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Abstract Biotechnological production of high-value me-
tabolites and therapeutic proteins by plant in vitro sys-
tems has been considered as an attractive alternative of
classical technologies. Numerous proof-of-concept stud-
ies have illustrated the feasibility of scaling up plant in
vitro system-based processes while keeping their biosyn-
thetic potential. Moreover, several commercial processes
have been established so far. Though the progress on
the field is still limited, in the recent years several
bioreactor configurations has been developed (e.g., so-
called single-use bioreactors) and successfully adapted
for growing plant cells in vitro. This review highlights
recent progress and limitations in the bioreactors for
plant cells and outlines future perspectives for wider
industrialization of plant in vitro systems as “green cell
factories” for sustainable production of value-added
molecules.

Keywords Bioreactor design . Differentiated plant in vitro
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Introduction and historical background: from simple
jars to single-use bioreactors

On May 29, 1956, Routien and Nickell (in association with
Pfizer & Co Inc, NY, USA) were granted the first patent for
the cultivation of plant cells in vitro (Routien and Nickell
1956). In the patent, entitled “Cultivation of plant tissue”, they
described the submerged cultivation of tissues of several plant
species (e.g., sorrel, sweet clover, and Agave as well as crown
galls—plant culture system, obtained via genetic transforma-
tion with Ti-plasmid fragment of Agrobacterium tumefaciens
—of several plants) in simple 20-L carboy systems (Routien
and Nickell 1956). In the early 1960s, the National
Aeronautics and Space Administration initiated a research
program on plant cells culture for regenerative life support
systems. Plants and the relevant cell cultures were grown
under various conditions of microgravity (space shuttles, par-
abolic flights, biosatellites, the orbital stations Salyut and Mir)
along with ground studies using rotating clinostat vessels
(Sajc et al. 2000). Later on, a conical glass-made V-shape
reactor (specially designed for plant cell culture) was intro-
duced (Veliky and Martin 1970) along with the successful
adaptation of the stirred-jar reactors for plant cell suspensions
by several research groups (Misawa 1994). At the end of the
1970s, the concept of high shear sensitivity of plant cells was
developed; and for a decade, only air-lift bioreactors were
considered suitable for their cultivation (Verpoorte et al.
2002; Georgiev et al. 2009b). However, several industrial-
scale processes developed (see below) with stirred-tank bio-
reactors (STR), subsequently challenged such perceptions
(Zhong 2002; Georgiev et al. 2009b). Nowadays, plenty
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designs and configurations of bioreactors for plant in vitro
systems are widely available (Eibl and Eibl 2008; Eibl et al.
2009a, b; Georgiev et al. 2009a, b; Georgiev et al. 2011;
Zhong 2011). Therefore, it would be difficult, if not impossi-
ble, to select the “best” bioreactor design for cultivating dif-
ferent plant in vitro systems (Georgiev et al. 2009a).

In general, the basic function of a bioreactor is to
provide optimum conditions for cell physiology and me-
tabolism by regulating various environmental (chemical
and physical) factors. The design and selection of each
bioreactor are unique but there are some basic principles.
Generally, the main criteria for designing plant cell/organ
culture bioreactor should consider adequate oxygen trans-
fer, low shear stress, and good mixing (Zhou et al. 2010;
Zhong 2011).

In considering the reactor design and selection, nutrients
must be effectively provided to the cells. Cell growth and
product formation kinetics should be assessed so that an
optimal environmental condition can be defined and an
operational mode can be determined. Transport phenomena,
including mixing, shear force, and oxygen transfer, should
be studied so as to define the criteria for bioreactor design
and scale-up. Operating parameters, such as temperature,
pH, dissolved oxygen concentration, and substrate concen-
trations, should be easy to control and monitor. In addition,
the bioreactor should be as simple and inexpensive as pos-
sible and it should easily operate while guaranteeing long-
term sterility. Most often it is impossible to meet all the
requirements, and thus, some compromise must be made. It
is very important to give a balanced consideration between
mixing and mass transfer requirements, and the shear sen-
sitivity of cells in the design of large-scale bioreactor sys-
tems for hosting plant cells in vitro.

This review summarizes the bioreactor-related aspects of
plant cell, tissue/organ culture with particular emphasis on:
hardware configuration set-up for plant in vitro system-
based bioprocesses, operational mode optimization, and
the development of new generation of bioreactors for their
cultivation. We also attempted to outline future perspectives
for wider industrialization of plant in vitro systems as green
cell factories for value-added products.

Recent advances in bioreactors for suspended plant
cells: hardware configuration and operational mode

Bioreactor hardware

Stirred-tank bioreactor is most widely used bioreactor, and it
has advantages such as easy scale-up, good fluid mixing and
oxygen transfer ability, alternative impellers, and easy com-
pliance with current Good Manufacture Practices (cGMP)
requirements. However, this type of bioreactors also has

limitations, such as high power consumption, high shear,
and the concerns about sealing and stability of shafts in tall
bioreactors. Compared to microbes, plant cells are shear
sensitive so considerable efforts are required to modify and
optimize the impeller system to balance mixing and mass
transfer requirements, and potential damage by hydrody-
namic force. Numerous modifications of conventional
STRs have been made by designing new impellers (e.g.,
Fig. 1; Zhong 2011).

