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Introduction
Producers and owners of industrial equipment have been showing a growing interest in 
implementing intelligent maintenance solutions. This is due to a combination of reasons, 
such as the constantly growing availability of commercial solutions for data acquisition, 
transmission and storage, as well as the recent development of computationally efficient 
machine learning algorithms. The need for end-to-end solutions for data-driven decision 
support systems enabling intelligent maintenance spreads over many different fields of 
industry and infrastructure assets. Such end-to-end solutions are expected to integrate 
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all of the necessary building blocks, starting from data acquisition, onto streaming and 
data warehousing, through data processing, analytics and visualization of condition 
monitoring data up to smart maintenance decision support.

The field of decision support for intelligent maintenance ranges from simple condi-
tion monitoring, through fault detection, up to fault diagnosis and prognosis. The lat-
ter, sometimes termed “Predictive Maintenance” is nowadays only rarely possible due 
to a very high variability of operating conditions compared to the low availability of data 
which is representative of all of these conditions. However, fault detection and diagnosis 
algorithms strive towards prediction and are being implemented in various industrial 
systems. In most cases, a “plug-and-play” generic solution is inadequate to detect faults 
or degradation in complex systems. This is due to the uniqueness of the physical sys-
tems and their potential critical failure modes. Moreover, these systems produce large 
amounts of heterogeneous data streams that pose considerable challenges in efficiently 
storing and analyzing data at scale.

Therefore, the development of an end-to-end architecture that enables highly efficient 
processing of system-specific data analysis as well as fault detection algorithms, requires 
the collaboration of engineering domain experts, big data experts, and data analyt-
ics experts. The major challenge is how to design a big data architecture for intelligent 
maintenance that enables efficient query processing as well as data analytics to moni-
tor the health of the systems, identify potential system faults early on, and in the future 
allow for the prediction of remaining useful life of critical components.

In this paper we present an example for the design of such an end-to-end intelligent 
maintenance system, which has been developed for industrial laser cutting machines. 
The big data architecture enables efficient data storage, data streaming, query processing 
and data analytics for early fault detection.

The paper makes the following contributions:

•	 We present a detailed use case of an end-to-end IoT solution for predictive mainte-
nance. Previous discussion of the topic in the literature have always been limited to 
one of the aspects: big data architecture, storage design, analytic pipeline or machine 
learning algorithms. In this paper we address all aspects together under one roof. In 
particular, in each of these aspects we outline important pitfalls that are common to 
practical applications. The solutions that we suggest here can be used as reference for 
similar intelligent maintenance IoT systems in diverse application fields.

•	 We present a scalable IoT data analytics pipeline based on a Big Data architecture 
which integrates heterogeneous data streams across an entire fleet of laser cutting 
machines. Our system enables near real-time and/or discrete interval-based machine 
health monitoring.

•	 We perform an in-depth evaluation of different physical storage design choices such as 
partitioning and Z-ordering to enable efficient, multi-dimensional query processing.

•	 We discuss the main challenges and lessons learned from implementing the IoT data 
analytics pipeline within an industrial setting using state-of-the-art Big Data technol-
ogy, such as Azure Databricks, Spark Structured Streaming and Delta Lakes.

•	 Finally, we demonstrate the possibility of early fault detection in the optical system 
of laser cutting machines. In particular, we applied both statistical methods and con-
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volutional neural networks (CNNs). We claim that although CNNs do not require 
a first step of feature engineering, standard statistical methods are preferred in this 
case, due to their higher explainability as well as robustness towards variable operat-
ing conditions.

Background
Bystronic is a provider of sheet metal processing solutions. These solutions are targeting 
the automation of the full customer process, i.e. managing the material and data flow, as 
well as insuring high availability of the cutting and bending process chains. Figure 1 gives 
an example of a typical laser cutting machine, the cutting process and material samples. 
Bystronic collects and analyzes sensor and operation data produced by their fleet of 
machines for condition monitoring, guided troubleshooting and intelligent maintenance 
both internally and for their clients.

In order to provide a robust and scalable IoT pipeline for data collection, aggregation 
and analysis, we designed and implemented a scalable big data architecture shown in 
Fig. 2. The major components of our architecture are as follows:

•	 Machine data collection
•	 Data persistence
•	 Data processing and analysis
•	 Data visualization and automated alerting

Fig. 1  Intelligent maintenance: a A laser cutting machine, b the cutting process and c examples of materials 
and thickness
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In the following, we explain these components in more detail and provide more back-
ground information on the case study of intelligent maintenance.

