Rule-Based Resource Matchmaking for Composite Application Deployments across
IoT-Fog-Cloud Continuums

Josef Spillner, Panagiotis Gkikopoulos
Zurich University of Applied Sciences
Winterthur, Switzerland
Email: {josef.spillner,pang} @ zhaw.ch

Abstract—Where shall my new shiny application run? Hun-
dreds of such questions are asked by software engineers who
have many cloud services at their disposition, but increasingly
also many other hosting options around managed edge devices
and fog spectrums, including for functions and container
hosting (FaaS/CaaS). Especially for composite applications
prevalent in this field, the combinatorial deployment space is
exploding. We claim that a systematic and automated approach
is unavoidable in order to scale functional decomposition ap-
plications further so that each hosting facility is fully exploited.
To support engineers while they transition from cloud-native
to continuum-native, we provide a rule-based matchmaker
called RBMM that combines several decision factors typically
present in software description formats and applies rules to
them. Using the MaestroNG orchestrator and OsmoticToolkit,
we also contribute an integration of the matchmaker into an
actual deployment environment.

Index Terms—Cloud Computing, Osmotic Computing, Fog
Computing, Deployment, Matchmaking

1. Introduction

Continuum applications are widely considered as the
next evolutionary step of cloud applications [1], by departing
from the notion of single or even multiple clouds and
instead incorporating other compute facilities such as data-
generating nodes (mobile devices, IoT sensor nodes) and
intermediaries (edges, fogs) [2].

In such continuums, various deployment patterns can be
identified. Fig. 1 shows four such patterns, out of a lot more
that are already used in industrial applications: Pipelining
follows the flow of data mostly for analytics purposes; mul-
tiplexing considers the parallel use of multi-cloud services
for increasing availability or security; offloading adaptively
switches on a cloud on demand; and switching optimises the
connection latency by choosing between intermediary and
direct cloud access depending on the situation of each link.

Instead of hardcoding where each part of a composite
application runs, it is possible and indeed desired to au-
tomate that process and specify requirements along with
desired patterns programmatically. This requires transferring

Alina Buzachis, Massimo Villari
MIFT Department, University of Messina
Messina, Italy
Email: {abuzachis,mvillari} @unime.it

+ "Pipelining . Officading ~ "~ , K 1 Switching
N o (RS e) I : S :
i ([crouaf) : : (|croud ‘ Mob]| ! K : +— 0T @
v\ /. L / =1, ' ' :
R Sl S R :
: - hd s R A

Fog/| . K Lt t | Fogs|

Edge[l1oT @ - Cloud : edge| !
Y N e — A
; ' of Foor | - . '
o loT |8 @ 10T > Edge [[Cloud € i 10T |-@
H ! B \ I H :

Figure 1. Application deployments across continuums

the knowledge from humans, who would do the hardcoding,
to knowledge bases and tools that understand the character-
istics of application parts, resources along the continuum,
and other decision factors. Based on this knowledge, match-
making can be performed to solve the assignment problem
and yield suitable deployment instructions that fulfil all hard
constraints and moreover consider soft preferences.

In this paper, we define application and resource models,
then categorise the associated decision factors in the RBMM
model. To increase automation, we present suitable acqui-
sition techniques for each, complemented by propagation,
skipping, deployment and accumulation rules. Subsequently,
we present simple matchmaking algorithms to yield suitable
deployment topologies (Sects. 2-3). To increase the appli-
cability of the work, we implement the matchmaking along
with a composite application deployment scenario (Sect. 4),
where the OsmoticToolkit is taken into consideration as a
practical demonstrator, before diving into related works and
concluding our work (Sects. 5-6).

2. Models, Decision Factors and Rules

2.1. Definitions and Models

We define a composite application A to consist of a
number of software artefacts a; which are loosely coupled
and instantiated as application execution units, or parts, with
certain scaling factors, i.e. A = {sg X ag,$1 X ay,...}.

A continuum resource collection R consists of independent
resources 7; whose owners or operators can differ, leading to
further differences in location as well as technical character-
istics including the resource level (infrastructure, platform,
middleware).