Pneumatically agitated bioreactor (air-lift and bubble-
column bioreactor) is a type of gas–liquid dispersion reactor
consisting of a cylindrical vessel, where compressed air or
gas mixture is usually introduced at the bottom of the vessel
through nozzles, perforated plates or a ring sparger, for
aeration, mixing and fluid circulation, without moving me-
chanical parts. Such type of bioreactor has some advantages
over STR: characterized by a more homogeneous energy
dissipation (Merchuk and Gluz 1999), and easy to construct
and scale-up with low cost. However, the lack of an impeller
also brings disadvantages such as poor fluid mixing for
viscous culture and serious foaming under high aeration.
Air-lift bioreactors with various configurations have been
constructed for use in some plant cell cultures, e.g., 200-L
air-lift reactor with modified internal configuration was used
for saikosaponin production (Kusakari et al. 2012).

Bioprocess parameters

As described above, a bioreactor should provide optimum
conditions (e.g., temperature, pH, oxygen transfer, mixing,
and substrate concentration), in addition to its basic function
of containment. Cellular metabolism depends on local con-
centrations in the reactor, as well as on the physiological
status of the cell. For bioreactor operation, cellular metabo-
lism must be considered together with the flow profile and
the mass transfer characteristics of the reactor because they
interact with each other.

Mixing Adequate mixing is essential to ensure the sufficient
supply of nutrients and to prevent toxic metabolites accu-
mulation. Mixing time is a critical parameter to be investi-
gated and evaluated. In cell suspension culture processes,
mixing is often evaluated in terms of biological performance
such as growth rate and productivity. The control of tem-
perature, pH, and substrate concentration are all dependent
on good mixing in the bioreactor. Although it is easy to
maintain a homogeneous condition in a small-scale reactor,
mixing often becomes one of the constraints during scale-
up. In the large-scale bioreactors, poor mixing often leads to
undesirable concentration gradients and a decrease in mass
transfer efficiency. In shear-sensitive plant cell cultures,
mixing cannot be enhanced simply by increasing agita-
tion intensity because excessive agitation would cause
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mechanical damage to living cells. A quantitative study
on the effect of mixing time on taxoid production in
suspension cultures of Taxus chinensis using a centrifugal
impeller bioreactor demonstrated the significance of
mixing on secondary metabolite production even in a
small-scale bioreactor (Zhong et al. 2002).

Oxygen transfer Oxygen transfer is always a concern in
aerobic biological systems. Most nutrients required for cel-
lular growth and metabolism are highly soluble in water;
sufficient and timely supply of these nutrients can be
achieved in a well-mixed reactor. However, oxygen transfer
often becomes a limiting step to the optimal performance of
biological systems and also for scale-up because oxygen is
only sparingly soluble in aqueous solutions. When oxygen
supply is limited, both cell growth and product formation
would be severely affected. A serious shortage of oxygen
can be expected at a high cell density. Aggravating this
problem, high cell density often causes the oxygen transfer
coefficient to deteriorate. Since volumetric oxygen transfer
coefficient (kLa) is so important in supplying oxygen to the
medium, a very critical aspect of reactor design is to achieve
a sufficiently high kLa, which is affected by many factors
(including the geometrical and operational characteristics of

the reactor vessel, agitation speed, aeration rate, fluid hy-
drodynamics, media composition, cell type, morphology,
and concentration etc.).

Although the oxygen consumption of plant cells is lower
than that of microbes, limitation in oxygen transfer is also a
constraining factor for cell cultures at high cell density.
Maintaining a suitable oxygen concentration in the culture
broth is equally important. The optimal dissolved oxygen
concentration may be different for cell growth and product
formation (Zhong 2001; Pavlov et al. 2005).

Shear force Compared to microbes, plant cells are much
bigger and more sensitive to shear force. Shear has been
mainly considered in the literature as a destructive element.
A couple of parameters are related to the shear-induced cell
death, such as shear stress, shear time, power dissipation,
and the growth phase of the cells. Sparging can also cause
the shear damage, which can happen at different locations in
bioreactor: bubble generation zone at the sparger, the rising
zone through the bulk liquid, and the surface of the suspen-
sion (either be covered with foam layer or free of foam). To
analyze the effects of shear stress on plant cell cultures, a
quantitative investigation of the influence of hydrodynamic
shear on the cell growth and anthocyanin pigment

(b)

(d) 

(a) 

(c)

Fig. 1 Stirred-tank bioreactors
(STRs) with modified
impellers. a Gate paddle reactor
with a spiral sparger. b Large
flat-bladed impeller reactor. c
Helical ribbon impeller reactor.
d Centrifugal impeller
bioreactor. 1 stirrer, 2 gas in, 3
head plate, 4 shaft, 5 measuring
points for liquid velocity, 6
sparger, 7 blade, 8 draft tube, 9
dissolved oxygen (DO) probe,
10 rotating pan (Adapted from
Wang and Zhong 1996a; This
material is reproduced with
permission of John Wiley &
Sons, Inc.)
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production by Perilla frutescens was demonstrated by using
a plant cell bioreactor with marine impeller of larger or
smaller diameter (Zhong et al. 1994).

