
Big Data architecture for intelligent
maintenance: a focus on query processing
and machine learning algorithms
Claude Lehmann1*  , Lilach Goren Huber1, Thomas Horisberger2, Georg Scheiba2, Ana Claudia Sima1
and Kurt Stockinger1

Introduction
Producers and owners of industrial equipment have been showing a growing interest in
implementing intelligent maintenance solutions. This is due to a combination of reasons,
such as the constantly growing availability of commercial solutions for data acquisition,
transmission and storage, as well as the recent development of computationally efficient
machine learning algorithms. The need for end-to-end solutions for data-driven decision
support systems enabling intelligent maintenance spreads over many different fields of
industry and infrastructure assets. Such end-to-end solutions are expected to integrate

Abstract 

Exploiting available condition monitoring data of industrial machines for intelligent
maintenance purposes has been attracting attention in various application fields.
Machine learning algorithms for fault detection, diagnosis and prognosis are popu-
lar and easily accessible. However, our experience in working at the intersection of
academia and industry showed that the major challenges of building an end-to-end
system in a real-world industrial setting go beyond the design of machine learning
algorithms. One of the major challenges is the design of an end-to-end data manage-
ment solution that is able to efficiently store and process large amounts of heterogene-
ous data streams resulting from a variety of physical machines. In this paper we present
the design of an end-to-end Big Data architecture that enables intelligent maintenance
in a real-world industrial setting. In particular, we will discuss various physical design
choices for optimizing high-dimensional queries, such as partitioning and Z-ordering,
that serve as the basis for health analytics. Finally, we describe a concrete fault detec-
tion use case with two different health monitoring algorithms based on machine learn-
ing and classical statistics and discuss their advantages and disadvantages. The paper
covers some of the most important aspects of the practical implementation of such
an end-to-end solution and demonstrates the challenges and their mitigation for the
specific application of laser cutting machines.

Keywords:  Prognostics and health management, Intelligent maintenance, Big data
architecture, Heterogeneous data integration, Stream processing, Query processing,
Machine learning

Open Access

© The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creat​iveco​
mmons​.org/licen​ses/by/4.0/.

RESEARCH

Lehmann et al. J Big Data (2020) 7:61
https://doi.org/10.1186/s40537-020-00340-7

*Correspondence:
claude.lehmann@zhaw.ch
1 Zurich University of Applied
Sciences, Obere Kirchgasse 2,
8400 Winterthur, Switzerland
Full list of author information
is available at the end of the
article

http://orcid.org/0000-0002-4693-0444
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40537-020-00340-7&domain=pdf

Page 2 of 26Lehmann et al. J Big Data (2020) 7:61

all of the necessary building blocks, starting from data acquisition, onto streaming and
data warehousing, through data processing, analytics and visualization of condition
monitoring data up to smart maintenance decision support.

The field of decision support for intelligent maintenance ranges from simple condi-
tion monitoring, through fault detection, up to fault diagnosis and prognosis. The lat-
ter, sometimes termed “Predictive Maintenance” is nowadays only rarely possible due
to a very high variability of operating conditions compared to the low availability of data
which is representative of all of these conditions. However, fault detection and diagnosis
algorithms strive towards prediction and are being implemented in various industrial
systems. In most cases, a “plug-and-play” generic solution is inadequate to detect faults
or degradation in complex systems. This is due to the uniqueness of the physical sys-
tems and their potential critical failure modes. Moreover, these systems produce large
amounts of heterogeneous data streams that pose considerable challenges in efficiently
storing and analyzing data at scale.

Therefore, the development of an end-to-end architecture that enables highly efficient
processing of system-specific data analysis as well as fault detection algorithms, requires
the collaboration of engineering domain experts, big data experts, and data analyt-
ics experts. The major challenge is how to design a big data architecture for intelligent
maintenance that enables efficient query processing as well as data analytics to moni-
tor the health of the systems, identify potential system faults early on, and in the future
allow for the prediction of remaining useful life of critical components.

In this paper we present an example for the design of such an end-to-end intelligent
maintenance system, which has been developed for industrial laser cutting machines.
The big data architecture enables efficient data storage, data streaming, query processing
and data analytics for early fault detection.

The paper makes the following contributions:

•	 We present a detailed use case of an end-to-end IoT solution for predictive mainte-
nance. Previous discussion of the topic in the literature have always been limited to
one of the aspects: big data architecture, storage design, analytic pipeline or machine
learning algorithms. In this paper we address all aspects together under one roof. In
particular, in each of these aspects we outline important pitfalls that are common to
practical applications. The solutions that we suggest here can be used as reference for
similar intelligent maintenance IoT systems in diverse application fields.

•	 We present a scalable IoT data analytics pipeline based on a Big Data architecture
which integrates heterogeneous data streams across an entire fleet of laser cutting
machines. Our system enables near real-time and/or discrete interval-based machine
health monitoring.

•	 We perform an in-depth evaluation of different physical storage design choices such as
partitioning and Z-ordering to enable efficient, multi-dimensional query processing.

•	 We discuss the main challenges and lessons learned from implementing the IoT data
analytics pipeline within an industrial setting using state-of-the-art Big Data technol-
ogy, such as Azure Databricks, Spark Structured Streaming and Delta Lakes.

•	 Finally, we demonstrate the possibility of early fault detection in the optical system
of laser cutting machines. In particular, we applied both statistical methods and con-

Page 3 of 26Lehmann et al. J Big Data (2020) 7:61 	

volutional neural networks (CNNs). We claim that although CNNs do not require
a first step of feature engineering, standard statistical methods are preferred in this
case, due to their higher explainability as well as robustness towards variable operat-
ing conditions.

Background
Bystronic is a provider of sheet metal processing solutions. These solutions are targeting
the automation of the full customer process, i.e. managing the material and data flow, as
well as insuring high availability of the cutting and bending process chains. Figure 1 gives
an example of a typical laser cutting machine, the cutting process and material samples.
Bystronic collects and analyzes sensor and operation data produced by their fleet of
machines for condition monitoring, guided troubleshooting and intelligent maintenance
both internally and for their clients.

In order to provide a robust and scalable IoT pipeline for data collection, aggregation
and analysis, we designed and implemented a scalable big data architecture shown in
Fig. 2. The major components of our architecture are as follows:

•	 Machine data collection
•	 Data persistence
•	 Data processing and analysis
•	 Data visualization and automated alerting

Fig. 1  Intelligent maintenance: a A laser cutting machine, b the cutting process and c examples of materials
and thickness

Page 4 of 26Lehmann et al. J Big Data (2020) 7:61

In the following, we explain these components in more detail and provide more back-
ground information on the case study of intelligent maintenance.

Component 1: Machine data collection. This component (referred to as gateway)
is responsible for retrieving data from the laser cutting machines. Each gateway col-
lects large volumes of heterogeneous data stemming from multiple types of sensors.
Some examples are information on temperatures of various parts of the laser cutting
machine, spatial coordinates of the cutting head against time, the vibrations of spe-
cific components, cutting process feedback, hours of machine use.

Data rates are as high as 1000 events per second. In order to efficiently process
this high data volume, special programmable hardware based on Field Programma-
ble Gate Arrays (FPGAs) is used to filter the data according to certain criteria. These
FPGAs are attached to the laser cutting machines. The remaining data is then for-
warded to the Bystronic domain in the Microsoft cloud in order to enable big data
fleet statistics of potentially high data volumes and heterogeneity. The latter is caused
by machines being operated under various conditions and in all phases of their ser-
vice life-cycle.

Component 2: Data persistence. Once the machine data is received on the cloud
platform via the EventHub, it is saved as a blob in JSON format - to create the immu-
table data lake. The EventHub can be configured to persistently store data for a speci-
fied time window. For each customer, a separate blob is generated and maintained.

