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Abstract: The paper is related to a coupled problem describing piezoelectric effects in an elastic body. For
this problem, we deduce majorants of the distance between the exact solution and any approximation in the
respective energy class of functions satisfying the boundary conditions. The majorants are fully computable
and do not contain mesh dependent constants. They vanish if and only if an approximate solution coincides
with the exact one and provide guaranteed upper bounds of errors in terms of the natural energy norm asso-
ciated with the coupled problem studied.

Keywords: Coupled systems of partial differential equations, piezoelectricity problem, a posteriori error esti-
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Mathematical models arising in the majority of applications are intended to describe so-called multiphysics
problems, which involve several equations of different types related to the different processes or phenom-
ena. Piezoelectric models form an important class of such problems with bidirectional coupling between the
mechanical and electrical system. These models are highly important for modern technological systems that
transform (in a macro or micro scale) mechanical loadings into electric effects and vice versa. The first lin-
ear mathematical model and the corresponding system of differential equations of an elastic medium taking
into account the interaction of electric and mechanical fields was derived by W. Voigt [21]. Later R. Toupin,
R. Mindlin, L. Knopoff, S. Kaliski, and J. Petikiewicz presented more advanced models of an elastic medium
with polarization (see [2, 8, 9, 19, 20]). The effects evoked by thermal and magnetic fields are considered in
[3, 4, 7]. In [1], the authors considered a linear model (without the hysteresis effects) for the interaction of the
elastic and electrical fields in a three-dimensional piezoelectric matrix with metallic inclusions.

Typically, numerical solution of multiphysics problems consists of consequent solving the respective
equations by a certain splitting scheme that exchanges the data in a suitable order. This is the basic procedure
used in lab and industrial environmentswherein specialized single-physics solvers have been developed over
the years. Difficulties of this approach consists in choosing parameters for the involved solvers that guaran-
tee adequate overall accuracy and efficient use of computational resources. In other words, the challenging
problem in quantitative analysis of complicated coupled systems is the reliability of numerical results. To
address this contention it is required to understand how to deduce fully computable and guaranteed bounds
of the difference between the exact solution and an approximation. This is the main goal of this note, where
we derive new a posteriori estimates (error majorants) for the coupled system of elliptic partial differential
equations motivated by a piezoelectric problem. Our method is based on a posteriori error estimates of func-
tional type that was introduced in [11] and developed in [12, 13, 15–17] and many other publications. Error
estimates of this type are derived by purely functional methods and provide fully computable measures of
the difference between the exact solution to a boundary value problem and an arbitrary function (approxi-
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mation) from the corresponding energy space. They do not attract specific information on the approximate
solution (e.g., Galerkin orthogonality, structure of meshes, numerical method used) and do not require extra
regularity of the exact solution. As a result, the estimates do not contain mesh dependent constants and are
valid for any conforming approximation from the respective class of admissible functions. Moreover, error
majorants are nonnegative functionals, which vanish if and only if an approximate solution coincides with
the exact one. Therefore, they provide computablemeasures of the accuracy for a wide spectrum of problems
(practical applications of them are systematically discussed in [6]).

The paper is organized as follows. Section 1 introduces the notation and defines the problem. The main
result is presented in Theorem 2.1 of Section 2, which states the form of the error majorant. Section 3 presents
advanced forms of majorants which are valid for a wider set of functions and contain constants in the so
called ‘sloshing’ inequality.

1 Statement of the problem and notation
LetΩ be a bounded Lipschitz domain in ℝd, d ∈ {2, 3}. We denote two primary fields as follows: u : Ω → ℝd

is the vector of elastic displacement, φ : Ω → ℝ is the scalar electric potential field.
The strain tensor ε is the symmetric part of the displacement gradient:

ε(u) = 1
2 (
∇u + (∇u)T). (1.1)

We consider the system of equations describing deformation of a piezocrystallic body in Ω

Div σ(u, φ) = f (1.2)
−divD(u, φ) = g (1.3)

containing the body force vector f and the scalar field of the electric chargedensity g. HereDiv anddiv denote
the divergence operators for the tensor and vector valued functions, respectively, i.e., Div τ = ∇ ⋅ τ = τij,j and
divq = ∇ ⋅ q = qi,i . Here and later on the Einstein summation convention of summation over the repeated
indices is adopted. The scalar product of vectors is denoted by ‘⋅’ and the scalar product of tensors is denoted
by two dots ‘:’.