For shear-sensitive cell cultures, therefore, reducing the
shear stress intensity by decreasing the agitation speed of the
impeller is a general solution. However, this can also bring
inadequate mixing and may conflict with enhancing oxygen
and heat transfer rates in a high-viscosity cell culture broth.
Furthermore, at high biomass concentrations, low agitation
rates can also enhance the clumping of cells into cell aggre-
gates of various sizes. However, appropriate bioreactor de-
sign and control can minimize shear damage from agitation
and aeration. Wang and Zhong successfully designed a
novel centrifugal impeller bioreactor (CIB; Fig. 1d) for
shear-sensitive biological systems including plant cell cul-
tures (Wang and Zhong 1996a, b). This CIB has been
demonstrated to be very successful in high cell density plant
cell cultures (Zhang and Zhong 2004; Prakash and
Srivastava 2007). In the cultures of Centaurea calcitrapa
cells, the key factors improving milk-clotting protease pro-
duction in a bioreactor were efficient mass transfer and good
bulk mixing (without formation of stagnant zones, while a
compromise had to be established in relation to hydrody-
namic shear conditions; Raposo and Lima-Costa 2012).

Another possibility to overcome the problem of the rising
air bubbles is bubble-free aeration using membranes for
indirect aeration in which the supply of oxygen is diffusion
controlled and no bubbles arise. As the length of the mem-
brane is limited, the average oxygen transfer rate is low. Also,
the pressure inside the tubing has limitation. Therefore, this
type of bioreactor is quite suitable for small scale cell cultures
but limited for large scale (Kretzmer 2002).

Bioreactor operation

An effective bioreactor operating strategy should provide a
high volumetric productivity, which means more products
can be formed per unit time per unit bioreactor volume. A
major disadvantage of standard batch processes is that signif-
icant amount of time is taken by sterilization, filling, empty-
ing, and cleaning of the system. Thus, to enhance the cost-
effectiveness of plant cell culture processes, various opera-
tional modes such as multi-stage batch, fed-batch, single- or
multi-stage continuous (chemostat), semicontinuous (draw-
and-fill or repeated batch), and perfusion (chemostat with cell
retention) cultivations have been developed so far. For exam-
ple, bioreactor operation strategies, such as fed-batch, two-
stage, etc., were demonstrated to affect the biomass produc-
tion and secondary metabolite accumulation in bioreactors at
commercial scale (Baque et al. 2012). In a pilot scale biore-
actor with 10 m3 capacity, a two-stage culture system was
applied, aiming to maximize both root biomass and secondary

metabolite contents. In the first stage, the adventitious roots
are cultured under optimal culture conditions for biomass
accumulation followed by physical and chemical elicitations
for secondary metabolite accumulation (Paek et al. 2009).

Fed-batch culture Generally, the final product concentration
is primarily affected by the specific productivity of cells and
integrated cell growth. To overcome nutrient limitation, fed-
batch processes have been widely practiced which involves
the addition of one or more nutrients continuously or inter-
mittently to the initial medium after the start of cultivation,
or from certain point during the batch process. A compari-
son of different feeding modes is presented in Table 1.
Among these, the most popular and successfully used ones
are fed-batch and perfusion.

Fed-batch cultures are currently used for most cell culture
processes, especially for intracellular products of cell cul-
tures which are stored within the cells. For example, Hu and
Zhong (2001) performed fed-batch cultivation of Panax
notoginseng cells in an air-lift reactor to study the effects
of bottom clearance on cell growth and the production of
ginseng saponin and polysaccharide. A fed-batch mode was
also developed, in which sucrose was fed just prior to a
sharp decrease in the specific oxygen uptake rate (Hu et al.
2001). By applying this feeding strategy to P. notoginseng
cell suspensions in a 10-L air-lift bioreactor (Hu et al. 2001)
and a 30-L CIB (Zhang and Zhong 2004), a very high
biomass productivity of about 1.5 g/(L.d) was achieved,
and both saponin and polysaccharide productivities were
also higher than those in a comparative batch process.
Fed-batch culture mode was also demonstrated to be effec-
tive for the production of human cytotoxic T-lymphocyte
antigen 4-immunoglobulin (hCTLA4Ig) in transgenic rice
cell suspension cultures. By performing fed-batch cultiva-
tion in a 15-L stirred-tank bioreactor, maximum hCTLA4Ig
level was 76.5 mg/L at day 10 or 1.2-fold higher compared
to that of two-stage culture with medium exchange (Park et
al. 2010). In addition, fed-batch operation combined with
elicitation was useful in enhancing the production of stil-
benes by grape cell culture (Vitis vinifera cv. Barbera) in
bioreactors (Ferri et al. 2011).

Continuous and semicontinuous culture Theoretically con-
tinuous culture is the most promising mode for obtaining
high productivity. In a continuous culture, the nutrients
consumed by the cells are continuously replenished by an
inflow of fresh medium. A constant inflow of fresh medi-
um is balanced by a constant efflux of spent medium plus
cells. Consequently, a steady state will be developed at a
dilution rate (equal to outflow rate/volume) less than the
maximum specific growth rate of the culture. Under steady
state conditions, the average specific growth rate in the
culture is identical to the dilution rate. The biomass
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concentration of the culture is then determined by the
concentration of the growth-limiting nutrient in the influ-
ent. All culture parameters (biomass, biomass composition,
and nutrients) remain constant for prolonged periods of
time in a steady state.