Component 1: Machine data collection. This component (referred to as gateway) 
is responsible for retrieving data from the laser cutting machines. Each gateway col-
lects large volumes of heterogeneous data stemming from multiple types of sensors. 
Some examples are information on temperatures of various parts of the laser cutting 
machine, spatial coordinates of the cutting head against time, the vibrations of spe-
cific components, cutting process feedback, hours of machine use.

Data rates are as high as 1000 events per second. In order to efficiently process 
this high data volume, special programmable hardware based on Field Programma-
ble Gate Arrays (FPGAs) is used to filter the data according to certain criteria. These 
FPGAs are attached to the laser cutting machines. The remaining data is then for-
warded to the Bystronic domain in the Microsoft cloud in order to enable big data 
fleet statistics of potentially high data volumes and heterogeneity. The latter is caused 
by machines being operated under various conditions and in all phases of their ser-
vice life-cycle.

Component 2: Data persistence. Once the machine data is received on the cloud 
platform via the EventHub, it is saved as a blob in JSON format - to create the immu-
table data lake. The EventHub can be configured to persistently store data for a speci-
fied time window. For each customer, a separate blob is generated and maintained.

Component 3: Data processing and analysis. Depending on the use case, different 
processing steps are performed to analyze the machine data, either on the fly in the 
data stream or in batch processing intervals. For example, Remaining Useful Life 
(RUL) indicators are calculated in batches at regular intervals to estimate the life-
time of particular parts of the machines (see subcomponent “Batch Processing” in the 
center of Fig. 2). Furthermore, computing health indicators may require the deploy-
ment of statistical methods, signal processing or machine learning algorithms on a 
single machine or on a fleet data.

Fig. 2  Schematic view of the system architecture and the process flows
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As an alternative to batch processing, more critical machine health monitoring may be 
performed in (near) real-time using Spark Streaming (see sub-component “Stream Pro-
cessing”). Note that in our use case, stream processing is not time critical.

The stream processing engine is also used to continuously update the so-called “Delta 
Tables” of Databrick’s (mutable) Delta lake in order to enable efficient multi-dimensional 
query processing and analytics. These Delta Tables are essentially a column store with 
support for data partitioning and clustering. In condition monitoring tasks, the Delta 
Tables form the foundation for all dashboard views, where entire time-series data needs 
to be visualized. The Delta Tables are regularly optimized for peak performance. Recur-
ring jobs are set up to prepare and aggregate data for the statistics dashboard views.

Component 4: Data visualization and automated alerting. In a final step, the condition 
monitoring and health assessment results are visualized in dashboards and email alert 
messages sent to the asset stakeholders. Since these kinds of dashboards are used by the 
field service support teams to define service tasks, the data always needs to be up to 
date and accurate, which makes stream processing in some use-cases a key requirement. 
Nevertheless, it is also true, that most condition monitoring use-cases require only daily 
batch processing of collected data as the machine condition typically deteriorates over 
longer time scales.

An important design goal of the architecture described above is to keep the number 
of components as small as possible such that they can easily be maintained by a small 
operations team. There are certainly different design alternatives. For instance, Apache 
Kafka1 could be used to enhance the streaming component and MongoDB2 could be 
used for data storage – as we have done in previous industrial-strength use cases [1]. 
Another alternative would be to use Apache Nifi3 for distributed data processing. How-
ever, we decided against these tools to keep the technology stack simple.

Related work
The use of big data technologies for machine learning-based predictive maintenance 
applications has been drawing attention over the last couple of years. Several approaches 
use big data technology to enable processing of large data sets often in combination 
with machine learning to analyze the data [2–4]. However, our work differs from these 
approaches, suggesting a more holistic approach that includes tackling real-world chal-
lenges. One example for such a challenge are problems due to data scheme changes. 
Another one, which is particularly relevant for health monitoring, is the processing of 
multi-dimensional queries.

In this section we focus the literature survey on the central topics of the experimental 
part below: multi-dimensional indexes for speeding up query processing and machine 
learning algorithms for intelligent maintenance.