The symmetric stress tensor σ and the electric displacement D are coupled via the linear piezoelectric
material law:

σ(u, φ) = 𝕃ε(u) + B ⋅ ∇φ (1.4)
−D(u, φ) = K ⋅ ∇φ − BT : ε(u). (1.5)

In (1.4) and (1.5), 𝕃 = (Lijkl) is the (forth-order) linear-elastic material tensor, which is subject to the
condition

c21 |ε|
2 ⩽ 𝕃 ε : ε ⩽ c22 |ε|

2 ∀ε ∈𝕄d×dsym (1.6)

where 𝕄d×dsym is the space of symmetric real valued d×d tensors.We assume that the elements of the elasticity
tensor are bounded and possess natural symmetry properties:

𝕃ijkm = 𝕃jikm = 𝕃kmij ∈ L∞(Ω), i, j, k,m = 1, . . ., d. (1.7)

Also, the relations (1.4) and (1.5) contain the (third-order) piezoelectric tensor

B = (bijs), bijs ∈ L∞(Ω)

and the (second-order) dielectric material tensor K = (Kij), which satisfies the symmetry and ellipticity con-
ditions

Kij = Kji ∈ L∞(Ω) (1.8)
γ21 |ζ|

2 ⩽ K ζ ⋅ ζ ⩽ γ22 |ζ|
2 ∀ζ ∈ ℝd . (1.9)
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The system (1.2)–(1.5) is supplied with the Dirichlét boundary condition

u = u0 on ΓD,u (1.10)

for the elastic component of the solution and the condition

φ = φ0 on ΓD,φ (1.11)

for the electric component. In general, ΓD,φ and ΓD,φ are two different parts of the boundary Γ. On the re-
maining parts ΓN,u and ΓN,φ , we impose the homogeneous Neumann conditions

σ ⋅ n = 0 on ΓN,u (1.12)
D ⋅ n = 0 on ΓN,φ . (1.13)

In what follows, we use the spaces H(Ω,Div) and H(Ω, div) containing square summable tensor valued
and vector valued functions having square summable divergences. Subspaces of these spaces formed by the
functions satisfying the homogeneous Neumann conditions are denoted by

H+(Ω,Div) :=
{
{
{
τ ∈ H(Ω,Div) |∫

Ω

(τ : ∇w + Divτ ⋅w)dx = 0 ∀w ∈ V0
}
}
}

and

H+(Ω, div) :=
{
{
{
q ∈ H(Ω, div) | ∫

Ω

(q ⋅ ∇ψ + divqψ)dx = 0 ∀ψ ∈ M0
}
}
}

respectively.
The generalized solution of the problem (1.2)–(1.13) is defined by the system of integral identities

c (u,w) + b (φ,w) ≡ F (w) ∀w ∈ V0 (1.14)
−b (η, u) + k (φ, η) ≡ G (η) ∀η ∈ M0 (1.15)

where the solution pair (u, φ) belongs to the sets

u ∈ V0 + u0, V0 := {v ∈ H1(Ω;ℝ3)󵄨󵄨󵄨󵄨 v|ΓD,u = 0} (1.16)

and
φ ∈ M0 + φ0, M0 := {ψ ∈ H1(Ω)󵄨󵄨󵄨󵄨 ψ|ΓD,φ = 0} . (1.17)

The bilinear forms associated with elasticity, piezoelectric and permittivity tensors and right-hand sides are
defined by the relations

c (u,w) := ∫
Ω

ε(u) : 𝕃 : ε(w)dx = ∫
Ω

Lijkl εij(u) : εkl(w)dx (1.18)

b (φ,w) := ∫
Ω

ε(w) : B ⋅ ∇φ dx = ∫
Ω

bijs εij(u)φ,s dx (1.19)

k (φ, η) := ∫
Ω

∇φ ⋅ K ⋅ ∇η dx = ∫
Ω

Kij φ,i η,j dx (1.20)

F(w) := ∫
Ω

f ⋅wdx, G(η) := ∫
Ω

g η dx. (1.21)

since then the bilinear forms are defined first. The solution of the coupled system (1.14)–(1.15) exists and it is
a unique element of the set (V0 + u0) × (M0 + φ0) (see [18]).