An integrated approach was adopted by combining
various yield and productivity enhancement strategies,
i.e., coupling the mathematical model-derived nutrient-
feeding strategy for continuous cultivation with elicita-
tion, precursor addition, and permeabilization, etc. With
such an integrated approach, a high yield and high pro-
ductivity of azadirachtin (a biopesticide) were obtained
in suspension cultures of Azadirachta indica (Prakash
and Srivastava 2011).

Plant cell culture is an alternative for the production of
recombinant human therapeutic proteins because of im-
proved product safety, lower production cost, and capability
for eukaryotic post-translational modification. An optimized
semicontinuous bioreactor operation was proposed to max-
imize the production of recombinant human alpha-1-
antitrypsin (rAAT) glycoprotein by transgenic Nicotiana
benthamiana cell culture. Compared to a traditional batch
bioreactor operation, a 25-fold increase in extracellular
functional rAAT was achieved (Huang et al. 2010).

Perfusion culture Perfusion cultivation is carried out by
continuously feeding fresh medium to the reactor and con-
stantly removing the cell-free spent medium while retaining
the cells, thus a much higher cell density can be obtained in
perfusion cultures compared to continuous ones, as cells are
retained within the reactor via a cell retention device. The
perfusion rate depends on the cell line demand, the concen-
tration of nutrients in the feed, and the level of toxification.
The overall advantage of perfusion cultures is that it requires
a smaller scale compared to batch cultures in order to obtain
the desired amount of product such as plant secondary
metabolite.

In a perfusion bioreactor, Cloutier et al. (2009)
performed adaptive medium feeding using model mass
balances and estimations. The proposed culture strategy
led to a significant increase in both specific production
and total production, as compared with a standard batch
culture protocol.

Operation combined with signal transduction engineering
Signal transduction engineering was proposed and applied
to taxuyunnanine C biosynthesis in suspension cultures of T.
chinensis (Qian et al. 2004, 2005; Zhou and Zhong 2011a,
2011b). Novel chemically synthesized jasmonates, such as
2-hydroxyethyljasmonate, 2,3-dihydroxypropyljasmonate,
pentafluoropropyl jasmonate, 2-(2,6-dichloro-pyridine-4-
carbonyloxy)-ethyl jasmonate, and trifluoroethyl salicylate,
were proved to be powerful inducing signals for plant sec-
ondary metabolism in both shake flasks and bioreactors
(Qian et al. 2004, 2005), and the signal transduction mech-
anism and induced biosynthetic genes transcription were
elucidated (Hu et al. 2006). Application of inducers or
elicitors, such as sugar depletion for recombinant proteins
production by rice suspension cells (Liu et al. 2012),
jasmonate treatment for resveratrol production (Donnez
et al. 2011), and for C-13-labeled trans-resveratrol pro-
duction (Yue et al. 2011) in grapevine cell cultures, was
also reported in various cases. In the cell cultures of
Harpagophytum procumbens for production of anti-
inflammatory phenylethanoid glycosides, the relationship
between metabolite production and stress-related hor-
mones including abscisic, jasmonic, and salicylic acids
was discussed with respect to relative stress levels in the
different cultivation systems (Georgiev et al. 2011).

Industrial operation using plant cells Include those of
paclitaxel, shikonin, berberine, ginseng, Echinacea polysac-
charides, and several therapeutic proteins production,
among others (additional examples can be found in recent
review by Wilson and Roberts 2012). With acquisition of
highly productive cell lines and establishment of culture
conditions and procedures that ensure maximum productiv-
ity of cells, in 1983 the Mitsui Petrochemical Industries
(now Mitsui Chemicals) succeeded in two-stage suspension
cultures of Lithospermum erythrorhizon in a 750-L air-lift
bioreactor yielding 1.4–2.3 g/L shikonin within 23 days.
Later, in a similar approach by lowering the production cost,
they also established an industrial production process of
berberine production from Coptis japonica cell cultures at
a scale up to 4 m3 with its highest berberine yield of 3.5 g/L.
In 1989, Nitto Denko Corporation developed cell suspen-
sion culture of Panax ginseng at a scale of 25 m3. Cell

Table 1 Comparison of com-
monly used modes of feeding
based on product yield and
process economics

Culture mode Product yield Process
manipulation

Cost (capital investment
and labor)

Throughput

Batch Low Low Low Low

Repeated batch Low Medium Medium Medium

Fed-batch High Medium Low Low

Perfusion Medium High Medium High

Continuous Low Medium Low Low
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suspension cultures of Taxus species were commercialized
by Phyton GmbH (Ahrensburg, Germany), the largest
cGMP plant cell culture facility in the world with bioreac-
tors up to 75 m3 in size (Zhong 2002; Georgiev et al. 2009b;
Onrubia et al. 2013). The Phyton Biotech (Ithaca, NY) is a
global provider of chemotherapeutic agents including pacli-
taxel, docetaxel APIs (active pharmaceutical ingredients)
and taxane intermediates. The cell culture-based paclitaxel
production was also succeeded by Samyang Genex
Corporation (Taejon, South Korea) at a ton scale (Zhong
2002). All the above successful industrialization cases illus-
trate the significance of suitable bioreactors hardware con-
figuration and optimized operational modes for suspended
plant cells to achieve maximal production of target second-
ary metabolites.