Both artefacts and resources have certain properties,
although not all of them are guaranteed to be explic-
itly expressed in machine-readable descriptions. Sometimes,
they are also loosely expressed, for example a runtime
environment java without corresponding version number.
Therefore, we assume those deployment factors to contain
a measure of uncertainty, i.e. F' = {ug X fo,u1 X f1,...}.
In component notation, resource factors are offered whereas
artefact factors are required. Some factors only exist for
either artefacts or resources, while others exist for both; this
is expressed by the factor scope (A, R or both).

A deployment plan (assignment) is the projection
A —cyp Rusea € R under a set of conditions C' and
a set of preferences P. Conditions must be fulfilled (e.g.
sufficient memory to run the application, monthly cost not
more than a certain limit) whereas preferences are used to
determine the winning resource combination out of several
that fulfil the conditions (e.g. smallest possible latency).
Multiple preferences can be combined by weights, i.e.
P = {wp X po, w1 X p1,...}. All conditions and preferences
are expressed with application-specific rules (V) referencing
arbitrary deployment factors F' and applying to any pair
(ai, 7"1').

Our model is limited by not taking data dependencies
or workflows into account. Specifically, we assume for
simplicity that any application part can generate data and
transmit it freely to any other part. We acknowledge this
limitation while claiming that even the simplified model
advances systematic deployment methodologies beyond cur-
rent deployment tool designs for clouds and continuums.
On the other hand, the model is flexible by allowing to
skip certain factors so that a subsequent matchmaker or
deployment tool can perform further micro-optimisation.
These skipping rules, together with the deployment rules as
well as propagation and accumulation rules, lead to a highly
flexible approach that fits multiple deployment patterns and
topologies.

2.2. Decision Factors

Deployment processes are constrained and influenced by
decision factors that are inherent to any application part or
resource, or even both, as well as to the composite appli-
cation as a whole. The precise definition of these factors
depends on the operational environment and primarily on
the ability to automate the collection of factors. We propose
the following common categories of hosting-related factors
to control application deployments in continuums:

1) Infrastructure. Application parts are only deployed
if their requirements in terms of low-level comput-
ing hardware if fulfilled.

2) Platform. For higher-level deployments, operating
systems as well as language runtimes and their

version along with managed backend services are
important.

3) Connectivity. For latency-sensitive or bandwidth-
intensive services, the connectivity to end users or
other resources in the continuum is significant.

4) Security. Vulnerabilities and protection levels fur-
ther influence deployments.

5) Economics. Pricing models, plans and tariffs must
match before a deployment is considered valid.

Furthermore, we foresee support external context infor-
mation, such as date, time and system load, but omit their
handling from our current approach. Table 1 contains an
exemplary set of suitable decision factors. All values are re-
stricted by a (typed) value space and may be complemented
with physical units for numerical values. The selection of
factors may be extended and customised depending on the
application domain or specific infrastructure topologies.

TABLE 1. SUBSET OF DEPLOYMENT DECISION FACTORS

Scope Name Values (examples)
AR memory 128 MiB, 2 GiB
AR runtime python:3, java

AR latency 5 ms

AR duration 900 s

AR zone intranet, dmz, internet
A vulnerability ~ backdoor, CVE-477
A consistency true, false

A complexity high, medium, low

A port 9233

R country gb, cn

R trust high, low

R billing monthly, pay-per-use, free
R gpu true, false

2.3. Acquisition Techniques

Acquisition of accurate and up-to-date values of decision
factors is defined as the automated process of building
up the knowledge on both software applications, ranging
from the source code level to packaged artefacts ready for
deployment, and computing resources.

2.3.1. Software artefacts. To acquire metrics from compos-
ite application units, we rely on the Microservice Artefact
Observatory (MAO) [3] that is able to perform static and
dynamic assessment on a number of artefacts, including
Docker containers. MAO is a federated data management
system that schedules and orchestrates individual tools that
acquire metrics for different software artefacts. Multiple
tools can acquire different metrics for the same type of
artefact, creating a more detailed overview of the arte-
fact’s quality and properties. The result is an aggregated
knowledge base of software artefact information. Data can
be contributed or validated by any member node of the
federation.