Component 3: Data processing and analysis. Depending on the use case, different
processing steps are performed to analyze the machine data, either on the fly in the
data stream or in batch processing intervals. For example, Remaining Useful Life
(RUL) indicators are calculated in batches at regular intervals to estimate the life-
time of particular parts of the machines (see subcomponent “Batch Processing” in the
center of Fig. 2). Furthermore, computing health indicators may require the deploy-
ment of statistical methods, signal processing or machine learning algorithms on a
single machine or on a fleet data.

Fig. 2  Schematic view of the system architecture and the process flows

Page 5 of 26Lehmann et al. J Big Data (2020) 7:61 	

As an alternative to batch processing, more critical machine health monitoring may be
performed in (near) real-time using Spark Streaming (see sub-component “Stream Pro-
cessing”). Note that in our use case, stream processing is not time critical.

The stream processing engine is also used to continuously update the so-called “Delta
Tables” of Databrick’s (mutable) Delta lake in order to enable efficient multi-dimensional
query processing and analytics. These Delta Tables are essentially a column store with
support for data partitioning and clustering. In condition monitoring tasks, the Delta
Tables form the foundation for all dashboard views, where entire time-series data needs
to be visualized. The Delta Tables are regularly optimized for peak performance. Recur-
ring jobs are set up to prepare and aggregate data for the statistics dashboard views.

Component 4: Data visualization and automated alerting. In a final step, the condition
monitoring and health assessment results are visualized in dashboards and email alert
messages sent to the asset stakeholders. Since these kinds of dashboards are used by the
field service support teams to define service tasks, the data always needs to be up to
date and accurate, which makes stream processing in some use-cases a key requirement.
Nevertheless, it is also true, that most condition monitoring use-cases require only daily
batch processing of collected data as the machine condition typically deteriorates over
longer time scales.

An important design goal of the architecture described above is to keep the number
of components as small as possible such that they can easily be maintained by a small
operations team. There are certainly different design alternatives. For instance, Apache
Kafka1 could be used to enhance the streaming component and MongoDB2 could be
used for data storage – as we have done in previous industrial-strength use cases [1].
Another alternative would be to use Apache Nifi3 for distributed data processing. How-
ever, we decided against these tools to keep the technology stack simple.

Related work
The use of big data technologies for machine learning-based predictive maintenance
applications has been drawing attention over the last couple of years. Several approaches
use big data technology to enable processing of large data sets often in combination
with machine learning to analyze the data [2–4]. However, our work differs from these
approaches, suggesting a more holistic approach that includes tackling real-world chal-
lenges. One example for such a challenge are problems due to data scheme changes.
Another one, which is particularly relevant for health monitoring, is the processing of
multi-dimensional queries.

In this section we focus the literature survey on the central topics of the experimental
part below: multi-dimensional indexes for speeding up query processing and machine
learning algorithms for intelligent maintenance.

1  https​://kafka​.apach​e.org/.
2  https​://www.mongo​db.com/.
3  https​://nifi.apach​e.org/.

https://kafka.apache.org/
https://www.mongodb.com/
https://nifi.apache.org/

Page 6 of 26Lehmann et al. J Big Data (2020) 7:61

Speeding up query processing with multi‑dimensional indexes

With growing data sizes, the idea to narrow down the amount of data that needs to be
accessed during query processing is key. This idea of data skipping is achieved in tradi-
tional database systems by traversing a B-tree index [5, 6] and selecting only the relevant
rows for a given query in one dimension. However, this problem grows more complex
for a multi-dimensional use case. Other approaches are necessary to efficiently apply
indexing to accelerate multi-dimensional queries.

Examples of multi-dimensional indexes include tree-based data structures (e.g. quad-
trees [7], k-d-trees [8], R-trees [9]), space filling curves (e.g. Hilbert [10] or Morton/Z-
order curve [11]) and bitmap indexes [12, 13]. Through the success of deep neural
networks, learning indexes have also become an option [14].

MongoDB and Neo4j use B-trees for multi-dimensional indexing [15, 16]. Apache
Hive added support for bitmap indexes in version 0.8 and dropped them with release
3.0 again [17]. Furthermore, PostgreSQL uses bitmap indexes since version 8.1 to com-
bine multiple existing indexes [18]. Other architectures have successfully been designed
around the use of bitmap indexes [19]. Amazon Redshift uses Z-ordering to arrange
points [20], Amazon DynamoDB provides Z-order indexes to arrange a multi-dimen-
sional space in one dimension [21]. Moreover, Spark-SQL provides Z-order clustering to
physically arrange similar data in the same set of files [22].

A downside of the physical data layout, such as the Z-order clustering used by Spark-
SQL, is that it does not allow multiple Z-orderings. This means that unlike with classical
indexes, we are unable to create a new data layout for every important query. Instead, a
single layout is needed that works best for a general case and still performs adequately in
a worst case scenario.

Machine learning for intelligent maintenance

The application of machine learning and deep learning algorithms has drawn a lot of
attention in the field of prognostics and health management. There are several review
articles that list related work in this subject, see for example [23]. In particular, using
CNNs for fault classification is common, especially for high frequency vibration data,
e.g. [24, 25]. In this case, some papers use transformation schemes in order to obtain
two dimensional images out of the time series data and then apply CNN models that
have proven to yield good classification performance on images. Other papers use the
raw time series data with 1D or 2D filters, such as [26, 27]. The application of CNNs for
the detection of faults in the optical system has not been demonstrated to the best of our
knowledge.

There are several libraries that enable the training and inference of deep neural net-
work models with Spark including contributions of organizations like Yahoo (Ten-
sorFlowOnSpark4), CERN (Distributed Keras5) and Intel (BigDL6). Fortunately, also
Databricks created an open-source extension for the Spark framework called Deep

4  https​://githu​b.com/yahoo​/Tenso​rFlow​OnSpa​rk.
5  https​://githu​b.com/cernd​b/dist-keras​.
6  https​://githu​b.com/intel​-analy​tics/BigDL​.

https://github.com/yahoo/TensorFlowOnSpark
https://github.com/cerndb/dist-keras
https://github.com/intel-analytics/BigDL

Page 7 of 26Lehmann et al. J Big Data (2020) 7:61 	

Learning Pipelines7 that seamlessly integrates Keras and TensorFlow. The model train-
ing can thus benefit from the tools provided in the Databricks environment by using all
existing fleet data readily available in Delta tables.

Methods: system design
In this section we describe the major design choices of our Big Data architecture. In par-
ticular, we focus on efficient batch and stream processing, checkpointing for mitigating
stream processing failures and query processing. All of these methods have been imple-
mented in a productive system and have thus been verified in a real world scenario.

Monitoring system with stream processing

The stream processing pipeline is designed primarily to provide an opportunity for fast
online diagnosis following a machine failure, by collecting the most relevant machine
health parameters in real time. The stream processor also serves to convert incoming
JSON messages into structured Parquet files (stored in Delta tables—see Fig. 2). How-
ever, monitoring parameters across the fleet of machines is a challenging task, not only
due to possible scalability issues, but also due to the heterogeneity of the data arriving
from the different machines.

We can distinguish between two main types of heterogeneity:

1	 Data type heterogeneity—each machine provides data from multiple sensor types. At
a gateway, all the different data types are periodically collected and sent via the same
stream to the cloud, in JSON format. However, the stream receiver needs to correctly
split these messages back by datatype and store each to the appropriate Delta table,
given that each type of sensor data is used in a different analysis pipeline.