Culturing uncultivable: bioreactors for differentiated
plant in vitro systems

Differentiated plant in vitro systems include adventitious
and hairy root culture (obtained via genetic transformation
with T-DNA of Agrobacterium rhizogenes), shoot culture,
and plantlets. Micropropagation of plantlets and respective
bioreactor configurations are beyond the scope of this re-
view and, thus will not be further considered here.
Although, the large scale production of high-value mole-
cules and their commercialization by plant cell cultures has
been established, there are several shortcomings such as the
poor productivity, instability of dedifferentiated cultures, as
well as some valuable compounds are not synthesized in the
dedifferentiated cells (Verpoorte et al. 2002; Baque et al.,
2012). Differentiated plant in vitro systems (= plant tissue
and organ culture) became an attractive platform for
bioproduction of plant-derived metabolites and therapeutic
proteins (mainly hairy root culture systems; Georgiev et al.
2012a). Their several advantages, such as genetic and bio-
chemical stability and capacity for organogenesis-associated
synthesis of metabolites brought plant tissue and organ
culture to the foreground.

The physiology and morphology of differentiated
plant in vitro systems demand special consideration with
regard to effective bioreactor configuration providing a
low-shear environment for tissue growth and reducing
mass transfer limitations (formation of strong nutrient
and oxygen gradients in the tissue present major a
challenge to scale-up in bioreactors) in densely packed
plant tissue (non-homogeneous growth) beds (Eibl and
Eibl 2008; Georgiev et al . 2012a). This non-
homogeneous growth of differentiated plant in vitro
systems is rather challenging, as the transfer of the plant
tissue inocula from small reactors to large-scale reactors

cannot be preformed pneumatically (as usually done in
microbial and plant cell culture-based processes;
Georgiev et al. 2012a). Monitoring of the plant tissue
growth in bioreactors is also a challenging issue
(Georgiev et al. 2012a). Indirect estimates of the tissue
growth (either in off-line mode via sampling or in on-
line mode) can be obtained through measuring conduc-
tivity, osmolarity, and redox potential of the culture
medium (Georgiev et al. 2007), though more reliable
and accurate methods are continuously sought.

Diverse bioreactor configurations have been used for
culturing differentiated plant in vitro systems, including
mechanically driven systems (e.g., STR, wave-mixed reac-
tors, and rotating drum reactors), pneumatically driven re-
actors (e.g., air-lift reactors and bubble-column reactors),
and bed reactors (e.g., mist reactors and trickle-bed reac-
tors). As mentioned above it is impossible to pick any single
ideal type of bioreactor system for culturing plant tissue and
organ cultures for all purposes.

Mechanically driven bioreactors The use of ordinary STR
systems is, in general, not recommended because of the high
stress-sensitivity of these particular in vitro systems
(Georgiev et al. 2008, 2010). However slight changes in
the STR internal hardware configuration, such as separating
the impeller from the plant tissue (using a mesh) or just a
simple reduction of the agitation speed has allowed success-
ful cultivation of transformed root cultures of Beta vulgaris
(Georgiev et al. 2006) and H. procumbens (Homova et al.
2010) and significant biomass productivity [0.64–0.68 g dry
weight/(L.d)].

Pneumatically driven bioreactors Air-lift and bubble-
column reactors are probably the most frequently used con-
figurations for hosting differentiated plant in vitro systems.
In bubble-column cultivation systems, the sole source of
agitation is the pneumatic power input provided by isother-
mal expansion of the sparged gas (Perez et al. 2006). The air
bubbles type of aeration significantly reduces the cells’
exposure to local zones of high shear stress and therefore
ensures both homogenization of the medium and the mass
transfer of oxygen into the liquid medium. Hairy root
culture-based bioprocesses (e.g., production of bioactive
betalain pigments by B. vulgaris and anti-inflammatory
phenylethanoid glycosides byH. procumbens) were success-
fully developed in 3-L bubble-column bioreactors (Fig. 2a),
operated under batch and fed-batch operation mode (Pavlov
et al. 2007; Ludwig-Mueller et al. 2008). Moreover, the
levels of stress-related hormones (e.g., abscisic acid,
salicylic acid, jasmonic acid, and aminocyclopropane car-
boxylic acid) were significantly lower in bubble-column
bioreactor hairy root culture of H. procumbens than in the
respective shake-flask culture, which presumably indicates
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the low-stress environment of this type of reactors (Ludwig-
Mueller et al. 2008). A modification of air-lift reactor, named
balloon-type bubble bioreactor (BTBB; Fig. 2c), was found
very suitable for large-scale biomass and metabolite produc-
tion by adventitious root culture. The bioreactor high suit-
ability was proven in several studies, at different scales
(from 3 L to 10 m3), with adventitious root cultures of
Panax ginseng, Hypericum perforatum, Morinda citrifolia,
and Echinacea species (Baque et al. 2012 and the literature
cited therein). In a recent study, Georgiev et al. (2012b)
reported successful cultivation of Leucojum aestivum shoot
culture in an advanced modified glass-column bioreactor
with internal sections (Fig. 2b) for production of
galanthamine (a reversible inhibitor of acetylcholinesterase,
currently used in the clinical practice to treat mild-to-
moderate stage of Alzheimer’s disease). The introduction
of internal sections resulted in reduced problems with flota-
tion of the shoots and allowed efficient stream ways of the
fluids. Under optimal culture conditions in the reactor (22 °C
and 18 L/(L.h) flow rate of inlet air), highest amounts of