2.3.2. Computing resources. Researchers have proposed
automated approaches to scrape key characteristics of cloud

services from provider websites as a means to automate the
acquisition process [4]. Similarly, CloudPick acknowledges
the variety in cross-cloud service selection and contributes
a translator component for automatic semantic enrichment
[5]. We point out that certain subjective factors, such as trust
in a resource provider, needs to be modelled manually.

2.4. Rules

Rules (¥) applying to factors are composed of prop-
agation rules (U,), skipping rules (¥,) deployment rules
(Us) and accumulation rules (¥,). They are applied in this
order: First, propagation rules use invariants to complement
missing factors or change existing factors in application
compositions and resource sets. On this basis, skipping rules
temporarily hide factors — marking them to be skipped dur-
ing processing — so that they remain intact in the output map-
ping and serve as input for further post-processing. Then,
matchmaking is performed with deployment rules, and all
successful assignments imply the use of accumulation rules
to adjust post-deployment resource characteristics. In case
an assignment is reverted, for instance through backtracking,
the accumulation rules are executed in inverse order to roll
back forecasted resource modifications.

2.4.1. Propagation rules. By considering a hierarchical
application and resource model, it is possible to specify
which factors at lower levels invariably influence those
at higher levels, and vice-versa, as well as lower level
siblings (up-, down- and side-propagation). The hierarchy
can have multiple levels, although on the application side
many composition formats adopted in industry only sup-
port two levels. Resources can however have sub-resources,
for instance a VM instance offering both CPU and GPU
computing access. Through propagation, further efficiency
gains can be achieved when only modelling some of the
factors that have to be modelled manually or whose auto-
mated acquisition consumes a lot of time. For instance, a
software composition affected by a security vulnerability in
one constituent unit is considered itself tainted, representing
an up-propagation, whereas another component in the same
composition remains unaffected by itself. Specifically, the
following propagation rules, including two trivial ones, are
useful in continuums and need to be expressible as pre-
processing step in matchmaking.

1) Replication. All factors in a trivially apply to all
other instances of the same artefact. This applies
to all static factors as well as, assuming they share
the same resource, to dynamic runtime-related ones
such as maximum task processing rate. However, in
our work we apply these rules before deployment
and thus do not consider dynamic factors.

2) Subsumption. The resource needs of A are trivially
defined as the conjunction of all resource needs of
the constituent a including scaling factors (up).

3) Bounding. The upper bound of latency in a is
mirrored in A (up).

4) Tainting. Any quality deficiency or security vulner-
ability in « is mirrored in A (up), and any trust
level in 7 is mirrored in the subset of R that shares
the same operator (side).

2.4.2. Skipping rules. A potential use case of matchmak-
ing is generating a subset of valid deployment mappings,
and further post-processing it with another matchmaking
or optimisation tool that might use different algorithms for
achieving increased output precision. Skipping rules mark
attributes such as CPU or memory needs by the application,
and the corresponding offered capacity by the resources,
effectively leading to them being skipped during the match-
making. Afterwards, they get reinstated on the resulting
mapping. Possible skipping rules are:

1) Context. Skip CPU and memory factors, deferring
these technical details to later, and instead perform
matchmaking primarily on context factors.

2) Feasibility. Pre-check whether a deployment is
technically feasible at all by skipping non-technical
factors such as trust, country or geolocation.

2.4.3. Deployment rules. These rules set constraints on
where each application part a can be deployed. We require
the deployment rules to express the following scenarios:

1) An application processing sensitive personal infor-
mation shall not be deployed in hosting locations
whose jurisdiction does not support certain mini-
mum guarantees on privacy.

2) An application subject to a vulnerability shall only
be deployed into the demilitarised zone (DMZ), not
in the internal network behind the firewall.

