software Engineer-
ing, SEmotion ’18, ACM, New York, NY, USA, 2018, pp. 14–19.

[40] P. Rodeghero, D. Huo, T. Ding, C. McMillan, M. Gethers, An empirical
study on how expert knowledge affects bug reports, Journal of Software:
Evolution and Process 28 (7) (2016) 542–564.

[41] M. Ortu, G. Destefanis, M. Kassab, S. Counsell, M. Marchesi,
R. Tonelli, Would you mind fixing this issue? - an empirical analysis of
politeness and attractiveness in software developed using agile boards,
in: Agile Processes, in Software Engineering, and Extreme Program-
ming - 16th International Conference, XP 2015, Helsinki, Finland, May
25-29, 2015, Proceedings, 2015, pp. 129–140.

[42] M. Ortu, B. Adams, G. Destefanis, P. Tourani, M. Marchesi, R. Tonelli,
Are bullies more productive? empirical study of affectiveness vs. issue
fixing time, in: 12th IEEE/ACM Working Conference on Mining Soft-
ware Repositories, MSR 2015, Florence, Italy, May 16-17, 2015, 2015,
pp. 303–313.

[43] R. Kikas, M. Dumas, D. Pfahl, Issue dynamics in github projects, in:
Product-Focused Software Process Improvement - 16th International
Conference, PROFES 2015, Bolzano, Italy, December 2-4, 2015, Pro-
ceedings, 2015, pp. 295–310.

[44] T. Zhang, G. Yang, B. Lee, A. T. S. Chan, Guiding bug triage through
developer analysis in bug reports, International Journal of Software En-
gineering and Knowledge Engineering 26 (3) (2016) 405–432.

[45] J. Xuan, H. Jiang, Z. Ren, J. Yan, Z. Luo, Automatic bug triage us-
ing semi-supervised text classification, CoRR abs/1704.04769. arXiv:
1704.04769.

[46] V. Cosentino, J. L. C. Izquierdo, J. Cabot, A systematic mapping study
of software development with github, IEEE Access 5 (2017) 7173–7192.

[47] W. W. Cohen, V. R. Carvalho, T. M. Mitchell, Learning to classify email
into ”speech acts”, in: Proceedings of the 2004 Conference on Empirical
Methods in Natural Language Processing , EMNLP 2004, A meeting of
SIGDAT, a Special Interest Group of the ACL, held in conjunction with
ACL 2004, 25-26 July 2004, Barcelona, Spain, 2004, pp. 309–316.

[48] P. Bhattacharya, I. Neamtiu, Bug-fix time prediction models: Can we
do better?, in: Proceedings of the 8th Working Conference on Mining
Software Repositories, MSR ’11, ACM, New York, NY, USA, 2011, pp.
207–210.

[49] A. Bacchelli, T. D. Sasso, M. D’Ambros, M. Lanza, Content classi-
fication of development emails, in: 34th International Conference on
Software Engineering, ICSE 2012, June 2-9, 2012, Zurich, Switzerland,
2012, pp. 375–385.

[50] A. Di Sorbo, S. Panichella, C. A. Visaggio, M. Di Penta, G. Canfora,
H. C. Gall, Development emails content analyzer: Intention mining in
developer discussions (T), in: 30th IEEE/ACM International Conference
on Automated Software Engineering, ASE 2015, Lincoln, NE, USA,
November 9-13, 2015, 2015, pp. 12–23.

[51] L. Moreno, A. Marcus, Automatic software summarization: the state of
the art, in: Proceedings of the 40th International Conference on Soft-
ware Engineering: Companion Proceeedings, ICSE 2018, Gothenburg,
Sweden, May 27 - June 03, 2018, 2018, pp. 530–531.

[52] S. Panichella, Summarization techniques for code, change, testing, and
user feedback (invited paper), in: 2018 IEEE Workshop on Validation,
Analysis and Evolution of Software Tests, VST@SANER 2018, Cam-
pobasso, Italy, March 20, 2018, 2018, pp. 1–5.

[53] S. Rastkar, G. C. Murphy, G. Murray, Summarizing software artifacts:
a case study of bug reports, in: Proceedings of the 32nd ACM/IEEE
International Conference on Software Engineering - Volume 1, ICSE
2010, Cape Town, South Africa, 1-8 May 2010, 2010, pp. 505–514.

[54] Y. Zhou, Y. Tong, R. Gu, H. Gall, Combining text mining and data min-
ing for bug report classification, in: Proceedings of the 2014 IEEE Inter-
national Conference on Software Maintenance and Evolution, ICSME
’14, IEEE Computer Society, Washington, DC, USA, 2014, pp. 311–
320.