1  https​://kafka​.apach​e.org/.
2  https​://www.mongo​db.com/.
3  https​://nifi.apach​e.org/.

https://kafka.apache.org/
https://www.mongodb.com/
https://nifi.apache.org/
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Speeding up query processing with multi‑dimensional indexes

With growing data sizes, the idea to narrow down the amount of data that needs to be 
accessed during query processing is key. This idea of data skipping is achieved in tradi-
tional database systems by traversing a B-tree index [5, 6] and selecting only the relevant 
rows for a given query in one dimension. However, this problem grows more complex 
for a multi-dimensional use case. Other approaches are necessary to efficiently apply 
indexing to accelerate multi-dimensional queries.

Examples of multi-dimensional indexes include tree-based data structures (e.g. quad-
trees [7], k-d-trees [8], R-trees [9]), space filling curves (e.g. Hilbert [10] or Morton/Z-
order curve [11]) and bitmap indexes [12, 13]. Through the success of deep neural 
networks, learning indexes have also become an option [14].

MongoDB and Neo4j use B-trees for multi-dimensional indexing [15, 16]. Apache 
Hive added support for bitmap indexes in version 0.8 and dropped them with release 
3.0 again [17]. Furthermore, PostgreSQL uses bitmap indexes since version 8.1 to com-
bine multiple existing indexes [18]. Other architectures have successfully been designed 
around the use of bitmap indexes [19]. Amazon Redshift uses Z-ordering to arrange 
points [20], Amazon DynamoDB provides Z-order indexes to arrange a multi-dimen-
sional space in one dimension [21]. Moreover, Spark-SQL provides Z-order clustering to 
physically arrange similar data in the same set of files [22].

A downside of the physical data layout, such as the Z-order clustering used by Spark-
SQL, is that it does not allow multiple Z-orderings. This means that unlike with classical 
indexes, we are unable to create a new data layout for every important query. Instead, a 
single layout is needed that works best for a general case and still performs adequately in 
a worst case scenario.

Machine learning for intelligent maintenance

The application of machine learning and deep learning algorithms has drawn a lot of 
attention in the field of prognostics and health management. There are several review 
articles that list related work in this subject, see for example [23]. In particular, using 
CNNs for fault classification is common, especially for high frequency vibration data, 
e.g. [24, 25]. In this case, some papers use transformation schemes in order to obtain 
two dimensional images out of the time series data and then apply CNN models that 
have proven to yield good classification performance on images. Other papers use the 
raw time series data with 1D or 2D filters, such as [26, 27]. The application of CNNs for 
the detection of faults in the optical system has not been demonstrated to the best of our 
knowledge.

There are several libraries that enable the training and inference of deep neural net-
work models with Spark including contributions of organizations like Yahoo (Ten-
sorFlowOnSpark4), CERN (Distributed Keras5) and Intel (BigDL6). Fortunately, also 
Databricks created an open-source extension for the Spark framework called Deep 

4  https​://githu​b.com/yahoo​/Tenso​rFlow​OnSpa​rk.
5  https​://githu​b.com/cernd​b/dist-keras​.
6  https​://githu​b.com/intel​-analy​tics/BigDL​.

https://github.com/yahoo/TensorFlowOnSpark
https://github.com/cerndb/dist-keras
https://github.com/intel-analytics/BigDL


Page 7 of 26Lehmann et al. J Big Data            (2020) 7:61 	

Learning Pipelines7 that seamlessly integrates Keras and TensorFlow. The model train-
ing can thus benefit from the tools provided in the Databricks environment by using all 
existing fleet data readily available in Delta tables.

Methods: system design
In this section we describe the major design choices of our Big Data architecture. In par-
ticular, we focus on efficient batch and stream processing, checkpointing for mitigating 
stream processing failures and query processing. All of these methods have been imple-
mented in a productive system and have thus been verified in a real world scenario.

Monitoring system with stream processing

The stream processing pipeline is designed primarily to provide an opportunity for fast 
online diagnosis following a machine failure, by collecting the most relevant machine 
health parameters in real time. The stream processor also serves to convert incoming 
JSON messages into structured Parquet files (stored in Delta tables—see Fig. 2). How-
ever, monitoring parameters across the fleet of machines is a challenging task, not only 
due to possible scalability issues, but also due to the heterogeneity of the data arriving 
from the different machines.