It is not difficult to see that the norm

|[u, φ]|2 := ‖ε(u)‖2𝕃 + ‖∇φ‖2K = c(u, u) + k(φ, φ) (1.22)

is the natural energy norm associated with our problem. We use it as a suitable measure of the distance to
the exact solution.
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2 Estimate of the deviation from the exact solution
Assume that v ∈ V0 + u0 and ψ ∈ M0 + φ0 are approximations of u and φ, respectively. Our goal is to deduce
a computable upper bound of the norm

|[u − v, φ − ψ]|2 := ‖ε(u − v)‖2𝕃 + ‖∇(φ − ψ)‖2K . (2.1)

Consider the quantities

M1(v, ψ, τ) := ‖τ − 𝕃 ε(v) − B ⋅ ∇ψ‖𝕃−1 + µF(𝕃, Ω, ΓD,u)‖ f + Div τ‖ (2.2)

and
M2(v, ψ, q) := ‖q − K∇ψ + BT : ε(v)‖K−1 + µF(K, Ω, ΓD,φ)‖g + divq‖ (2.3)

where µF are constants in the Friedrichs type inequalities

‖w‖ ⩽ µF(𝕃, Ω, ΓD,u) ‖ε(w)‖𝕃 ∀w ∈ V0

and
‖η‖ ⩽ µF(K, Ω, ΓD,φ) ‖∇η‖K ∀φ ∈ M0.

Here and later on, ‖ ⋅ ‖ stands for the L2 norm of a vector or scalar valued function. The quantitiesM1 andM2
contain only known functions (approximationsv andψ, and the functions τ ∈ H+(Ω,Div) and q ∈ H+(Ω, div)
that can be viewed as approximations of the exact elastic stress and of the exact flux, respectively).

Theorem below shows that these two quantities majorate the error norm.

Theorem 2.1. (i) For any v ∈ V0 + u0 and ψ ∈ M0 + φ0 the combined error norm meets the estimate

|[u − v, φ − ψ]|2 ⩽M2
1(v, ψ, τ) +M

2
2(v, ψ, q) (2.4)

where τ and q are arbitrary functions in the spaces H+(Ω,Div) and H+(Ω, div), respectively.
(ii) The right-hand side of (2.4) vanishes if and only if

v = u, ψ = φ, τ = 𝕃 ε(u) + B ⋅ ∇ψ, q = K ∇φ − BT : ε(u).

Proof. Let v ∈ V0 + u0 and ψ ∈ M0 + φ0.We reform (1.14) and (1.15) as follows

c(u − v,w) + b(φ − ψ,w) = F(w) − c(v,w) − b(ψ,w) (2.5)
−b (η, u − v) + k (φ − ψ, η) = G(η) + b(η, v) − k(ψ, η). (2.6)

Let w = u − v and η = φ−ψ. By adding equations (2.5) and (2.6), we obtain the norm |[u − v, φ−ψ]|2 on the
left-hand side.

On the right-hand side, we have

F(w)− c(v,w) − b(ψ,w) + G(η) + b(η, v) − k(ψ, η) = ∫
Ω

(f + Divτ) ⋅wdx + ∫
Ω

(τ − 𝕃 ε(v) − B ⋅ ∇ψ) : ε(w)dx

+ ∫
Ω

(g + divq) η dx + ∫
Ω

(q − K∇ψ + BT : ε(v)) ⋅ ∇η dx (2.7)

where τ ∈ H+(Ω,Div) and q ∈ H+(Ω, div) . The first term is estimated as follows:

∫
Ω

( f + Div τ) ⋅wdx ⩽ ‖ f + Div τ‖ ‖w‖ ⩽ µF(𝕃, Ω, ΓD,u) ‖ε(w)‖𝕃 ‖ f + Div τ‖.