2	 Software version heterogeneity—i.e., schema heterogeneity for the same data
type across software versions. Bystronic provides regular software updates for its
machines. Following an update, the structure of the machine data collected may
change. For example, an offline analysis of sensor data may show that it is useful to
collect and monitor new parameters in order to improve the accuracy of the Remain-
ing Useful Life estimation for a given machine component. As a consequence, the
original schema for this data type will be changed, through the addition of the new
parameters. This schema change will be applied as part of a software update. How-
ever, it is then up to each customer to apply the update either sooner or later. In
practice, this means that at every point in time a variety of different software versions
will co-exist across the fleet of machines. The stream processing task needs therefore
to be able to handle this heterogeneity and correctly parse each data type. Moreover,
the machine will not send a specific message when it has been upgraded—it is there-
fore the responsibility of the downstream tasks to monitor for this change and adapt
upon detecting an upgrade.

In order to address the above possible heterogeneity issues, we implement the following
general mechanism for processing incoming JSON messages:

7  https​://docs.datab​ricks​.com/appli​catio​ns/deep-learn​ing/singl​e-node-train​ing/deep-learn​ing-pipel​ines.html.

https://docs.databricks.com/applications/deep-learning/single-node-training/deep-learning-pipelines.html

Page 8 of 26Lehmann et al. J Big Data (2020) 7:61

1	 Before starting the stream processing job, Delta tables are created for each machine
data type collected at the gateway. For each data type, the corresponding schema is
stored locally and is used for parsing the received JSON messages into structured
dataframes.

2	 A stream processing task is launched every trigger interval. In our current setup, we
have set the micro-batch trigger interval to 20 seconds. More details on micro-batch
trigger intervals are provided in the Spark user guide8.

3	 For each micro-batch, received messages are filtered by data type. This filtering is
done on the text-level, i.e. directly on data received on the stream, since different
message formats are collocated on the same stream. Filtering by data type will there-
fore facilitate correctly parsing each JSON message according to the known schema.

4	 Parse each JSON message into a structured dataframe, by using the known schema
and write the resulting dataframe into the corresponding Delta table.

5	 To improve the performance of batch queries executed on the Delta tables, a peri-
odic job is scheduled to optimize the Delta tables. This optimization will also result
in compacting the file structure, since writing streaming data into Delta tables can
result in a large number of small files being created.

Finally, a batch job checks periodically new data points to verify that the known schema
still corresponds to the real schema of the incoming streaming data. This check is to
ensure that updates to the input schema do not result in data loss, since any fields not
part of the known schema will simply be ignored (dropped). Therefore, in the Delta
tables, the inferred schema is also stored along with the actual data. Upon detecting a
change, the known schema for the data type is updated in the stream processor, and a
recovery mechanism is triggered in order to re-process the data points since the schema
changed.

Checkpointing: monitoring the monitoring system

Since the streaming task is responsible for providing up-to-date machine information,
it is important for this service to have minimal downtime. However, there are multiple
possible failure scenarios for the stream processing pipeline. Here, we briefly discuss a
few examples of such failures and the solutions implemented to overcome them in prac-
tice. In general, there are two required components for handling failures: monitoring the
stream processing pipeline and checkpointing the last successfully processed timestamp
per machine.

There are two main types of possible failures in the stream processing pipeline:

1	 An error in the stream processing task:

•	 This can happen due to an unexpected runtime error, for example, caused by
memory issues within the streaming task.

•	 We can consider this a soft failure, since the task can be restarted and the data
will be subsequently re-processed through Spark’s own checkpointing mechanism

8  https​://spark​.apach​e.org/docs/lates​t/struc​tured​-strea​ming-progr​ammin​g-guide​.html#trigg​ers.

https://spark.apache.org/docs/latest/structured-streaming-programming-guide.html#triggers

Page 9 of 26Lehmann et al. J Big Data (2020) 7:61 	

(assuming the task is restarted within the buffering window of the stream). For
more details on checkpointing in Spark, see the Spark user guide9.

•	 For this type of error, it is sufficient to monitor the stream in a separate task, by
periodically investigating its status. Whenever the status is detected as “Stopped”,
the streaming task should be restarted. The last successfully processed timestamp
will be available through the “lastProgress” parameter of the stream10.

2	 A cluster failure
•	 This is a more significant failure, since all intermediate states will be lost, which

implies that we may no longer be able to rely on Spark’s checkpointing mecha-
nism. Instead, in this case we need to internally store the last successfully processed
timestamp for each data type in order to overcome gaps in the data. More precisely,
upon restarting the cluster, a batch job will process, from the immutable JSON
data lake, all the data points between the last saved timestamp and the time of the
restart and store them in the appropriate Delta tables. This will ensure that all the
data is also available in structured format, despite the cluster downtime.

Finally, although not strictly a failure, a software update that results in input schema
changes will also require restarting the stream (and therefore will result in some down-
time). As machines do not have any means of signalling a software update, we need
to monitor for schema changes downstream, when processing data. Importantly, the
stream processing receiver expects the input to match the known schema, which means
that any new parameters added will be discarded. For this reason, the schema monitor-
ing will periodically analyze new data points, infer their schema and compare it against
the known one. Upon detecting a change, the stream processor will update its infor-
mation and restart. To minimize the impact of this downtime on processing data from
other machines, the stream can be partitioned either by machine or by data type (since
all information from one type, across the fleet of machines, will be written to the same
delta table).

Query processing and optimization

An important data preprocessing step amounts to an efficient extraction of relevant
data subsets for a particular analytical task. This extraction is done through data que-
ries. For example, if training a fault detection algorithm requires data from one specific
machine “M4” over a limited period of time of the year 2019, we need to query the entire
database for the point value Machine=“M4” and for the range value time >= 1.1.2019
and time < 1.1.2020 . This is an example of a two-dimensional query in which we search
both the machine dimension and the time dimension. The machine dimension typi-
cally has a small set of possible values it can assume (order of hundreds or thousands of
machines)—it is therefore a low cardinality attribute. In contrast, the time dimension
can typically assume a very large set of values, depending on the data resolution. The
time attribute is thus a high cardinality attribute. Moreover, in this example the query

9  https​://spark​.apach​e.org/docs/lates​t/struc​tured​-strea​ming-progr​ammin​g-guide​.html#recov​ering​-from-failu​res-with-
check​point​ing.
10  https​://spark​.apach​e.org/docs/lates​t/struc​tured​-strea​ming-progr​ammin​g-guide​.html#manag​ing-strea​ming-queri​es.

https://spark.apache.org/docs/latest/structured-streaming-programming-guide.html#recovering-from-failures-with-checkpointing
https://spark.apache.org/docs/latest/structured-streaming-programming-guide.html#recovering-from-failures-with-checkpointing
https://spark.apache.org/docs/latest/structured-streaming-programming-guide.html#managing-streaming-queries

Page 10 of 26Lehmann et al. J Big Data (2020) 7:61

type is mixed: one of the dimensions (machine) is a point query and the other one (time)
is a range query.

As a generalization of the above example, we can characterize queries with the help of
three main input dimensions: (1) data density: low-attribute cardinality vs. high-attrib-
ute cardinality (2) query type: point query vs. range query (3) query dimensionality: one-
dimensional query vs. multi-dimensional query.

The data storage layout crucially influences the response time of queries. Each of the
three input dimensions may have an important effect on the response time, depending
on the queries that are frequently executed. We should therefore aim at finding the opti-
mal storage technique as well as the optimal parameters for this storage technique such
that the response times of queries are minimized. The problem can thus be formulated
as an optimization problem across the three input dimensions listed above.

Input dimensions

We will now discuss these three input dimensions in more detail, while analyzing the
impact of two storage optimization techniques provided by Apache Spark, namely data
partitioning and Z-ordering [11].

Data density: The cardinality of an attribute refers to the number of unique values.
From the point of view of query optimization, we distinguish between attributes with a
low cardinality, e.g. number of days in a week, and attributes with high cardinality, e.g.
temperature values of a machine. Depending on the attribute cardinality, different stor-
age optimization techniques need to be chosen.