We can distinguish between two main types of heterogeneity: 

1	 Data type heterogeneity—each machine provides data from multiple sensor types. At 
a gateway, all the different data types are periodically collected and sent via the same 
stream to the cloud, in JSON format. However, the stream receiver needs to correctly 
split these messages back by datatype and store each to the appropriate Delta table, 
given that each type of sensor data is used in a different analysis pipeline.

2	 Software version heterogeneity—i.e., schema heterogeneity for the same data 
type across software versions. Bystronic provides regular software updates for its 
machines. Following an update, the structure of the machine data collected may 
change. For example, an offline analysis of sensor data may show that it is useful to 
collect and monitor new parameters in order to improve the accuracy of the Remain-
ing Useful Life estimation for a given machine component. As a consequence, the 
original schema for this data type will be changed, through the addition of the new 
parameters. This schema change will be applied as part of a software update. How-
ever, it is then up to each customer to apply the update either sooner or later. In 
practice, this means that at every point in time a variety of different software versions 
will co-exist across the fleet of machines. The stream processing task needs therefore 
to be able to handle this heterogeneity and correctly parse each data type. Moreover, 
the machine will not send a specific message when it has been upgraded—it is there-
fore the responsibility of the downstream tasks to monitor for this change and adapt 
upon detecting an upgrade.

In order to address the above possible heterogeneity issues, we implement the following 
general mechanism for processing incoming JSON messages: 

7  https​://docs.datab​ricks​.com/appli​catio​ns/deep-learn​ing/singl​e-node-train​ing/deep-learn​ing-pipel​ines.html.

https://docs.databricks.com/applications/deep-learning/single-node-training/deep-learning-pipelines.html
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1	 Before starting the stream processing job, Delta tables are created for each machine 
data type collected at the gateway. For each data type, the corresponding schema is 
stored locally and is used for parsing the received JSON messages into structured 
dataframes.

2	 A stream processing task is launched every trigger interval. In our current setup, we 
have set the micro-batch trigger interval to 20 seconds. More details on micro-batch 
trigger intervals are provided in the Spark user guide8.

3	 For each micro-batch, received messages are filtered by data type. This filtering is 
done on the text-level, i.e. directly on data received on the stream, since different 
message formats are collocated on the same stream. Filtering by data type will there-
fore facilitate correctly parsing each JSON message according to the known schema.

4	 Parse each JSON message into a structured dataframe, by using the known schema 
and write the resulting dataframe into the corresponding Delta table.

5	 To improve the performance of batch queries executed on the Delta tables, a peri-
odic job is scheduled to optimize the Delta tables. This optimization will also result 
in compacting the file structure, since writing streaming data into Delta tables can 
result in a large number of small files being created.

Finally, a batch job checks periodically new data points to verify that the known schema 
still corresponds to the real schema of the incoming streaming data. This check is to 
ensure that updates to the input schema do not result in data loss, since any fields not 
part of the known schema will simply be ignored (dropped). Therefore, in the Delta 
tables, the inferred schema is also stored along with the actual data. Upon detecting a 
change, the known schema for the data type is updated in the stream processor, and a 
recovery mechanism is triggered in order to re-process the data points since the schema 
changed.

Checkpointing: monitoring the monitoring system

Since the streaming task is responsible for providing up-to-date machine information, 
it is important for this service to have minimal downtime. However, there are multiple 
possible failure scenarios for the stream processing pipeline. Here, we briefly discuss a 
few examples of such failures and the solutions implemented to overcome them in prac-
tice. In general, there are two required components for handling failures: monitoring the 
stream processing pipeline and checkpointing the last successfully processed timestamp 
per machine.

There are two main types of possible failures in the stream processing pipeline: 

1	 An error in the stream processing task:

•	 This can happen due to an unexpected runtime error, for example, caused by 
memory issues within the streaming task.

•	 We can consider this a soft failure, since the task can be restarted and the data 
will be subsequently re-processed through Spark’s own checkpointing mechanism 

8  https​://spark​.apach​e.org/docs/lates​t/struc​tured​-strea​ming-progr​ammin​g-guide​.html#trigg​ers.

https://spark.apache.org/docs/latest/structured-streaming-programming-guide.html#triggers
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(assuming the task is restarted within the buffering window of the stream). For 
more details on checkpointing in Spark, see the Spark user guide9.