Analogously,
∫
Ω

(g + div q) η dx ⩽ ‖g + divq‖ µF(K, Ω, ΓD,φ) ‖∇η‖K .
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Next, we use the algebraic inequalities

χ : ε ⩽ (𝕃χ : χ)1/2 (𝕃−1ε : ε)1/2

and
q ⋅ p ⩽ (Kq ⋅ q)1/2 (K−1p ⋅ p)1/2.

Hence

∫
Ω

(τ − 𝕃 ε(v) − B ⋅ ∇ψ) : ε(w)dx ⩽ ‖τ − 𝕃 ε(v) − B ⋅ ∇ψ‖𝕃−1‖ε(w)‖𝕃
∫
Ω

(q − K∇ψ + BT : ε(v)) ⋅ ∇η dx ⩽ ‖q − K∇ψ + BT : ε(v)‖K−1‖∇η‖K .
We estimate (2.7) by the followng two terms:

I1 = (µF(𝕃, Ω, ΓD,u)‖ f + Divτ‖ + ‖τ − 𝕃 ε(v) − B ⋅ ∇ψ‖𝕃−1) ‖ε(u − v)‖𝕃
I2 = (µF(K, Ω, ΓD,φ)‖g + divq‖ + ‖q − K∇ψ + BT : ε(v)‖K−1) ‖∇(φ − ψ)‖K .

Then,
|[u − v, φ − ψ]|2 ⩽ I1 + I2 ⩽ (M2

1(v, ψ, τ) +M
2
2(v, ψ, q))

1/2
|[u − v, φ − ψ]| (2.8)

and we arrive at estimate (2.4).
To prove (ii), we note that vanishing of the right-hand side of (2.4) means that almost everywhere in Ω

the following relations hold:

Div τ + f = 0 (2.9)
divq + g = 0 (2.10)

τ = 𝕃 ε(v) + B ⋅ ∇ψ (2.11)
q = K ∇ψ − BT : ε(v). (2.12)

From (2.9) and (2.11), it follows that

∫
Ω

(𝕃 ε(v) + B ⋅ ∇ψ) : ε(w)dx = ∫
Ω

f ⋅wdx ∀w ∈ V0. (2.13)

Analogously, (2.10) and (2.12) imply

∫
Ω

(K∇ψ ⋅ ∇η − ε(v) : B ⋅ ∇η)dx = ∫
Ω

gηdx ∀η ∈ M0. (2.14)

Since v and ψ satisfy the main boundary conditions, (2.13) and (2.14) show that they satisfy system (1.14)–
(1.15), which solution is unique. Thus, we conclude that the above functions v and ψ coincide with u and φ,
respectively.

Remark 2.1. It is easy to see that

µF(𝕃, Ω, ΓD,u) ⩽ c−11 µF(Ω, ΓD,u)
µF(K, Ω, ΓD,φ) ⩽ γ−11 µF(Ω, ΓD,φ)

where
µ−1F (Ω, ΓD,u) = inf

w∈V0

‖ε(w)‖
‖w‖

(2.15)

and
µ−1F (Ω, ΓD,φ) = inf

η∈M0

‖∇η‖
‖η‖ . (2.16)
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Approximate values of µF(Ω, ΓD,u) and µF(Ω, ΓD,φ) can be found numerically by minimization of the quo-
tients (2.15) and (2.16), respectively. Finding computable and fully guaranteed majorants of these constants
is reduced to finding guaranteed lower bounds of the minimal positive eigenvalue of an elliptic operator.
This difficult and important problem has been studied by different authors. In the context of Friedrich’s type
inequalities we refer to [5, 10, 13, 14] and references cited therein.