Query type: We can distinguish between two different types of queries, namely point
queries and range queries.

Point queries (PQ) are of the form a = v where a refers to an attribute and v to a value.
For instance, find all machines where a failure occurred on weekday = 5. Range que-
ries (RQ) are of the form a > v (greater than) or a < v (less than). For instance, find all
machines with a temperature > 100.

Query dimensionality: We can distinguish between one-dimensional and multi-dimen-
sional queries depending on how many different attributes are contained in the query.
For instance, the query of the form a = v is a one-dimensional query, while the query of
the form a1 = v1 AND a2 = v2 is a two-dimensional query.

In the real-world, queries are often complex. Hence we combine query type and query
dimensionality:

•	 One-dimensional point queries (1D-PQ) are of the form a = v where a refers to an
attribute and v to a value.

•	 One-dimensional range queries (1D-RQ) are of the form a > v (greater than) or a < v
(less than).

•	 Multi-dimensional point queries (nD-PQ, i.e. 2D-PQ) combine multiple one-dimen-
sional point queries with the boolean operator AND. They are of the form a1 = v1
AND a2 = v2 AND ... AND an = vn . For instance, find all machines where a failure
occurred on weekday = 5 AND location = Zurich.

•	 Multi-dimensional range queries (nD-RQ, i.e. 2D-RQ) - similar to multi-dimensional
point queries - are a combination of one-dimensional range queries, concatenated

Page 11 of 26Lehmann et al. J Big Data (2020) 7:61 	

with the boolean operator AND. They are of the form a1 > v1 AND a2 > v2 AND ...
AND an > vn . For instance, find all machines with a temperature > 100 AND speed <
20.

Data storage optimization

Given the three aforementioned input dimensions, the goal is to find the optimal data
storage technique to minimize query execution time. Modern database management
systems and data warehousing solutions provide various techniques for optimizing
access to data, such as data partitioning [28] or indexes [29]. However, Apache Spark
and in particular Databricks do not support indexes. In order to optimize queries, Spark
provides data partitioning and Z-order clustering. [22].

•	 Partitioning is used to split files into more manageable sizes such that a smaller sub-
set of the data needs to be accessed during query processing. Let us assume a dataset
with measurements for various machines. These measurements contain the machine
name, the three coordinates of the cutting head of the machine (x, y and z), the tem-
perature values of a particular machine part, and a timestamp of when the measure-
ment was collected (see top part of Fig. 3). The middle and bottom part of the Figure
show two data partitioning strategies, namely, partitioning by machine and partition
by timestamp.

	 Partitioning by machine is a good strategy for queries that look for specific machine
names. On the other hand, partitioning by timestamp is the better strategy for

Fig. 3  Partitioning: Top part shows a dataset with measures of several machines. Middle and lower parts
show how the data is rearranged when partitioned by Machine and Timestamp, respectively

Page 12 of 26Lehmann et al. J Big Data (2020) 7:61

queries looking for timestamps. However, what if we have a query that looks for
machines AND timestamps? In this case, one might need a partition strategy that
combines the partitions for machines and timestamps. In general, given that our sys-
tem can receive arbitrary queries with any possible combination of attributes and
dimensionality, the complexity of choosing all combinations of partitions is O(n!),
where n is the number of attributes in a table11. Storing such a high number of parti-
tions is impossible in practice. Hence, one needs to choose the partitions based on
the most commonly used queries. This could be achieved only by correctly combin-
ing system specific domain knowledge, and allowing for an iterative development
process which can adapt the partitions to the most frequently deployed data analyt-
ics.

•	 Z-ordering/Multi-dimensional clustering The basic idea of Z-ordering [11] is to
cluster those attributes together that are potentially also queried together. In other
words, Z-ordering maps data from a multi-dimensional space down to a one-dimen-
sional space. Moreover, Z-ordering uses a combined partitioning strategy across mul-
tiple attributes. In our example (see Fig. 4), the values of some of the machines are
collocated with the values of some of the temperature measurements. The data can
now be traversed following the shape of the letter “Z”.

	 Let us assume that we are interested in the query where Machine = M2 AND tem-
perature < 19. In this case, we only need to traverse the top left Z. However, if we are
interested in all machines with temperature < 19, we basically need to traverse three
times as much data, i.e. three Z-shapes. This example shows that depending on the
type and the dimensionality of the queries, a different amount of data needs to be

Fig. 4  Z-ordering: Example of how the data shown in Fig. 3 is rearranged based on a two-dimensional
Z-ordering of the attributes Machine and Temperature 

11  Consider table T1 with attributes a1, a2, and a3. We can choose 3 single-attribute partitions (a1; a2; a3), 3 two-attrib-
ute-partitions, ((a1,a2); (a1, a3); (a2,a3)), and 1 three-attribute-partition (a1, a2, a3).

Page 13 of 26Lehmann et al. J Big Data (2020) 7:61 	

traversed. Thus, the more data that needs to be traversed during query processing,
the longer the query response time.

Partitioning and Z-ordering are mutually exclusive operations for any given attribute.
In other words, for a given attribute, one can either use partitioning or Z-ordering but
not both.

It is important to note that these optimizations are applied on the physical file level
and cannot be customized on a per-query basis. This means that whichever configura-
tion is initially chosen, will be applied for all queries. As time passes, most users dis-
cover new queries that are equally important but were not considered when evaluating
optimization strategies. As such, it is important to keep in mind that any of the strate-
gies used should not adversely affect other queries.

Results and discussion
In this section we perform an experimental evaluation of the query performance in rela-
tion to Spark’s physical storage optimization techniques (see “Analysis of query perfor-
mance in Big Data architecture” section). Afterwards, we will analyze the accuracy of our
machine learning algorithms for intelligent maintenance (see “Statistical and machine
learning algorithms for intelligent maintenance” section).

Analysis of query performance in Big Data architecture

Given the three input dimensions data density, query type and query dimensionality,
we will now evaluate which is the optimal storage solution such that the query response
time is minimized. To solve the optimization problem across these three input dimen-
sions, we will address the following research questions:

•	 What is the effect of partitioning and Z-ordering on one-dimensional queries?
•	 How are the conclusions affected by higher query dimensionalities?
•	 How do our findings change when we deal with high cardinality attributes?

In our experiments we study the performance of one-dimensional and multi-dimen-
sional point and range queries. The experimental setup is inspired by previous work on
analyzing the query performance of Big Data systems [19]).

Software and hardware setup

All the experiments were conducted on Azure Databricks using the latest stable runt-
ime versions, which at the time were Apache Spark 2.4.4 and Scala 2.11. Three different
cluster configurations were used with two, four and eight worker nodes, respectively. All
cluster nodes are of the Standard_DS13_v2 type and have 56 GB of memory available,
as well as 8 CPU cores each12. In total, the Spark cluster has a maximum memory of 448
GB and 64 CPU cores. Autoscaling was disabled for all clusters to ensure constant per-
formance availability. The cluster mode was set to high concurrency. All code was written
in Python version 3.

12  See https​://azure​.micro​soft.com/en-in/prici​ng/detai​ls/datab​ricks​ for cluster configurations and pricing information.

https://azure.microsoft.com/en-in/pricing/details/databricks

Page 14 of 26Lehmann et al. J Big Data (2020) 7:61

Datasets

The goal of the experiment was to compare the influence of optimization strategies
on Databricks Delta tables using both partitioning and Z-order clustering. Since, the
acquisition of real machine data only started within this research scope and has not
yet reached a sufficiently large volume to analyze query performance at scale, we cre-
ated a synthetic dataset, where attribute values are sampled from uniform distribu-
tions. The synthetic dataset has a size of 240 GB. The key characteristics are shown in
Table 1.