•	 For this type of error, it is sufficient to monitor the stream in a separate task, by 
periodically investigating its status. Whenever the status is detected as “Stopped”, 
the streaming task should be restarted. The last successfully processed timestamp 
will be available through the “lastProgress” parameter of the stream10.

2	 A cluster failure
•	 This is a more significant failure, since all intermediate states will be lost, which 

implies that we may no longer be able to rely on Spark’s checkpointing mecha-
nism. Instead, in this case we need to internally store the last successfully processed 
timestamp for each data type in order to overcome gaps in the data. More precisely, 
upon restarting the cluster, a batch job will process, from the immutable JSON 
data lake, all the data points between the last saved timestamp and the time of the 
restart and store them in the appropriate Delta tables. This will ensure that all the 
data is also available in structured format, despite the cluster downtime.

Finally, although not strictly a failure, a software update that results in input schema 
changes will also require restarting the stream (and therefore will result in some down-
time). As machines do not have any means of signalling a software update, we need 
to monitor for schema changes downstream, when processing data. Importantly, the 
stream processing receiver expects the input to match the known schema, which means 
that any new parameters added will be discarded. For this reason, the schema monitor-
ing will periodically analyze new data points, infer their schema and compare it against 
the known one. Upon detecting a change, the stream processor will update its infor-
mation and restart. To minimize the impact of this downtime on processing data from 
other machines, the stream can be partitioned either by machine or by data type (since 
all information from one type, across the fleet of machines, will be written to the same 
delta table).

Query processing and optimization

An important data preprocessing step amounts to an efficient extraction of relevant 
data subsets for a particular analytical task. This extraction is done through data que-
ries. For example, if training a fault detection algorithm requires data from one specific 
machine “M4” over a limited period of time of the year 2019, we need to query the entire 
database for the point value Machine=“M4” and for the range value time >= 1.1.2019 
and time < 1.1.2020 . This is an example of a two-dimensional query in which we search 
both the machine dimension and the time dimension. The machine dimension typi-
cally has a small set of possible values it can assume (order of hundreds or thousands of 
machines)—it is therefore a low cardinality attribute. In contrast, the time dimension 
can typically assume a very large set of values, depending on the data resolution. The 
time attribute is thus a high cardinality attribute. Moreover, in this example the query 

9  https​://spark​.apach​e.org/docs/lates​t/struc​tured​-strea​ming-progr​ammin​g-guide​.html#recov​ering​-from-failu​res-with-
check​point​ing.
10  https​://spark​.apach​e.org/docs/lates​t/struc​tured​-strea​ming-progr​ammin​g-guide​.html#manag​ing-strea​ming-queri​es.

https://spark.apache.org/docs/latest/structured-streaming-programming-guide.html#recovering-from-failures-with-checkpointing
https://spark.apache.org/docs/latest/structured-streaming-programming-guide.html#recovering-from-failures-with-checkpointing
https://spark.apache.org/docs/latest/structured-streaming-programming-guide.html#managing-streaming-queries


Page 10 of 26Lehmann et al. J Big Data            (2020) 7:61 

type is mixed: one of the dimensions (machine) is a point query and the other one (time) 
is a range query.

As a generalization of the above example, we can characterize queries with the help of 
three main input dimensions: (1) data density: low-attribute cardinality vs. high-attrib-
ute cardinality (2) query type: point query vs. range query (3) query dimensionality: one-
dimensional query vs. multi-dimensional query.

The data storage layout crucially influences the response time of queries. Each of the 
three input dimensions may have an important effect on the response time, depending 
on the queries that are frequently executed. We should therefore aim at finding the opti-
mal storage technique as well as the optimal parameters for this storage technique such 
that the response times of queries are minimized. The problem can thus be formulated 
as an optimization problem across the three input dimensions listed above.

Input dimensions

We will now discuss these three input dimensions in more detail, while analyzing the 
impact of two storage optimization techniques provided by Apache Spark, namely data 
partitioning and Z-ordering  [11].