It is worth adding a concise comment on application of the majorant in combination with finite element ap-
proximations. Let v = uh and ψ = φh be FEM solutions computed on a mesh Th. The simplest way to apply
(2.4) is to reconstruct τ and q from the numerical stress τ̂h = 𝕃 ε(uh) and numerical flux q̂h = K ∇ψh . In
general, these functionsmaynot belong to H+(Ω,Div) and H+(Ω, div), respectively. Therefore, a certain aver-
aging (smoothing) procedure is required. Awide spectrumof known post–processing procedures can be used
for this purpose (see, e.g., [6, 13] and the references therein). Post–processed functions τ̂h and q̂h preserve
continuity of the normal components τ̂hn and (q̂h ⋅ n) along the interelement boundaries. The substitution
of τ̂h and q̂h will give a simply computable and guaranteed bound of the error. Tomake a sharper bound it is
necessary to minimize the right-hand side of (2.4) over τ and q using τ̂h and q̂h as the initial guess. Since
M2

1 +M
2
2 is a quadratic functional, this can be done by standard procedures well tested for elliptic boundary

value problems (see [6]).

3 Advanced forms of the majorant
The conditions imposed on q and τ can be weakened. Below we deduce an advanced form of the majorant,
in which the Neumann conditions are to be satisfied in a weak (integral mean) sense. Let

H̃+(Ω,Div) := {τ ∈ H(Ω,Div) | {τn}ΓN,u = 0}

and
H̃+(Ω, div) := {q ∈ H(Ω, div) | {q ⋅ n}ΓN,φ = 0}

where {q ⋅ n}ΓN,φ := |ΓN,φ|
−1 ∫ΓN,φ q ⋅ndx and |ΓN,φ|denotes the Lebesgue (d−1)-measure of ΓN,φ. Analogously,

{τn}ΓN,u denotes the vector valued function, which components on ΓN,u are constants equal to mean values
of the components of τn. Henceforth, we assume that q ⋅ n has a square summable trace on ΓN,φ and τn is a
vector valued function square summable on ΓN,u

Then, the right–hand side of (2.7) has a somewhat different form

∫
Ω

(f + Divτ) ⋅wdx +∫
Ω

(τ − 𝕃 ε(v) − B ⋅ ∇ψ) : ε(w)dx − ∫
ΓN,u

τn ⋅wdΓ

+∫
Ω

(g + divq) η dx + ∫
Ω

(q − K∇ψ + BT : ε(v)) ⋅ ∇η dx − ∫
ΓN,φ

q ⋅ nηdΓ. (3.1)

The integrals over Ω are estimates as in the previous section. For the boundary integrals, we apply the esti-
mates

∫
ΓN,φ

q ⋅ nη dΓ ⩽ CΓN,φ‖q ⋅ n‖ΓN,φ‖∇η‖Ω ⩽ CΓN,φ γ−11 ‖q ⋅ n‖ΓN,φ‖∇η‖K (3.2)

and

∫
ΓN,u

τn ⋅wdΓ ⩽ CΓN,u‖τn‖ΓN,u‖∇w‖Ω ⩽ CΓN,uCK(Ω) ‖τn‖ΓN,u‖ε(w)‖Ω ⩽ CΓN,uCK(Ω)c−11 ‖τn‖ΓN,u‖ε(w)‖𝕃 (3.3)

where CK(Ω) is a constant in the respective Korn’s inequality (which establishes equivalence of ‖∇w‖Ω and
‖ε(w)‖Ω for the vector valued functions in V0) and CΓN,u and CΓN,φ are constants in the so called ‘sloshing’
inequality

‖η‖Γ̃ ⩽ CΓ̃‖∇η‖Ω (3.4)
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which holds for any η ∈ H1(Ω) with zero mean value on a measurable part of the boundary Γ̃ with positive
measure.

In this way, we deduce modified functionals

M̃1(v, ψ, τ) := ‖τ − 𝕃 ε(v) − B ⋅ ∇ψ‖𝕃−1 + µF(Ω, ΓD,u)c−11 (‖ f + Divτ‖ + CΓN,uCK(Ω)‖τn‖ΓN,u) (3.5)

and
M̃2(v, ψ, q) := ‖q − K∇ψ + BT : ε(v)‖K−1 + µF(Ω, ΓD,φ)γ−11 (‖g + divq‖ + CΓN,φ‖q ⋅ n‖ΓN,φ). (3.6)