3) Any application part a needs to be deployed into
a resource with sufficient memory. For latency-
sensitive applications, the entire application A
needs to fit within one resource.

2.4.4. Accumulation rules. Due to resource sharing and
resource utilisation in general, each deployment leads to
some changes in factors. We differentiate between constant
factors unimpeded by any deployment (e.g. location of a
datacentre) and those changing their values according to
accumulation rules, for instance, available memory being
reduced by any running application. More accurately, we
assume that resource access is either unlimited, shared, or
exclusive.
A concrete set of rules might look as follows:

1) The amount of free memory in r is reduced by the
memory claimed by a (shared).

2) The range of free port numbers in 7 is reduced by
any allocated port in a (shared).

3) A GPU available as sub-resource in 7 is occupied
by any a claiming to perform GPU computing
(exclusive).

The distinction into resource access models influences
the permissible algorithms. Under the assumption that re-
sources are infinite (|R| = oo) or largely available beyond

what can possibly be consumed by A, as in most clouds,
a simple combinatorial matchmaking can be performed.
Otherwise, a complex assignment and satisfiability problem
needs to be solved. For constrained devices, we propose a
depth-first recursive tree search where after each candidate
assignment its validity is determined by successful match-
making of the remaining subtree, otherwise rolled back.

3. Rule-Based and Weighted Matchmaking
Concept

The matchmaking process guarantees that if a deploy-
ment of A including its constituent parts, e.g. microservices,
to R is possible, a valid deployment plan is returned.

3.1. Design and Architecture

RBMM’s matchmaking component operates as a service
to be queried by deployment tools after scanning the com-
position description and artefacts to be deployed. Fig. 2 out-
lines the process of acquiring the factors through automated
scanning (acquirer tools) and manual curation, creating an
instance of the models of A and R, and submitting them to
the matchmaker to yield a resource-aware deployment plan.

c+P
'HI

Match-
maker

Acquirer
R:f2

set of rules
W)

scaling
factor s

Figure 2. Matchmaking based on collected factors, rules and constraints

3.2. Matchmaking Algorithms

The goal of the matchmaking process is to achieve
an optimal deployment by creating, rating and ranking all
possible assignment combinations of A — R. We briefly de-
scribe an exemplary fast combinatorial algorithm assuming
infinite resource availability and a more thorough recursive
tree search assuming finite resources. These algorithms are
suitable for simple scenarios but would be replaced with
more capable ones in actual deployment systems.

3.2.1. Combinatorial algorithm. The iterative combinato-
rial algorithm attempts to perform a mapping of all resources
on all application parts. For any part a mapping has been
found and validated according to deployment rules, the
accumulation rules are applied. As further resources are
then skipped, the algorithm complexity is approximately
O(n x §) for |[A| = |R| = n.

3.2.2. Tree search algorithm. In the recursive tree search,
again for each application part a mapping is attempted. Any
successful mapping of a; applies the accumulation rules,

followed by a recursive invocation of A \ a;, i.e. the set of
application parts without the one already mapped. In case
the invocation returns a valid result, it is proven that all
application parts have been mapped successfully. Otherwise,
the accumulation is reversed and the next resource is mazpped

for a;. The complexity is approximately O(n X @)
4. Implementation

4.1. Acquisition Tools

We have implemented and integrated MAO to automati-
cally produce non-functional property metrics for Docker
containers, Docker compositions, serverless applications
packaged as Serverless Application Model (SAM), and var-
ious other formats typically used in cloud and fog software.
In contrast, we have not implemented the automatic acquisi-
tion of metrics for resources but acknowledge the existence
of the aforementioned approaches to do so.

For the example of Docker images, there are currently
two separate factor acquirer tools in production and others
under development. One collects public image metadata
from Docker Hub, including supported system architectures
and artefact size. The other uses the Clair scanner to scan
images, producing a report on the number and severity
of security issues according to Common Vulnerability and
Exposures (CVE) present in the image. These reports are
retrieved from the knowledge base and compiled into a
merged tree of image factors. Listing 1 shows a typical
output of MAO for a single Docker container retrieved from
Docker Hub, determining which resources this image can
be deployed to and what security constraints apply to it.
The combined tree format allows for direct feeding into the
matchmaker.