Data density: The cardinality of an attribute refers to the number of unique values. 
From the point of view of query optimization, we distinguish between attributes with a 
low cardinality, e.g. number of days in a week, and attributes with high cardinality, e.g. 
temperature values of a machine. Depending on the attribute cardinality, different stor-
age optimization techniques need to be chosen.

Query type: We can distinguish between two different types of queries, namely point 
queries and range queries.

Point queries (PQ) are of the form a = v where a refers to an attribute and v to a value. 
For instance, find all machines where a failure occurred on weekday = 5. Range que-
ries (RQ) are of the form a > v (greater than) or a < v (less than). For instance, find all 
machines with a temperature > 100.

Query dimensionality: We can distinguish between one-dimensional and multi-dimen-
sional queries depending on how many different attributes are contained in the query. 
For instance, the query of the form a = v is a one-dimensional query, while the query of 
the form a1 = v1 AND a2 = v2 is a two-dimensional query.

In the real-world, queries are often complex. Hence we combine query type and query 
dimensionality:

•	 One-dimensional point queries (1D-PQ) are of the form a = v where a refers to an 
attribute and v to a value.

•	 One-dimensional range queries (1D-RQ) are of the form a > v (greater than) or a < v 
(less than).

•	 Multi-dimensional point queries (nD-PQ, i.e. 2D-PQ) combine multiple one-dimen-
sional point queries with the boolean operator AND. They are of the form a1 = v1 
AND a2 = v2 AND ... AND an = vn . For instance, find all machines where a failure 
occurred on weekday = 5 AND location = Zurich.

•	 Multi-dimensional range queries (nD-RQ, i.e. 2D-RQ) - similar to multi-dimensional 
point queries - are a combination of one-dimensional range queries, concatenated 
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with the boolean operator AND. They are of the form a1 > v1 AND a2 > v2 AND ... 
AND an > vn . For instance, find all machines with a temperature > 100 AND speed < 
20.

Data storage optimization

Given the three aforementioned input dimensions, the goal is to find the optimal data 
storage technique to minimize query execution time. Modern database management 
systems and data warehousing solutions provide various techniques for optimizing 
access to data, such as data partitioning [28] or indexes [29]. However, Apache Spark 
and in particular Databricks do not support indexes. In order to optimize queries, Spark 
provides data partitioning and Z-order clustering. [22].

•	 Partitioning is used to split files into more manageable sizes such that a smaller sub-
set of the data needs to be accessed during query processing. Let us assume a dataset 
with measurements for various machines. These measurements contain the machine 
name, the three coordinates of the cutting head of the machine (x, y and z), the tem-
perature values of a particular machine part, and a timestamp of when the measure-
ment was collected (see top part of Fig. 3). The middle and bottom part of the Figure 
show two data partitioning strategies, namely, partitioning by machine and partition 
by timestamp.

	 Partitioning by machine is a good strategy for queries that look for specific machine 
names. On the other hand, partitioning by timestamp is the better strategy for 

Fig. 3  Partitioning: Top part shows a dataset with measures of several machines. Middle and lower parts 
show how the data is rearranged when partitioned by Machine and Timestamp, respectively
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queries looking for timestamps. However, what if we have a query that looks for 
machines AND timestamps? In this case, one might need a partition strategy that 
combines the partitions for machines and timestamps. In general, given that our sys-
tem can receive arbitrary queries with any possible combination of attributes and 
dimensionality, the complexity of choosing all combinations of partitions is O(n!), 
where n is the number of attributes in a table11. Storing such a high number of parti-
tions is impossible in practice. Hence, one needs to choose the partitions based on 
the most commonly used queries. This could be achieved only by correctly combin-
ing system specific domain knowledge, and allowing for an iterative development 
process which can adapt the partitions to the most frequently deployed data analyt-
ics.

•	 Z-ordering/Multi-dimensional clustering The basic idea of Z-ordering   [11] is to 
cluster those attributes together that are potentially also queried together. In other 
words, Z-ordering maps data from a multi-dimensional space down to a one-dimen-
sional space. Moreover, Z-ordering uses a combined partitioning strategy across mul-
tiple attributes. In our example (see Fig. 4), the values of some of the machines are 
collocated with the values of some of the temperature measurements. The data can 
now be traversed following the shape of the letter “Z”.