Our synthetic dataset follows a uniform distribution. For unpartitioned attributes,
we set the attribute cardinalities to 103 if not specified otherwise, in order to better
control our experiments (similar to [19]).

Partitioned attributes are treated differently since each partition results in a folder
being created. With multiple partitioned attributes this leads to an immense amount
of folders and subfolders in the order of the product of all partitioned attribute car-
dinalities. To mitigate this effect, we used one, two and four partitioned attributes
with cardinalities of 104 , 102 and 101 , respectively. This results in a similar amount of
folders across the different partition configurations and amends the slowness of file
systems at listing millions of files [30].

Experiment results

In this section we explore the impact of partitioning and Z-Ordering through a
series of experiments. The queries were executed on clusters with two, four and eight
worker nodes with 16, 32 and 64 CPU cores, respectively. We executed each query
five times and report the average response time. Moreover, we randomly sampled the
query values from the available value space of the respective column.

Experiment 1: A comparison between partitioning and Z-ordering for one-dimen-
sional queries In the first set of experiments we compare different optimization strat-
egies on the synthetic dataset with attribute cardinalities of 104 . In particular, we
analyze the performance of one-dimensional point and range queries using the fol-
lowing three different table configurations:

•	 Non-partitioned: The table is physically stored without optimization and specifi-
cally without partitioning.

•	 Z-ordering: The table is stored using a specific attribute for Z-ordering. The
Z-ordered attribute is also accessed by the queries.

•	 Partitioned: The table is partitioned by a specific attribute. This partitioned attrib-
ute is accessed by the queries.

Table 1  Characteristics of the synthetic dataset used for our benchmarks

Nrows 10
10

Ncols 16

Data size 240 GB

Page 15 of 26Lehmann et al. J Big Data (2020) 7:61 	

Figure 5 shows the query performance using these three configurations. The top part
shows the performance of one-dimensional point queries (1D-PQ). The bottom part
shows one-dimensional range queries (1D-RQ). Note that the y-axis is scaled loga-
rithmically to the base 2. We can see that partitioning leads to the lowest response
times of less than 1 second both for point queries and for range queries. Z-ordering is
slower by a factor of 3 for point, and a factor of 16 to 32 for range queries, depending
on the cluster size. The difference for range queries is that on average a larger number
of files needs to be analyzed than for point queries. Not utilizing any of the optimi-
zations is slower than partitioning by a factor of 20 to 32. Note that Z-ordering has
the highest variance in response times – that is, the strongest sensitivity towards the
specific queried values. Moreover, Z-ordered range queries are faster than queries on
non-partitioned attributes by a factor of two.

Even though queries against non-partitioned attributes are the slowest, they show
almost linear scalability with respect to the cluster size. For range queries against
Z-ordered attributes we see similar linear scalability. For queries against partitioned
attributes we do not see this positive scalability effect. However, the query response
times against partitioned attributes is already below 1 second and hence is hard to
further improve due to network latencies and thus increased communication costs
between 4 or 8 worker nodes.

Fig. 5  Response times for 1D point queries (top figure: 1D-PQ) and 1D range queries (bottom figure: 1D-RQ)
on the synthetic dataset. The cardinality for all attributes is 104 . The queries are of the from WHERE a1 = X,
where a1 is a non-partitioned, partitioned or Z-ordered attribute, respectively

Page 16 of 26Lehmann et al. J Big Data (2020) 7:61

The high query performance of the partitioned table can be explained by the fact that
Spark can take advantage of file-level statistics, indicating which attribute ranges are
contained in the partition and thus narrowing down the amount of data access during
query processing (as they are co-located in the same partition folder). Z-ordering, how-
ever, (and especially in the case of range queries) has a disadvantage since rows cannot
be selected by only looking at partitions containing the queried attribute ranges. Instead,
every file has to be checked individually.

Experiment 2: Multi-dimensional queries against partitioned attributes In our pre-
vious experiments we showed that partitioning performs better than Z-ordering for
one-dimensional queries. In our next set of experiments we analyze the performance of
multi-dimensional conjunctive queries against partitioned attributes.

In particular, we create tables with one, two and four partitioned attributes with attrib-
ute cardinalities of 104 , 102 and 101 , respectively. This means that the cardinality product
of all partitioned attributes is 104 for all three configurations.

As shown in Fig. 6, for all queries the response times stay below one second, even
in the case of range queries. In other words, increasing the dimensionality of the que-
ries only marginally increases the response times of queries. In practise, a response time

Fig. 6  Response times for one- and multi-dimensional point and range queries against partitioned attributes
on the synthetic dataset. The x-axis indicates the dimensionality of the executed query, i.e. 2D-RQ-AND
refers to a 2D range query of the form WHERE p1 = X AND p2 = Y 

Page 17 of 26Lehmann et al. J Big Data (2020) 7:61 	

below one second is very acceptable. All these queries are very likely limited not by the
dataset size but by the computational overhead of Spark or the network latency13.

Similar to previous experiments with partitioning, the size of the cluster is not influ-
encing the response time in a significant way.

Experiment 3: Querying high cardinality attributes In our previous experiments we
used low attribute cardinalities ranging from 102 to 104 . In the next set of experiments
we evaluate the performance of queries against attributes with high cardinalities. For
these types of attributes, data partitioning is not feasible anymore14 and Z-ordering is
the recommended solution.

For our experiments, we perform one- and multi-dimensional point and range que-
ries for one, two and four Z-ordered attributes with cardinalities of 106 . Figure 7 indi-
cates that for such cardinality regions, Z-ordering shows a strong performance especially
when few attributes are Z-ordered. Labels on the x-axis indicate the query type and the
table configurations, e.g. “2D-PQ 2Z” refers to a two-dimensional point query against
two Z-ordered attributes.

Fig. 7  Response times for Z-ordered attributes with cardinality of 106 . For instance, 2Z indicates that two
attributes were used for Z-ordering. The flash symbol indicates that Spark was unable to create partitions
using these attribute cardinalities

14  At a cardinality of 106 Spark was unsuccessful in creating partitioned tables leading to an unmanageable amount of
files and folders.

13  Our experiments showed that even for very small dataset sizes, the minimum query response time of a query is on the
order of half a second and cannot be further reduced due to Spark-internal overheads.

Page 18 of 26Lehmann et al. J Big Data (2020) 7:61

Figure 7 further shows deteriorating performance for queries that do not include all
Z-ordered attributes in their WHERE clause. Let us first focus on the query response
times of point queries. In particular we analyze the effects of these two Z-ordering strat-
egies 1D-PQ 1Z vs. 1D-PQ 4Z. In the former case, one-dimensional point queries
are executed using Z-ordering based on one attribute. In the latter case, one-dimensional
point queries are executed using Z-ordering based on four attributes. We can observe
that the query response times on 64 CPU-cores are about 8 times higher for 1D-PQ 4Z
compared to the configuration of 1D-PQ 1Z. The reason is that Z-ordering aligns rows
maximizing all Z-ordered attributes equally, such that there is a performance drop when
applying Z-ordering to more attributes than those being used in the query. In summary,
one-dimensional queries perform better on Z-ordering with one attribute rather than
four attributes.

Let us now focus on the response times of range queries (see lower part of Fig. 7). We
can observe that the response times are significantly higher than for point queries. The
reason is that Z-ordering is very sensitive to the attribute range covered by the query.
Hence, on average, for range queries a larger portion of the entire index has to be
scanned as compared to point queries.

Best practices deduced from performance experiments With our experiments we
showed that optimizing for attributes that are often queried yields substantial perfor-
mance benefits. As such we define the following best practices:

•	 Categorical attributes such as year, month, day or country have a low attribute car-
dinality. For these attributes, partitioning works well and should be used primarily.
As a general rule of thumb, at a cardinality above 104 one should start to question, if
partitioning is the right choice.