Listing 1. Source of application factor acquisition

{ "image": "docker.io/library/mongo:4.2",
"architecture": "amde64",
"features": "",
"variant": null,
"digest": "sha256:93f3dc8491£23d507...",
"OS": "lil’lUX",
"os_features": "",
"os_version": null,
"size": 164677487,
"CVEs": {
"Medium": 12,
"Low": 25,
"Negligible": 11 } }

4.2. Matchmaker Library

First, we implemented the matchmaking algorithms as
a Python library, and complemented it with a test tool to
synthetically generate applications, resources and rules.

In an experiment with 10’000 application parts and the
same number of resources, i.e. 100 million possible combi-
nations, around 488 million factor comparisons were gen-
erated. On a single-core Intel i7 processor with 2.60 GHz,

using only deployment and accumulation rules, the iterative
combinatorial matchmaking took 3.3 s.

For a more modest scenario with 200 application
parts and resources, i.e. 40’000 possible combinations and
175°275 factor comparisons, the combinatorial matchmak-
ing finished in less than 0.05 s. For this scenario, the recur-
sive algorithm implementation became feasible and finished
in 80.1 s.

4.3. Emulator Integration

To demonstrate the practical usefulness of RBMM, we
integrated the resource-aware deployment of applications to
continuums with OsmoticToolkit, an emulation environment
to create and interconnect container-based deployments with
support for Osmotic Computing. The research area of Os-
motic Computing falls into the accomplishment of a new
paradigm able to deal with a scalable, interoperable, con-
figurable solution for delivering IoT applications in com-
plex, heterogeneous and dynamic computing environments.
In particular, the paradigm [6] looks at the opportunistic
management of [oT MicroELements (MELs) to improve
QoS and networking management, security, interoperability,
and efficiency of next-generation IoT applications. The Os-
moticToolkit is the emulation system able to design and test
workflows based on MELSs in particular conditions where the
edge does not have computation and permanent network-
ing capabilities. OsmoticToolkit is based on MaestroNG, a
Docker container orchestrator similar to Docker Compose.
As OsmoticToolkit has its own matchmaking logic based
on cost functions and the Hungarian algorithm [7] covering
a certain set of metrics, including CPU and memory, we
activate the skipping rule Context in RBMM to restrict the
matchmaking to contextual factors. OsmoticToolkit allows
to model from-scratch infrastructure topologies and applica-
tions using graph theory. On an abstract level, the infrastruc-
ture topology is modeled as a directed graph T' = (V| E),
where vertices V is a set of resources, and E is a set of
two-sets (sets with two distinct elements) of vertices, whose
elements are network links between them. Each graph vertex
is annotated with appropriate metadata including computing
properties, while different network parameters characterise
each link (e.g., latency, bandwidth, packet loss). Each com-
pute resource is emulated leveraging Docker. Similarly, ap-
plications deployed in an osmotic ecosystem are structured
as a graph P = (V, E), where vertices are represented by
MicroELements (MELs) and links (£) by their interconnec-
tions for inter-service communication. Thus, RBMM’s R/A
model is directly mapped to OsmoticToolkit’s 7'/ P model.

On a technical level, OsmoticToolkit extends Mae-
stroNG’s YAML-based schema by adding support for the
decisional factors specified in Table 1. OsmoticToolkit as-
sociates the concept of pipeline to an application. Namely,
the pipeline’s anatomy describes MELs properties and how
they are interconnected. Listing 2 illustrates with a code
fragment how MEL’s constraints can be expressed. The logic
is implemented in the Osmotic Orchestrator that uses a two-
phase optimisation approach to find the most appropriate de-

ployment plan resources for an application. An application’s
constraints are classified into hard constraints and soft con-
straints. Hard constraints refer to must-have requirements
which persist and are invariant during execution, such as
CPU, memory, or latency; soft constraints refer to desired
requirements which can change or be re-prioritised, such as
the cost of consuming resources.