[55] X. Xia, D. Lo, X. Wang, X. Yang, S. Li, J. Sun, A comparative study
of supervised learning algorithms for re-opened bug prediction, in: Pro-
ceedings of the 2013 17th European Conference on Software Mainte-
nance and Reengineering, CSMR ’13, 2013, pp. 331–334.

[56] K. K. Chaturvedi, V. B. Singh, An empirical comparison of machine
learning techniques in predicting the bug severity of open and closed
source projects, IJOSSP 4 (2) (2012) 32–59.

[57] W. Liu, S. Wang, X. Chen, H. Jiang, Predicting the severity of bug re-
ports based on feature selection, International Journal of Software Engi-
neering and Knowledge Engineering 28 (4) (2018) 537.

[58] Y. Tian, D. Lo, C. Sun, Information retrieval based nearest neighbor
classification for fine-grained bug severity prediction, in: Proceedings
of the 2012 19th Working Conference on Reverse Engineering, WCRE
’12, IEEE Computer Society, Washington, DC, USA, 2012, pp. 215–
224.

[59] R. Kikas, M. Dumas, D. Pfahl, Using dynamic and contextual features
to predict issue lifetime in github projects, in: Proceedings of the 13th
International Conference on Mining Software Repositories, MSR ’16,
ACM, New York, NY, USA, 2016, pp. 291–302.

[60] C. Weiß, R. Premraj, T. Zimmermann, A. Zeller, How long will it take
to fix this bug?, in: Fourth International Workshop on Mining Software
Repositories, MSR 2007 (ICSE Workshop), Minneapolis, MN, USA,
May 19-20, 2007, Proceedings, 2007, p. 1.

[61] H. Zhang, L. Gong, S. Versteeg, Predicting bug-fixing time: An empiri-
cal study of commercial software projects, in: Proceedings of the 2013
International Conference on Software Engineering, ICSE ’13, IEEE
Press, Piscataway, NJ, USA, 2013, pp. 1042–1051.

[62] M. Fazzini, M. Prammer, M. d'Amorim, A. Orso, Automatically
translating bug reports into test cases for mobile apps, in: Proceedings of
the 27th ACM SIGSOFT International Symposium on Software Testing
and Analysis, ISSTA 2018, ACM, New York, NY, USA, 2018, pp. 141–
152.

[63] C. Liu, J. Yang, L. Tan, M. Hafiz, R2fix: Automatically generating bug
fixes from bug reports, in: 2013 IEEE Sixth International Conference on
Software Testing, Verification and Validation, 2013, pp. 282–291.

[64] R. Almhana, W. Mkaouer, M. Kessentini, A. Ouni, Recommending rele-
vant classes for bug reports using multi-objective search, in: Proceedings
of the 31st IEEE/ACM International Conference on Automated Software
Engineering, ASE 2016, 2016, pp. 286–295.

[65] M. Patton, Qualitative Evaluation and Research Methods, Sage, New-
bury Park, 2002.

[66] R. Padhye, S. Mani, V. S. Sinha, A study of external community contri-
bution to open-source projects on github, in: 11th Working Conference
on Mining Software Repositories, MSR 2014, Proceedings, May 31 -
June 1, 2014, Hyderabad, India, 2014, pp. 332–335.

[67] L. Heppler, R. Eckert, M. Stuermer, Who cares about my feature re-
quest?, in: Open Source Systems: Integrating Communities - 12th IFIP
WG 2.13 International Conference, OSS 2016, Gothenburg, Sweden,
May 30 - June 2, 2016, Proceedings, 2016, pp. 85–96.

[68] J. Dalle, M. den Besten, H. Masmoudi, Channeling firefox developers:
Mom and dad aren’t happy yet, in: Open Source Development, Com-
munities and Quality, IFIP 20th World Computer Congress, Working
Group 2.3 on Open Source Software, OSS 2008, September 7-10, 2008,
Milano, Italy, 2008, pp. 265–271.

[69] Y. Fan, X. Xia, D. Lo, A. E. Hassan, Chaff from the wheat: Characteriz-
ing and determining valid bug reports, IEEE Trans. Software Eng. 46 (5)
(2020) 495–525.

[70] A. Zerouali, T. Mens, G. Robles, J. M. González-Barahona, On the di-
versity of software package popularity metrics: An empirical study of
npm, in: 26th IEEE International Conference on Software Analysis,
Evolution and Reengineering, SANER 2019, Hangzhou, China, Febru-
ary 24-27, 2019, 2019, pp. 589–593.