shoot biomass [>20 g/L; productivity of 0.57 g/(L.d)] and
galanthamine (1.7 mg/L) were observed. The construction of
the bioreactor from glass also extends the range of cultiva-
tion to photomixotrophic or phototrophic plant tissue and
organ culture.

Bed bioreactors Mist and trickle-bed reactors seem to offer
optimal environment for culturing differentiated plant in
vitro systems. Gas-phase bed reactors can virtually eliminate
any oxygen deficiency in high-bed densities, while provid-
ing a low shear stress environment (Kim et al. 2002). Mist
reactors (Fig. 2d) are a type of gas-phase reactors in which
thin films of nutrients solution are sprayed by ultrasonic
systems onto the surfaces of plant tissue and organs, col-
lected at the bottom of the reactors, and thus recycled
continuously through the system (Kim et al. 2002;
Georgiev et al. 2012a). In experiments performed with hairy
roots of Artemisia annua and Nicotiana tabacum, at scale of
1.5–4-L mist reactors, biomasses productivity of 0.37–
0.38 g dry weight/(L.d) was achieved (Kim et al. 2002;

Mist
generator 

Balance

Inlet air 
Gas exhaust

(a) (b) (c)
(d)

(f)

(g)

(e)

Fig. 2 Schematic diagrams of reactor configuration for differentiated
plan in vitro systems. a Bubble-column bioreactor. b Modified
column bioreactor with internal sections (Georgiev et al. 2012b). c
Balloon type bubble bioreactor (BTBB; Baque et al. 2012). d Mist

bioreactor (Kim et al. 2002; Sivakumar et al. 2010). e Trickle-bed
bioreactor (Ramakrishnan and Curtis 2004). f RITA system
(Georgiev et al. 2008; Ivanov et al. 2011). g BioMINT reactor
(Roberts et al. 2006)
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Liu et al. 2009). Similar biomass productivity was reached
when the Arachis hypogaea hairy root-based process was
further up-scaled to 20-L mist bioreactor (several parameters
as misting duty cycle, culture medium flow rate, and timing
of when flow rate was increased were optimized; Sivakumar
et al. 2010). Moreover, the mist bioreactor design was also
found to be advantageous for A. annua shoot cultures. The
accumulated dry weight of A. annua shoots and artemisinin
(a sesquiterpene lactone with antimalarial properties)
production in the mist bioreactor were found significant-
ly higher than those observed in both the modified air-
lift bioreactor and the multi-plate radius-flow bioreactor
(Liu et al. 2003). Another bed reactor system, proven to
be very suitable for culturing plant tissue and organ
cultures is the trickle-bed reactor design (Fig. 2e).
Hairy root cultures of Hyoscyamus muticus grown in
14-L trickle-bed reactor showed very high growth [bio-
mass productivity reached 1.45 g/(L.d)] and final mass
densities significantly exceeding previously reported
values (>36 g/L). Moreover, based on the preliminary
design calculations, a conclusion that scale-up to at least
10 m3 would be feasible was drawn (Ramakrishnan and
Curtis 2004).

Temporary immersion systems These have been originally
developed for plant micropropagation purposes. However,
their several advantages, such as reduced hyperhydricity and
lower consumable costs, made them attractive for differen-
tiated plant in vitro systems cultivation (Georgiev et al.
2007). Several temporary immersion systems were therefore
designed and successfully applied, e.g., RITA® systems
(Fig. 2f) for H. procumbens (Georgiev et al. 2008) hairy
roots and L. aestivum shoot cultures (Ivanov et al. 2011),
and BioMINT reactor (Fig. 2g; Roberts et al. 2006).
Although, the RITA® systems (about 0.2 L) and BioMINT
reactor (1.2 L) are still of laboratory scale, the concept of
temporary immersion systems can be further efficiently
extended to a large-scale volumes.

Large scale plant tissue and organ culture processes
Industrialization of differentiated plant in vitro system-
based processes and development of economically viable
commercial processes are not yet well developed, mainly
due to the morphological features of plant tissue and organ
cultures and the resultant challenges. However, the recently
developed commercial system (at 10 m3 scale, involving
BTBB) for biomass and bioactive ginsenoside production
from P. ginseng adventitious roots (an average production of
ginseng biomass is 45 tons fresh weight per year) by CBN
Biotech Company, South Korea (Baque et al. 2012) is a
good example for the feasibility of plant tissue and organ
cultures for sustainable mass production of high-value
compounds.