•	 Continuous attributes such as temperaturevalues typically have high attribute cardi-
nalities and are best suited for Z-ordering.

•	 In general, partitioning is faster than Z-ordering and should be preferred, if the car-
dinality is below 105 . Z-ordering is able to handle high attribute cardinalities where
partitioning is not an option anymore.

•	 Unlike partitioning, the performance of Z-ordering degrades with multiple attributes
that are Z-ordered, but not part of a query.

•	 Our performance experiments with real-world data showed similar results and could
confirm our lessons learned.

In conclusion, the optimal strategy is strongly influenced by the nature of the attributes
which are more commonly queried, by the characteristics of a typical query workload
(point or range queries, aggregations, etc.) and by the decision, where performance is
most critical.

Statistical and machine learning algorithms for intelligent maintenance

Use case description

In this section we focus on a specific use-case for data-driven methods for the detec-
tion of faulty behavior in the laser cutting machine, that can in turn allow for more
intelligent maintenance measures. In particular, we demonstrate the possibility of

Page 19 of 26Lehmann et al. J Big Data (2020) 7:61 	

early fault detection in the optical system based on sensor data. We then suggest to
train, validate and deploy the derived detection models in the infrastructure pre-
sented in the previous sections. This use case is currently based on machine data out
of laboratory experiments rather than field data, but is intended as a proof of concept
for later implementation with real-time field data collected from a fleet of machines.
The main purpose of the presented use case is to detect contamination of optical
components that are likely to lead to reduced production quality of the machine. The
components can then either be cleaned or exchanged early enough to avoid low qual-
ity production outcomes. To this end we developed two alternative fault detection
algorithms. The first one uses convolutional neural networks (CNNs) for classification
of sensor signals into “healthy” and “faulty”. The second algorithm uses conventional
statistical analysis and signal processing methods in order to construct direct health
indicators for fault detection.

From the perspective of a machine operator, early fault detection must be accurate.
Detected faults should correspond to real faults and not mere abnormalities in the data.
False positives would result in unnecessary service measures, that would reduce the
availability and therefore the productive use of the machine.

Datasets

We collected laboratory data from 14 different machines. 12 of the machines were
labelled as healthy and 2 of them as faulty. The implications of a faulty machine are low
quality production outcomes under certain operational conditions. Clearly, not all oper-
ational conditions have the same impact on the production outcomes. However, the aim
of the present work is to detect underlying faulty behavior even under conditions which
might be interpreted as benign. The raw data is obtained with a maximal time resolution
of 1msec and is then down sampled to a time resolution of 100msec. We extracted input
sequences of length 120 (corresponding to 12 seconds) with partial overlap (shifted by
200msec). These parameters were selected to optimally capture the time correlations of
the input series and to maximally augment the data. This yields a total amount of train-
ing sequences of 38,990 and a total amount of testing sequences of 304,507. The purpose
here is to demonstrate that there is no need in very large amounts of training data to

Fig. 8  Convolutional neural network architecture for machine classification

Page 20 of 26Lehmann et al. J Big Data (2020) 7:61

obtain good results on a large and diverse test set, as long as the training data is repre-
sentative enough.

Method 1: Machine classification based on convolutional neural networks

We construct a CNN for the binary classification of multivariate sequences (time series)
into “healthy” and “faulty”. The goal is to identify faulty machines, which are defined as
machines with more than 90% faulty samples. The CNN receives multivariate time series
data as an input and delivers a binary output: healthy or faulty for each input sample.

*Network architecture We used a multivariate input sequence with 3 input variables,
chosen based on engineering domain knowledge (see Fig. 8). The input is fed into three
consecutive convolutional hidden units. Each unit contains a 1D convolutional layer with
10 filters, a dropout layer classifier and a batch normalization layer. The binary fully con-
nected layer contains 80 units. For the implementation we used Keras of Tensorflow15.

The choice of a CNN architecture is done in order to exploit time dependent features
of the sensor data. Comparing the results to a standard fully connected neural network
(a Multilayer Perceptron) indicated a clear superiority of the CNN. A valid alternative
would be Recurrent Neural Networks (RNNs). However, they require a more elaborate
hyperparameter search and have been shown to perform similarly or even worse than
CNNs for sequence modelling [31].

Training For training we used time sequences out of healthy as well as faulty machines.
In each experiment we used data from only one of the two faulty machines as well as
4 healthy machines for training (“training machines”). The rest of the machines were
used exclusively for testing (“testing machines”). We randomly selected parts of the data
of the training machines for training and used the rest for validation and testing. As a
result, our training data contains sequences out of 5 different machines and our test data
contains sequences out of all 14 machines; unseen data from the training machines and

Table 2  CNN classification performance

Machine TN FN TP FP Accuracy

1 10963 0 0 0 1

2 13133 0 0 0 1

3 8817 0 0 0 1

4 7502 0 0 0 1

5* 0 2978 90876 0 0.968

6 7690 0 0 0 1

7 22899 0 0 21 0.999

8 28724 0 0 11 0.999

9 52533 0 0 0 1

10 3636 0 0 504 0.878

11* 0 184 23556 0 0.992

12 14933 0 0 0 1

13 5491 0 0 31 0.994

14 9992 0 0 33 0.997

15  https​://keras​.io/.

https://keras.io/

Page 21 of 26Lehmann et al. J Big Data (2020) 7:61 	

unseen data from the testing machines. The training data was then balanced to contain
an equal number of sequences out of healthy and faulty machines.

Results As explained above, we tested the performance of the classifier on two differ-
ent datasets. The first one is data from the same machines as in the training set and the
second is mixed data out of the 5 training machines and the 9 machines not used for
training.

Table 2 describes the results for the mixed test data. Note that machines 5 and 11 are
the two faulty machines. Part of the data from machine 11 was used for training and the
rest for testing. The healthy training data was gathered from machines 2, 4, 6 and 14.

The table shows the true negatives (TN), false negatives (FN), true positives (TP),
false positives (FP) and the accuracy of our CNN. From the table it can be seen that all
healthy test machines were identified as healthy with an accuracy higher than 0.878, that
is with detection rate of more than 87.8% healthy samples. Moreover, we calculated the
total precision, recall and accuracy rates over the entire data, gathering results form all
machines. These are 0.995, 0.973 and 0.988, respectively. The accuracy rate means that
close to 99% of the faulty data was identified as such. Hence, we conclude that the CNN
was capable of identifying the faulty test machine based on data from another faulty
machine.

In summary, the classification performance of the CNN is very high, with no need
for feature engineering. However, the disadvantage of this method for fault detection
is the lack of transparency of the results. In a future research we investigate the feature
maps which dominate the classification in order to elucidate the underlying classifica-
tion mechanism.

Method 2: Machine classification based on statistical signal analysis

In this sub-section we perform an analysis using a simpler statistical method than
CNNs, which we conducted with the same dataset, yielding a good performance in
detecting faulty behavior of machines. In particular, we analyze the time series data of
the 14 machines mentioned above in order to identify signatures which are unique for
faulty machines and set a threshold for the detection of such faults.

Method We use the same dataset as described above, out of 14 different machines
operating under a set of operating conditions. Here we perform a pre-processing of the
data in order to select a subset of the operating conditions under which we then perform
feature extraction for the construction of health indicators.

After an inspection of the data we observe that the output signal of one of the sen-
sors can be used to construct health indicators for the machine. We denote this signal
by S(t). We observe that a subset of process parameters can be pre-selected such that
production processes under these conditions can be used for early fault detection before
the machine suffers from downtime. We show below that selecting data out of such pro-
cesses allows us to distinguish faulty from healthy machines. We can then detect these
machines as faulty based on cutting processes in which the production outcomes are not
yet deteriorated in quality. The pre-selection step of the data is implemented in practice
using the query techniques that are mentioned above in “Analysis of query performance
in Big Data architecture” section.