[71] H. Borges, M. T. Valente, What’s in a github star? understanding repos-
itory starring practices in a social coding platform, Journal of Systems
and Software 146 (2018) 112–129.

[72] S. Nielebock, R. Heumüller, F. Ortmeier, Programmers do not favor
lambda expressions for concurrent object-oriented code, Empirical Soft-
ware Engineeringdoi:10.1007/s10664-018-9622-9.

[73] J. Jiang, D. Lo, X. Ma, F. Feng, L. Zhang, Understanding inactive yet
available assignees in github, Information & Software Technology 91
(2017) 44–55.

[74] D. Mazinanian, A. Ketkar, N. Tsantalis, D. Dig, Understanding the use
of lambda expressions in java, PACMPL 1 (OOPSLA) (2017) 85:1–
85:31.

16

http://arxiv.org/abs/1704.04769
http://arxiv.org/abs/1704.04769
http://dx.doi.org/10.1007/s10664-018-9622-9

[75] M. Hilton, T. Tunnell, K. Huang, D. Marinov, D. Dig, Usage, costs,
and benefits of continuous integration in open-source projects, in: Pro-
ceedings of the 31st IEEE/ACM International Conference on Automated
Software Engineering, ASE 2016, ACM, New York, NY, USA, 2016, pp.
426–437.

[76] D. Spencer, Card sorting: Designing usable categories, Rosenfeld Me-
dia, 2009.

[77] A. Guzzi, A. Bacchelli, M. Lanza, M. Pinzger, A. van Deursen, Commu-
nication in open source software development mailing lists, in: Proceed-
ings of the 10th Working Conference on Mining Software Repositories,
MSR ’13, San Francisco, CA, USA, May 18-19, 2013, 2013, pp. 277–
286.

[78] H. Khalid, E. Shihab, M. Nagappan, A. E. Hassan, What do mobile app
users complain about?, IEEE Software 32 (3) (2015) 70–77.

[79] W. Conover, Practical nonparametric statistics, Wiley series in probabil-
ity and statistics: Applied probability and statistics, Wiley, 1998.

[80] S. S. Shapiro, M. B. Wilk, An analysis of variance test for normality
(complete samples), Biometrika 52 (3/4) (1965) 591–611.

[81] Y. Benjamini, Y. Hochberg, Controlling the false discovery rate: a prac-
tical and powerful approach to multiple testing, Journal of the Royal
statistical society: series B (Methodological) 57 (1) (1995) 289–300.

[82] M. Linares-Vásquez, G. Bavota, C. Bernal-Cárdenas, M. Di Penta,
R. Oliveto, D. Poshyvanyk, Api change and fault proneness: A threat to
the success of android apps, in: Proceedings of the 2013 9th Joint Meet-
ing on Foundations of Software Engineering, ESEC/FSE 2013, ACM,
New York, NY, USA, 2013, pp. 477–487.

[83] R. A. Baeza-Yates, B. Ribeiro-Neto, Modern Information Retrieval,
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
1999.

[84] Y. Zhou, Y. Tong, R. Gu, H. C. Gall, Combining text mining and data
mining for bug report classification, Journal of Software: Evolution and
Process 28 (3) (2016) 150–176.

[85] E. R. Russo, A. Di Sorbo, C. A. Visaggio, G. Canfora, Summarizing
vulnerabilities’ descriptions to support experts during vulnerability as-
sessment activities, J. Syst. Softw. 156 (2019) 84–99.

[86] S. Panichella, A. Di Sorbo, E. Guzman, C. A. Visaggio, G. Canfora,
H. C. Gall, How can i improve my app? classifying user reviews for
software maintenance and evolution, in: 2015 IEEE International Con-
ference on Software Maintenance and Evolution, ICSME 2015, Bremen,
Germany, September 29 - October 1, 2015, 2015, pp. 281–290.

[87] A. Di Sorbo, G. Grano, C. A. Visaggio, S. Panichella, Investigating the
criticality of user-reported issues through their relations with app rating,
J. Softw. Evol. Process. 33 (3).

[88] V. R. Basili, L. C. Briand, W. L. Melo, A validation of object-oriented
design metrics as quality indicators, IEEE Trans. Software Eng. 22 (10)
(1996) 751–761.

[89] T. Zimmermann, N. Nagappan, Predicting defects with program depen-
dencies, in: Proceedings of the Third International Symposium on Em-
pirical Software Engineering and Measurement, ESEM 2009, October
15-16, 2009, Lake Buena Vista, Florida, USA, 2009, pp. 435–438.