Single-use (disposable) systems: new generation
of bioreactors for plant cells

Single-use bioreactors (also often referred to as disposable
bioreactors) have cultivation containers, consisting of US
Food and Drug Administration-approved plastics (Eibl et al.
2011a; Vanhamel and Masy 2011), and are typically used
once. They have become increasingly accepted for biotech-
nological processes at small and medium size scale during
the past ten years. This trend can be explained by the
advantages they offer: reduced contamination rates, savings
in time and costs, and reduced waste and environmental
impact. Different studies (Rao et al. 2009; Pietrzykowski
et al. 2011; Krishnan and Chen 2012; Rader and Langer
2012) demonstrated that these advantages prevail, although
limitations covering undesirable influences on product qual-
ity from leachables/extractables and lack of reliable single-
use on-line sensors currently exist. The advantages arise from
the cultivation container, which is either a rigid vessel or a
flexible multilayer bag fixed, stabilized and shaped by a
supporting container. The cultivation container is provided
by the vendor in a sterile state and is discarded after comple-
tion of the bioprocess, once it has been decontaminated. Cost
savings of 20–30 %, which have been reported, can only be
achieved when high-value products are being manufactured.
The reason for this is that the GMP-compliant cultivation
containers are very expensive. As a result, single-use bioreac-
tors are most frequently used for mammalian and insect cell-
based antibody and vaccine production, for which the major-
ity of single-use bioreactors were originally developed (Brod
et al. 2012).

Although in processes aimed at development and produc-
tion of plant cell-based high-value products, reusable bioreac-
tors made from glass or stainless steel have to date been
predominantly, bioreactors with plastic cultivation containers
are not uncommon (Eibl et al. 2009a; Weathers et al. 2010).
They are used for cultivation of plant cell suspension and
organ cultures, including hairy roots, shoots, and plantlets.
Here, it can be differentiated between plastic cultivation con-
tainers intended for multiple usage (multi-usable bioreactors)
or single usage (single-use bioreactors). Multi-usable bioreac-
tors, such as the previously mentioned temporary immersion
bioreactors, the RITA® system (Alvard et al. 1993; Etienne
and Berthouly 2002; Georgiev et al. 2008; Ivanov et al. 2011;
Watt 2012), and the BioMint (Roberts et al. 2006), are oper-
ated using a non-instrumented, low-cost plastic container. In
addition to hairy root cultivation, they are commonly used for
plant micropropagation and must always be autoclaved (by
the user) before use. Further examples of multi-usable bio-
reactors for hairy root cultures (e.g., from P. ginseng and
Ocimum basilicum) are the ROOTec Mist bioreactor (Wink
et al. 2005; Eibl et al. 2012) and the Weathers’ system (Kim et
al. 2002; Liu et al. 2009; Sivakumar et al. 2010).

3794 Appl Microbiol Biotechnol (2013) 97:3787–3800



In general, an exact classification of multi-usable and
single-use systems is difficult for plant cell bioreactors
which are commercially unavailable. In particular, that is
the case for the special designs, such as the Box-in-Bag
bioreactor, the Wave-and-Undertow bioreactor, and the
Slug Bubble bioreactor (thoroughly discussed in Girard et
al. 2006; Ducos et al. 2009; Eibl et al. 2011b), the Plastic-
lined bioreactor (Hsiao et al. 1999; Curtis 2004), and the
Protalix bioreactor (Shaaltiel et al. 2010; Wilson and
Roberts 2012). Their specifications are ambiguous and to
some extent inconsistent. This is, therefore, the reason why
only commercially available single-use bioreactors for plant
cells are examined in this review.

For milliliter-scale processes, non-instrumented, single-
use versions of rigid, centrifuge-like tubes, and shake
flasks that require a shaking incubator for optimum growth
and production have proved themselves in screening stud-
ies. For example, Raven et al. (2011) and Brändli et al.
(2012) demonstrated the advantages of using the orbitally
shaken CultiFlask disposable bioreactor (also known as the
TubeSpin) for parameter scouting in M12 antibody pro-
duction using N. tabacum Bright-Yellow-2 (BY-2) cell
suspension culture.

So-called single-use bag bioreactors are used for liter
scale processes. Table 2 gives an overview of commercially
available types that are suitable for growing plant cells
including suspension cells, hairy roots and embryogenic
cultures. All the systems are mechanically driven. The
single-use cultivation containers are oscillated/wave-mixed,
oscillated with vibrating disks, stirred, or more recently,
orbitally shaken. Schematic diagrams for these single-use
bag bioreactors are shown in Fig. 3. It is worth mentioning
that the first benchtop scale, single-use bioreactor for plant
cells (e.g., the Life Reactor; Ziv et al. 1998; Ziv 2005),
introduced to the market by Osmotek in the early 1990s, is
no longer available.

Wave-mixed, single-use bioreactors can be found in the
widest range of applications. Mibelle Biochemistry
(Switzerland) and Sederma (France) produce substances
for cosmetics (e.g., PhytoCellTec Argan, Solar Vitis,
Malus domestica, Alp Rose, or RESISTEM), by growing
plant cells suspension cultures in the BIOSTAT CultiBag
RM reactors. Using the same bioreactor system,
Greenovation successfully expressed numerous therapeutic
proteins (e.g., recombinant human asialo-erythropoietin)
based on Physcomitrella patens suspension cells
(www.greenovationcom/bryotechnology.html; accessed on
27 October 2012).