Page 22 of 26Lehmann et al. J Big Data (2020) 7:61

The raw signal data S(t) is pre-selected and smoothed. On the smoothed data we run
a sliding window robust linear regressor to extract the local slope. Next we perform
counting statistics of the slopes within longer time windows, counting the fraction
of slopes that exceed a certain slope threshold. This fraction is our health indicator.
Using data out of faulty as well as healthy machines we could determine and validate
a threshold fraction 0.5 per time window, above which a machine is declared faulty.

The smoothing and windowed operations are again implemented with the help of
an efficient query technique as described in “Query processing and optimization”
section.

Results: Figure 9 displays two examples of data out of a healthy and a faulty
machine. The two upper panels display processes of a healthy machine. Figure 9a
shows the raw sensor data and Fig. 9b displays the calculated health indicator as a

Fig. 9  Fault detection using statistical analysis. a Sensor signal of healthy machine. b Health indicator for
healthy machine. c Sensor signal for faulty machine. d Health indicator for faulty machine. Red dashed line
indicates the detection threshold

Page 23 of 26Lehmann et al. J Big Data (2020) 7:61 	

function of time for this machine. Indeed, during all measurements we observed no
time windows with a high fraction of high slopes. Therefore, in this case no fault iden-
tification should be issued.

In contrast, Figure 9c, d show the sensor signal and the health indicator for a faulty
machine. Here the health indicator, corresponding to the high slope fraction, crosses the
threshold level several times during the measurement. This distinction between faulty
and healthy machines repeats in all 14 machines that were examined in this experiment.
The two faulty machines exhibit time slots with high fractions of high slopes. The detec-
tion threshold is therefore crossed repeatedly. In all other machines the threshold was
never crossed. Based on the present experiment we conclude that the fraction of high
slope data can be used as a health indicator. Note that this feature is independent of the
absolute sensor values, but rather reflects their time dependence.

It is worth noting, that we deliberately avoid detecting faults based on the absolute
level of the sensor reading S(t). The reason is, that despite the examples shown in the
figure, there are cases of high sensor values that are known to be benign, that is, do not
lead to reduced production outcomes. Therefore, faulty behavior cannot be detected by
merely setting a threshold on the raw sensor reading.

Conclusions We analysed two possible intelligent algorithms for fault detection in the
optical system. Both were capable of identifying clearly the two faulty machines out of a
set of 14 machines. The first, based on CNN, has the advantage of not relying on a pre-
processing step of feature engineering. However, it is hard to interpret and is prone to
be sensitive to the selection of training data, especially under variable operating condi-
tions. The second, based on standard statistical analysis, requires the manual extraction
of features but is easily interpretable. Moreover, it has the potential to be robust and
applicable to a large number of machines under diverse operating conditions. Therefore,
in practical applications the second algorithm is often preferred.

Lessons learned and applying best practices

In the preceding proof-of-concept for the fault detection model we were able to verify
that our algorithms can learn from data stemming from multiple machines. Moreo-
ver, since the input parameter space and the variable domain of operating conditions is
huge, it is beneficial for the performance of the algorithms to include data from as many
machines as possible for model training. In particular, there is strong evidence, that it
is impossible to collect a representative dataset from a single machine in economically
meaningful time.

Operating a machine learning model for a complex condition monitoring problem
usually includes feature engineering of a vast space of operating conditions through-
out the entire asset life. To make it even worse, these operating conditions are partly
dependent on the states of contributing subsystems, that deteriorate over time. Last but
not least, the components may be replaced from time to time. If those replacements are
performed with a new part of identical design, the major effort is to collect properly
labeled data. However, if a revised design with a different data signature is put in place,
the machine learning models might need to be completely retrained from scratch.

Page 24 of 26Lehmann et al. J Big Data (2020) 7:61

How should these machine learning models be deployed as part of our overall system
architecture? In order to enable a short-notice operator alerting system to prevent emi-
nent quality loss in a productive service support system for a fleet of machines, the fol-
lowing tasks are required:

•	 Periodic re-training and validation of the fault classification model on the entire fleet
data.

•	 Verification of the defined business objectives making use of the precision, recall and
accuracy metrics of the algorithms.

•	 Model deployment in a close to real-time data processing pipeline.

In our scenario, the machine learning models will be deployed and used on the incoming
data stream. Upon a positive early fault detection on the continuous data received, the
operator of the respective machines will be notified and preventive service measures can
be undertaken.

Conclusion
In this paper we presented the design and implementation of an end-to-end Big Data
architecture for a real-world use case of intelligent maintenance of a fleet of laser cutting
machines.

First, we presented a Big Data architecture that enables both batch and stream pro-
cessing. In particular, we focused on the important aspect of how to design the system to
be resilient to schema changes due to regular software updates of a fleet of laser cutting
machines.

Next, we analyzed various physical design choices to optimize query processing in a
Big Data architecture. In particular, we studied the impact of various data partitioning
strategies as well as Z-ordering on the performance of multi-dimensional query process-
ing. The results show that data partitioning using Delta Lakes with a modest number of
partitions is often the best strategy. The results also demonstrate that Z-ordering typi-
cally does not perform better than data partitioning. However, Z-ordering is a decent
alternative design choice for high-cardinality attributes where data partitioning would
break due to a high number of physical files.

Finally, we evaluated two different approaches for a specific use case of health moni-
toring. The first approach uses machine learning techniques based on convolutional
neural networks, while the second approach uses standard statistical and signal pro-
cessing methods. Our results demonstrate that standard statistical methods are the bet-
ter design choice for our use case due to their robustness towards variable operating
conditions.

Abbreviations
CERN: European organization for nuclear research; CNN: Convolutional neural network; CPU: Central processing unit; CTI:
Swiss commission for technology and innovation; FN: False negative; FP: False positive; FPGA: Field programmable gate
array; GB: Gigabyte; IoT: Internet of things; JSON: JavaScript object notation; ML: Machine learning; PQ: Point query; RQ:
Range query; RUL: Remaining useful life; TN: True negative; TP: True positive.

Acknowledgements
Not applicable.

Page 25 of 26Lehmann et al. J Big Data (2020) 7:61 	

Authors’ contributions
TH and GS provided the use case and the domain expertise. KS and AS designed the overall Big Data system architec-
ture. AS and CL implemented the system and performed the experiments on query processing. LGH performed the data
analytics. All authors read and approved the final manuscript.

Funding
The work was supported by the Swiss Commission for Technology and Innovation (CTI) under Grant 25728.1 PFES-ES.

Availability of data and materials
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Zurich University of Applied Sciences, Obere Kirchgasse 2, 8400 Winterthur, Switzerland. 2 Bystronic Laser AG, Industri-
estrasse 21, 3362 Niederönz, Switzerland.

Received: 15 April 2020 Accepted: 30 July 2020

References
	1.	 Sima A-C, Stockinger K, Affolter K, Braschler M, Monte P, Kaiser L. A hybrid approach for alarm verification using

stream processing, machine learning and text analytics. In: EDBT 2018, Vienna, Austria, 26-29 March 2018. ACM;
2018.

	2.	 Lee J, Ardakani HD, Yang S, Bagheri B. Industrial big data analytics and cyber-physical systems for future mainte-
nance & service innovation. Procedia Cirp. 2015;38:3–7.

	3.	 Canizo M, Onieva E, Conde A, Charramendieta S, Trujillo S. Real-time predictive maintenance for wind turbines using
big data frameworks. In: 2017 IEEE International Conference on Prognostics and Health Management (ICPHM). IEEE;
2017. p. 70–7.