We obtain a modified version of Theorem 2.1, where the estimate

|[u − v, φ − ψ]|2 ⩽ M̃ 2
1 (v, ψ, τ) + M̃

2
2 (v, ψ, q) (3.7)

holds for τ and q in the spaces H̃+(Ω,Div) and H̃+(Ω, div), respectively.
As an example, we consider the domain Ω = (0, d1) × (0, d2) × (0, d3), di > 0, i = 1, 2, 3. This example

is motivated by the fact that very often piezoelectric devices are parallelepipeds. Assume that

ΓD,φ = ΓD,u = {x3 = 0} ∪ {x3 = d3}

and the Neumann parts of Γ consist of the four lateral faces

Γ1 = {x1 = 0}, Γ2 = {x1 = d1}, Γ3 = {x2 = 0}, Γ4 = {x2 = d2}.

For such a domain the Korn’s constant can be estimated.
In [10], it was proved that the constant CΓ̃(Π) for Π := (0, h1) × (0, h2) × (0, h3) and Γ̃ = x1 = 0 is defined

by the relation
CΓ̃(Π) = β(h1, h2, h3) := (ξ tanh(h1ξ))

−1 , ξ = π
max{h2, h3}

. (3.8)

Let the sets H̃+(Ω,Div) and H̃+(Ω, div) be defined by the conditions

{τn}Γi = 0, {q ⋅ n}Γi = 0, i = 1, 2, 3, 4. (3.9)

Then, (3.2) is replaced by

∫
ΓN,φ

q ⋅ nη dΓ ⩽ β(d12 , d2, d3)(‖q ⋅ n‖2Γ1 + ‖q ⋅ n‖
2
Γ2)

1/2
‖∇η‖Ω

+ β(d22 , d1, d3)(‖q ⋅ n‖2Γ3 + ‖q ⋅ n‖
2
Γ4)

1/2
‖∇η‖Ω ⩽ R1(q ⋅ n)γ−11 ‖∇η‖K . (3.10)

Here the quantity

R1(q ⋅ n) := β(
d1
2
, d2, d3)(‖q ⋅ n‖2Γ1 + ‖q ⋅ n‖

2
Γ2)

1/2
+ β(d22 , d1, d3)(‖q ⋅ n‖2Γ3 + ‖q ⋅ n‖

2
Γ4)

1/2

can be considered as a penalty for violations of the homogeneous Neumann condition on ΓN,φ. Analogously,
(3.3) is replaced by the estimate

∫
ΓN,u

τn ⋅wdΓ ⩽ β(d12 , d2, d3)(‖τn‖2Γ1 + ‖τn‖
2
Γ2)

1/2
‖ε(w)‖Ω

+ β(d22 , d1, d3)(‖τn‖2Γ3 + ‖τn‖
2
Γ4)

1/2
‖ε(w)‖Ω ⩽ R2(τn)c−11 CK(Ω)‖ε(w)‖𝕃 (3.11)

where
R2(τn) := β(

d1
2
, d2, d3)(‖τn‖2Γ1 + ‖τn‖

2
Γ2)

1/2
+ β(d22 , d1, d3)(‖τn‖2Γ3 + ‖τn‖

2
Γ4)

1/2

can be viewed as a penalty for violations of the homogeneous Neumann condition on ΓN,u.



266 | U. Langer, S. Repin, and T. Samrowski, Estimates for a coupled piezoelectric model

By (3.10) and (3.11), we find that

M̃1(v, ψ, τ) := ‖τ − 𝕃 ε(v) − B ⋅ ∇ψ‖𝕃−1 + µF(Ω, ΓD,u)c−11 (‖ f + Divτ‖ + CK(Ω)R1(q ⋅ n)) (3.12)

and
M̃2(v, ψ, q) := ‖q − K∇ψ + BT : ε(v)‖K−1 + µF(Ω, ΓD,φ)γ−11 (‖g + divq‖ + R2(τn)). (3.13)

Hence, for piezoelectric bodies of the parallelepiped form we obtain the estimate

|[u − v, φ − ψ]|2 ⩽ M̃ 2
1 (v, ψ, τ) + M̃

2
2 (v, ψ, q) (3.14)

where v and ψ are approximations of the displacement and electric fields, respectively, and τ and q (approx-
imations of the stress tensor and flux vector) must satisfy (3.9).
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