Listing 2. M. NG YAML f . X ication f
ship_provider : dynamic # static
name : pl

ships
shipl
ip : X.X.X.X
services
foo :
image : ubuntu
security_opt [zone==intranet,
vulnerability==backdoor, consistency
== true]
requires: [test]
labels
constraint
runtime : python3
complexity : high
latency : 5ms
duration : 900s
limits
memory : 50m
cpu : 1
instances
foo-1
ship : shipl

The classification of requirements into hard constraints
or soft constraints depends on user’s need. For example,
network latency can be classified as soft constraints if an
application is not latency sensitive; however, one could clas-
sify latency as hard constraints if the application’s response
time must not exceed certain threshold limit.

The first phase selects a set of resources by ensuring
that all application context-based constraints are satisfied.
This is accomplished by executing the RBMM. The second
phase balances the complexities of cost and resource-based
constraints. This phase involves the Hungarian algorithm.
In OsmoticToolkit, optimal deployment is treated as an
assignment problem. Generally, each assignment problem
is associated with a matrix called the cost or effectiveness
matrix. The rows contain the workers or compute resources
we wish to assign, and the columns comprise jobs or MELSs
we want to assign to them.

The cost function ¢;; used to compute the cost matrix
used by the Hungarian algorithm is given in Equation 1.

N M
C = ZZwij x factor;; x f;(t) e
i=1 j=1

Where i varies from 1 to the number of compute re-
sources N, j varies from 1 to the number of factors to be
considered. w;; is a weight between 0 and 1 allowing to pri-
oritise each factor, factor; is an array containing the values
of the factors mentioned above, and f;(t) represents that

these factors are time-variant. We consider the cost function,
which is defined as the weighted sum of the above three
parameters. The Hungarian algorithm assigns each compute
node satisfying the computation requirements one or more
MELs by minimising the previously defined cost function.
The output of the algorithm is an optimal deployment plan
for the pipeline for describing the MELs contextualization
across the Cloud, Edge, Fog, and IoT compute nodes.

4.4. Limitations

Although RBMM is among the most user-controllable
matchmakers, we point out in summary the limitations to
define future research paths. These are (i) lack of sup-
port for dynamic external context factors and redeployment
calculation when runtime factors change, (i) no specific
consideration of data flows, network links and microservice
interconnects as first-class citizens, that would also help Os-
moticToolkit achieving more accurate emulation, (iii) non-
optimised recursive algorithm that may limit large deploy-
ments with more than a few hundreds of microservices,
and (iv) no integration of automatic acquisition of resource
characteristics.

5. Previous and Related Work

Matchmaking and mediation has been a traditional topic
of research in service-oriented systems design, in partic-
ular around semantic web services communities with two
decades of history. Early works used heavy semantic mod-
elling, for instance using the Web Service Modelling On-
tology, with the advantage of being able to express al-
most arbitrary details while at the same time requiring a
lot of effort to maintain and extend the descriptions [8].
Early systems like ConQo enabled matchmaking between
service providers and clients [9], and expressive ontolo-
gies like WSMO4IoS modelled cloud providers and their
service characteristics, although failed to account for the
application-side properties [10] and most only worked on
single services, not on sets of services. Ontologies were
also proposed in alternative approaches for cloud service
composition matchmaking [11], but specifically tailored for
virtual machines rather than today’s variety beyond cloud
platforms, and assuming existing knowledge repositories.
The composition objectives were defined as compatibility,
total cost, total deployment time or total reliability.

Recent approaches distinguish text-based matchmaking
equivalent to full-text searching [12] and attribute-based
matchmaking [13]. However, no matchmaker with factor
acquisition specifically designed for heterogeneous multi-
target deployment of composite software is known, which
is a necessity when automating the management of future
computing continuums.