	4.	 Syafrudin M, Alfian G, Fitriyani NL, Rhee J. Performance analysis of iot-based sensor, big data processing, and
machine learning model for real-time monitoring system in automotive manufacturing. Sensors. 2018;18(9):2946.

	5.	 Comer D. Ubiquitous b-tree. ACM Comput Surv. 1979;11(2):121–37.
	6.	 Graefe G. Query evaluation techniques for large databases. ACM Comput Surv. 1993;25(2):73–169.
	7.	 Finkel RA, Bentley JL. Quad trees a data structure for retrieval on composite keys. Acta Informatica. 1974;4(1):1–9.
	8.	 Bentley JL. Multidimensional binary search trees used for associative searching. Commun ACM. 1975;18(9):509–17.
	9.	 Guttman A. R-trees: A dynamic index structure for spatial searching. In: Proceedings of the 1984 ACM SIGMOD

International Conference on Management of Data, 1984, pp. 47–57.
	10.	 Hilbert D. Ueber die reellen züge algebraischer curven. Mathematische Annalen. 1891;38(1):115–38.
	11.	 Morton GM. A computer oriented geodetic data base and a new technique in file sequencing, 1966.
	12.	 Spiegler I, Maayan R. Storage and retrieval considerations of binary data bases. Inform Process Manag.

1985;21(3):233–54.
	13.	 Wu K, Shoshani A, Stockinger K. Analyses of multi-level and multi-component compressed bitmap indexes. ACM

Trans Database Syst. 2008;35(1):1–52.
	14.	 Nathan V, Ding J, Alizadeh M, Kraska T. Learning Multi-dimensional Indexes 2019. arxiv​:1912.01668​.
	15.	 MongoDB Documentation: Indexes. https​://docs.mongo​db.com/manua​l/index​es/. Accessed 13 Feb 2020.
	16.	 Neo4j Documentation: Index configuration. https​://neo4j​.com/docs/opera​tions​-manua​l/curre​nt/perfo​rmanc​e/

index​-confi​gurat​ion/#index​-confi​gurat​ion-btree​. Accessed 13 Feb 2020.
	17.	 Apache Hive Confluence: LanguageManual Indexing. https​://cwiki​.apach​e.org/confl​uence​/displ​ay/Hive/Langu​

ageMa​nual+Index​ing. Accessed 13 Feb 2020.
	18.	 PostgreSQL Documentation: Combining Multiple Indexes. https​://www.postg​resql​.org/docs/10/index​es-bitma​

p-scans​.html. Accessed 13 Feb 2020.
	19.	 Stockinger K, Bödi R, Heitz J, Weinmann T. Zns-efficient query processing with zurichnosql. Data Knowl Eng.

2017;112:38–54.
	20.	 Amazon AWS: Amazon Redshift Engineering’s Advanced Table Design Playbook: Compound and Interleaved Sort

Keys. https​://aws.amazo​n.com/de/blogs​/big-data/amazo​n-redsh​ift-engin​eerin​gs-advan​ced-table​-desig​n-playb​
ook-compo​und-and-inter​leave​d-sort-keys. Accessed 30 Feb 2020.

	21.	 Amazon AWS Database Blog: Z-Order Indexing for Multifaceted Queries in Amazon DynamoDB: Part 1. https​://
aws.amazo​n.com/de/blogs​/datab​ase/z-order​-index​ing-for-multi​facet​ed-queri​es-in-amazo​n-dynam​odb-part-1.
Accessed 30 Jan 2020.

	22.	 Databricks Engineering Blog: Optimize Performance with File Management. https​://docs.datab​ricks​.com/delta​/
optim​izati​ons/file-mgmt.html. Accessed 28 Nov 2019.

	23.	 Khan S, Yairi T. A review on the application of deep learning in system health management. Mech Syst Sign Process.
2018;107:241–65.

	24.	 Jing L, Zhao M, Li P, Xu X. A convolutional neural network based feature learning and fault diagnosis method for the
condition monitoring of gearbox. Measurement. 2017;111:1–10.

	25.	 Chen Z, Li C, Sanchez R-V. Gearbox fault identification and classification with convolutional neural networks. Shock
Vibr. 2015;2015.

	26.	 Zhang W, Li C, Peng G, Chen Y, Zhang Z. A deep convolutional neural network with new training methods for bear-
ing fault diagnosis under noisy environment and different working load. Mech Syst Sign Process. 2018;100:439–53.

http://arxiv.org/abs/1912.01668
https://docs.mongodb.com/manual/indexes/
https://neo4j.com/docs/operations-manual/current/performance/index-configuration/#index-configuration-btree
https://neo4j.com/docs/operations-manual/current/performance/index-configuration/#index-configuration-btree
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+Indexing
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+Indexing
https://www.postgresql.org/docs/10/indexes-bitmap-scans.html
https://www.postgresql.org/docs/10/indexes-bitmap-scans.html
https://aws.amazon.com/de/blogs/big-data/amazon-redshift-engineerings-advanced-table-design-playbook-compound-and-interleaved-sort-keys
https://aws.amazon.com/de/blogs/big-data/amazon-redshift-engineerings-advanced-table-design-playbook-compound-and-interleaved-sort-keys
https://aws.amazon.com/de/blogs/database/z-order-indexing-for-multifaceted-queries-in-amazon-dynamodb-part-1
https://aws.amazon.com/de/blogs/database/z-order-indexing-for-multifaceted-queries-in-amazon-dynamodb-part-1
https://docs.databricks.com/delta/optimizations/file-mgmt.html
https://docs.databricks.com/delta/optimizations/file-mgmt.html

Page 26 of 26Lehmann et al. J Big Data (2020) 7:61

	27.	 Liu C-L, Hsaio W-H, Tu Y-C. Time series classification with multivariate convolutional neural network. IEEE Trans Ind
Electr. 2018;66(6):4788–97.

	28.	 Bellatreche L, Boukhalfa K, Richard P. Data partitioning in data warehouses: Hardness study, heuristics and oracle
validation. In: International Conference on Data Warehousing and Knowledge Discovery. Springer: New York; 2008.
pp. 87–96.

	29.	 Stockinger K, Wu K. Bitmap indices for data warehouses. In: Data Warehouses and OLAP: Concepts, Architectures
and Solutions. IGI Global, 2007. p. 157–78.

	30.	 Ionescu A. Processing Petabytes of Data in Seconds with Databricks Delta. https​://datab​ricks​.com/blog/2018/07/31/
proce​ssing​-petab​ytes-of-data-in-secon​ds-with-datab​ricks​-delta​.html. Accessed 28 Nov 2019.

	31.	 Bai S, Kolter JZ, Koltun V. An empirical evaluation of generic convolutional and recurrent networks for sequence
modeling. arXiv preprint arXiv​:1803.01271​ 2018.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://databricks.com/blog/2018/07/31/processing-petabytes-of-data-in-seconds-with-databricks-delta.html
https://databricks.com/blog/2018/07/31/processing-petabytes-of-data-in-seconds-with-databricks-delta.html
http://arxiv.org/abs/1803.01271

	Big Data architecture for intelligent maintenance: a focus on query processing and machine learning algorithms
	Abstract
	Introduction
	Background
	Related work
	Speeding up query processing with multi-dimensional indexes
	Machine learning for intelligent maintenance

	Methods: system design
	Monitoring system with stream processing
	Checkpointing: monitoring the monitoring system
	Query processing and optimization
	Input dimensions
	Data storage optimization

	Results and discussion
	Analysis of query performance in Big Data architecture
	Software and hardware setup
	Datasets
	Experiment results

	Statistical and machine learning algorithms for intelligent maintenance
	Use case description
	Datasets
	Method 1: Machine classification based on convolutional neural networks
	Method 2: Machine classification based on statistical signal analysis
	Lessons learned and applying best practices

	Conclusion
	Acknowledgements
	References