Due to the wave movement, bubble-free oxygen is intro-
duced into the culture broth from the bag’s headspace in
every wave-mixed bioreactor. Fluid flow, mixing time, ox-
ygen mass transfer rate, and shear stress acting on cells are
defined by the propagation of the wave within the bag.

Shear stress patterns are homogeneous, and foaming and
flotation are negligible in wave-mixed bioreactors (Eibl et
al. 2009b). In processes with H. muticus hairy roots, it has
been possible to increase product quantity if ebb-and-flow-
operation can be guaranteed by running the bag with re-
duced culture volume. In addition, specially designed bags
with a screw cap and integrated mesh have been advanta-
geously used for hairy roots, particularly at total bag vol-
umes exceeding 2 L (Eibl et al. 2012). There are a few
restrictions for cultivating plant cells in wave-mixed bio-
reactors. Mass and energy transfer in culture broths showing
non-Newtonian fluid flow behaviors can be severely limit-
ed. Scaling-up is complicated due to the fact that the bags
are not geometrically similar, although cultivation bags of
different sizes do exist for wave-mixed bioreactors. When
cultivating phototropic cultures the installed optical sensors
have been identified as an issue (bleaching effect).
Furthermore, optical pH sensors do not provide reliable
measurements of pH values below 5.7, which can appear
in plant cell cultivations. The last-mentioned limitation ap-
plies to all single-use bioreactors in Table 2 that operate with
optical sensors.

In contrast to wave-mixed bag bioreactors where power
input and resulting shear stress on cells can be regulated via
rocking rate and rocking angle, in the case of the Vibromix
reactor (www.liquitec.ch/de/ruehrtechnik/vibromixer/;
accessed on 27 October 2012), this is performed via motor
amplitude and frequency. In order to cultivate M. domestica
suspension cells more efficiently, bags were developed
which contain a sparger in addition to the oscillating disks
mounted on a hollow shaft. Because the Saltus Vibromix
bioreactor generates a high local power input, it is not
recommended for applications involving shear sensitive
plant cells.

Today, stirred single-use bioreactors are not relevant for
the growth of plant cells, even though Raven demonstrated
the suitability of the 50-L S.U.B. for plantibody production
using BY-2 suspension cells (Raven et al. 2011). The
microsparger of the tested bag configuration caused signif-
icant flotation during cultivation, which resulted in product
loss. However, cell growth was only slightly lower than in
wave-mixed bag bioreactors.

Interestingly, initial cultivations with BY-2 as well as V.
vinifera suspension cells and tobacco (Basma xanthi) hairy
roots in orbitally shaken bag bioreactors indicated promis-
ing results. Cell growth and product formation for similar
fluid flow conditions are comparable to the results delivered
by wave-mixed systems. Maximum biomass concentrations
between 380 and 480 g fresh weight/L were detected after
7 days (Werner et al. 2013). This comes as no surprise since
the advantages of wave-mixed single-use bioreactors (ho-
mogeneous energy dissipation, reduced foaming and flota-
tion) were also found for orbitally shaken bag bioreactors
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(Klöckner et al. 2012a, b; Werner et al. 2012, 2013). Despite
the fact that shaking 2-D cultivation bags in the Multitron
Cell is restricted to 10 L culture volume, scaling-up of 3-D
bags (OrbShake bioreactor) to m3 scale is currently under
way. Compared to wave-mixed systems, increased power
input and easier scaling-up, due to the geometric similarity,
are both possible in the OrbShake bioreactor. But it is
important to consider the possible occurrence of vortex
formation in large scale implementations.

It is obvious that plant cell-based processes have not yet
reached the level of significance of mammalian cell-based
processes in single-use bioreactors. This is due to the fact
that plant cells are less frequently used in high-value product
manufacturing. Nevertheless, wave-mixed single-use biore-
actors, having a 1-D rocking motion and operating in batch
and feeding mode, are already established in the develop-
ment and production of cosmetic agents and therapeutic
proteins.

Conclusions and perspectives

In the last 15 years, we have witnessed a significant
progress in bioreactor configurations (and operational
mode) for plant in vitro systems. Numerous proof-of-

concept studies have illustrated the feasibility of plant in
vitro system-based processes for sustainable mass produc-
tion of plant derived-molecules and therapeutic proteins,
at eco-friendly conditions (green cell factories concept).
In the future, further single-use bioreactors such as 2-D
(CELL-tainer) and 3-D (XRS bioreactor System) rocking
bag bioreactors and orbitally shaken bioreactor systems
(OrbShake bioreactor) can be advantageously applied for
fast growing plant cells that do not exhibit Newtonian
fluid flow behavior. Nevertheless, there are many further
challenges that have yet to be investigated (e.g., the
secretion of leachables and extractables as cultivation
time increases in illuminated phototrophic cultures) which
will decide on the success of single-use bioreactors for
plant cell cultivations. It is also foreseeable that in the
case of increasing demand for single-use bioreactors,
plant in vitro system-based processes conceived for
multi-usable disposable bioreactors will be redesigned
for single-use versions.
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