6. Conclusions

RBMM performs versatile rule-based matchmaking be-
tween composite applications and distributed resources. It

advances the state of automation for computing continuums
and osmotic processes around IoT, fog, edge and cloud de-
ployments. The RBMM implementation is publicly available
as open source library'. More challenges have to be resolved
in order to make programmable continuums as straight-
foward and as widely accepted as centralised programmable
infrastructure offered by commercial cloud providers. We
point out the open research questions related to the four
current system limitations. Additionally, the applications
themselves will need to gain more awareness of how they
are deployed in order to adapt and for instance offer higher
resilience by replicating data if the deployment topology
permits, based on an initial matchmaking goal of prioritising
resilience over other holistic application characteristics.

References

[1] D. Balouek-Thomert, E. G. Renart, A. R. Zamani, A. Simonet, and
M. Parashar, “Towards a computing continuum: Enabling edge-to-
cloud integration for data-driven workflows,” Int. J. High Perform.
Comput. Appl., vol. 33, no. 6, 2019.

[2] N. Seydoux, K. Drira, N. Hernandez, and T. Monteil, “EDR: A
generic approach for the distribution of rule-based reasoning in a
cloud-fog continuum,” Semantic Web, vol. 11, no. 4, pp. 623-654,
2020.

[3] P. Gkikopoulos, “Data Distribution and Exploitation in a Global
Microservice Artefact Observatory,” in 2019 IEEE World Congress
on Services, SERVICES 2019, Milan, Italy, July 8-13, 2019, pp. 319—
322, IEEE, 2019.

[4] J. Garcia-Galan, P. Trinidad, O. F. Rana, and A. R. Cortés, “Auto-
mated configuration support for infrastructure migration to the cloud,”
Future Gener. Comput. Syst., vol. 55, pp. 200-212, 2016.

[5]1 A. V. Dastjerdi, S. K. Garg, O. F. Rana, and R. Buyya, “CloudPick:
a framework for QoS-aware and ontology-based service deployment
across clouds,” Softw. Pract. Exp., vol. 45, no. 2, pp. 197-231, 2015.

[6] A. Buzachis, A. Galletta, A. Celesti, L. Carnevale, and M. Villari,
“Towards Osmotic Computing: a Blue-Green Strategy for the Fast
Re-Deployment of Microservices,” in 2019 IEEE Symposium on
Computers and Communications (ISCC), pp. 1-6, 2019.

[71 H. W. Kuhn, “The Hungarian method for the assignment problem,”
Naval Research Logistics, vol. 2, pp. 83-97, 1955.

[8] T. Vitvar, M. Zaremba, M. Moran, and A. Mocan, “Mediation using
wsmo, WSML and WSMX.” in Semantic Web Services Challenge,
Results from the First Year, vol. 8 of Semantic Web And Beyond,
pp- 31-49, Springer, 2009.

[91 G. Stoyanova, B. Buder, A. Strunk, and I. Braun, “ConQo — A
Context- and QoS-Aware Service Discovery,” in Proc. IADIS Intl.
Conference WWW/Internet, October 2008. Freiburg, Germany.

[10] J. Spillner and A. Schill, “A Versatile and Scalable Everything-as-a-
Service Registry and Discovery,” in CLOSER 2013 - Proceedings of
the 3rd International Conference on Cloud Computing and Services
Science, Aachen, Germany, pp. 175-183, SciTePress, 2013.

[11] A. V. Dastjerdi and R. Buyya, “Compatibility-Aware Cloud Service
Composition under Fuzzy Preferences of Users,” IEEE Trans. Cloud
Comput., vol. 2, no. 1, pp. 1-13, 2014.

[12] Y. Liu, T. Zhu, Y. Jiang, and X. Liu, “Service matchmaking for
Internet of Things based on probabilistic topic model,” Future Gener.
Comput. Syst., vol. 94, pp. 272-281, 2019.

[13] X. Li, J. Yuan, E. Li, W. Yao, and J. Du, “Trust-Aware and Fast Re-
source Matchmaking for Personalized Collaboration Cloud Service,”
IEEE Trans. Netw. Serv. Manag., vol. 16, no. 3, pp. 1240-1254, 2019.

1. RBMM code: https://github.com/serviceprototypinglab/rbmm