[90] X. Tan, M. Zhou, Z. Sun, A first look at good first issues on github, in:
P. Devanbu, M. B. Cohen, T. Zimmermann (Eds.), ESEC/FSE ’20: 28th
ACM Joint European Software Engineering Conference and Sympo-
sium on the Foundations of Software Engineering, Virtual Event, USA,
November 8-13, 2020, ACM, 2020, pp. 398–409.

[91] A. B. Dhasade, A. S. M. Venigalla, S. Chimalakonda, Towards priori-
tizing github issues, in: S. Jain, A. Gupta, D. Lo, D. Saha, R. Sharma
(Eds.), ISEC 2020: 13th Innovations in Software Engineering Confer-
ence, Jabalpur, India, February 27-29, 2020, ACM, 2020, pp. 18:1–18:5.

[92] G. C. Cawley, N. L. Talbot, On over-fitting in model selection and sub-
sequent selection bias in performance evaluation, J. Mach. Learn. Res.
11 (2010) 2079–2107.

[93] J. R. Quinlan, Induction of decision trees, Machine learning 1 (1) (1986)
81–106.

[94] E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer, D. M. German,
D. Damian, The promises and perils of mining github, in: Proceedings
of the 11th Working Conference on Mining Software Repositories, MSR
2014, ACM, New York, NY, USA, 2014, pp. 92–101.

[95] S. Panichella, G. Bavota, M. D. Penta, G. Canfora, G. Antoniol, How
developers’ collaborations identified from different sources tell us about
code changes, in: 30th IEEE International Conference on Software
Maintenance and Evolution, Victoria, BC, Canada, September 29 - Oc-
tober 3, 2014, 2014, pp. 251–260.

[96] Q. Mi, J. Keung, An empirical analysis of reopened bugs based on open
source projects, in: Proceedings of the 20th International Conference on
Evaluation and Assessment in Software Engineering, EASE ’16, ACM,
New York, NY, USA, 2016, pp. 37:1–37:10.

[97] T. Zimmermann, N. Nagappan, P. J. Guo, B. Murphy, Characterizing
and predicting which bugs get reopened, in: Proceedings of the 34th In-
ternational Conference on Software Engineering, ICSE ’12, IEEE Press,
Piscataway, NJ, USA, 2012, pp. 1074–1083.

[98] R. Kallis, A. Di Sorbo, G. Canfora, S. Panichella, Predicting issue types
on github, Science of Computer Programming 205 (2021) 102598.

[99] G. Gousios, M. D. Storey, A. Bacchelli, Work practices and challenges
in pull-based development: the contributor’s perspective, in: Proceed-
ings of the 38th International Conference on Software Engineering,
ICSE 2016, Austin, TX, USA, May 14-22, 2016, 2016, pp. 285–296.

[100] G. Gousios, A. Zaidman, M. D. Storey, A. van Deursen, Work practices
and challenges in pull-based development: The integrator’s perspective,
in: 37th IEEE/ACM International Conference on Software Engineering,
ICSE 2015, Florence, Italy, May 16-24, 2015, Volume 1, 2015, pp. 358–
368.

[101] C. Yang, X. Zhang, L. Zeng, Q. Fan, G. Yin, H. Wang, An empirical
study of reviewer recommendation in pull-based development model,
in: Proceedings of the 9th Asia-Pacific Symposium on Internetware, In-
ternetware 2017, Shanghai, China, September 23 - 23, 2017, 2017, pp.
14:1–14:6.

[102] Y. Yu, H. Wang, G. Yin, C. X. Ling, Reviewer recommender of pull-
requests in github, in: 30th IEEE International Conference on Software
Maintenance and Evolution, Victoria, BC, Canada, September 29 - Oc-
tober 3, 2014, 2014, pp. 609–612.

17

	1 Introduction
	2 Background
	3 Related Work
	3.1 Issue Management Process and Practices
	3.2 Issue Reports Classification and Prioritization

	4 Study Design
	4.1 Data Collection
	4.2 Analysis Method
	4.2.1 RQ1: What are the main reasons for closing Github issues with the wontfix status?
	4.2.2 RQ2: What factors relate with the resolution time of wontfix issues?
	4.2.3 RQ3: Can machine learning be used to automatically identify issues that are likely to be closed as wontfix?

	5 Results
	5.1 RQ1: Reasons for Wontfix Issues
	5.2 RQ2: Factors Related with the Wontfix Issues Resolution Time
	5.3 RQ3: Automated Classification of Wontfix Issues

	6 Threats to Validity
	7 Conclusions