	 Let us assume that we are interested in the query where Machine = M2 AND tem-
perature < 19. In this case, we only need to traverse the top left Z. However, if we are 
interested in all machines with temperature < 19, we basically need to traverse three 
times as much data, i.e. three Z-shapes. This example shows that depending on the 
type and the dimensionality of the queries, a different amount of data needs to be 

Fig. 4  Z-ordering: Example of how the data shown in Fig. 3 is rearranged based on a two-dimensional 
Z-ordering of the attributes Machine and Temperature 

11  Consider table T1 with attributes a1, a2, and a3. We can choose 3 single-attribute partitions (a1; a2; a3), 3 two-attrib-
ute-partitions, ((a1,a2); (a1, a3); (a2,a3)), and 1 three-attribute-partition (a1, a2, a3).
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traversed. Thus, the more data that needs to be traversed during query processing, 
the longer the query response time.

Partitioning and Z-ordering are mutually exclusive operations for any given attribute. 
In other words, for a given attribute, one can either use partitioning or Z-ordering but 
not both.

It is important to note that these optimizations are applied on the physical file level 
and cannot be customized on a per-query basis. This means that whichever configura-
tion is initially chosen, will be applied for all queries. As time passes, most users dis-
cover new queries that are equally important but were not considered when evaluating 
optimization strategies. As such, it is important to keep in mind that any of the strate-
gies used should not adversely affect other queries.

Results and discussion
In this section we perform an experimental evaluation of the query performance in rela-
tion to Spark’s physical storage optimization techniques (see “Analysis of query perfor-
mance in Big Data architecture” section). Afterwards, we will analyze the accuracy of our 
machine learning algorithms for intelligent maintenance (see “Statistical and machine 
learning algorithms for intelligent maintenance” section).

Analysis of query performance in Big Data architecture

Given the three input dimensions data density, query type and query dimensionality, 
we will now evaluate which is the optimal storage solution such that the query response 
time is minimized. To solve the optimization problem across these three input dimen-
sions, we will address the following research questions:

•	 What is the effect of partitioning and Z-ordering on one-dimensional queries?
•	 How are the conclusions affected by higher query dimensionalities?
•	 How do our findings change when we deal with high cardinality attributes?

In our experiments we study the performance of one-dimensional and multi-dimen-
sional point and range queries. The experimental setup is inspired by previous work on 
analyzing the query performance of Big Data systems [19]).

Software and hardware setup

All the experiments were conducted on Azure Databricks using the latest stable runt-
ime versions, which at the time were Apache Spark 2.4.4 and Scala 2.11. Three different 
cluster configurations were used with two, four and eight worker nodes, respectively. All 
cluster nodes are of the Standard_DS13_v2 type and have 56 GB of memory available, 
as well as 8 CPU cores each12. In total, the Spark cluster has a maximum memory of 448 
GB and 64 CPU cores. Autoscaling was disabled for all clusters to ensure constant per-
formance availability. The cluster mode was set to high concurrency. All code was written 
in Python version 3.

12  See https​://azure​.micro​soft.com/en-in/prici​ng/detai​ls/datab​ricks​ for cluster configurations and pricing information.

https://azure.microsoft.com/en-in/pricing/details/databricks
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Datasets

The goal of the experiment was to compare the influence of optimization strategies 
on Databricks Delta tables using both partitioning and Z-order clustering. Since, the 
acquisition of real machine data only started within this research scope and has not 
yet reached a sufficiently large volume to analyze query performance at scale, we cre-
ated a synthetic dataset, where attribute values are sampled from uniform distribu-
tions. The synthetic dataset has a size of 240 GB. The key characteristics are shown in 
Table 1.

Our synthetic dataset follows a uniform distribution. For unpartitioned attributes, 
we set the attribute cardinalities to 103 if not specified otherwise, in order to better 
control our experiments (similar to [19]).

Partitioned attributes are treated differently since each partition results in a folder 
being created. With multiple partitioned attributes this leads to an immense amount 
of folders and subfolders in the order of the product of all partitioned attribute car-
dinalities. To mitigate this effect, we used one, two and four partitioned attributes 
with cardinalities of 104 , 102 and 101 , respectively. This results in a similar amount of 
folders across the different partition configurations and amends the slowness of file 
systems at listing millions of files [30].

Experiment results

In this section we explore the impact of partitioning and Z-Ordering through a 
series of experiments. The queries were executed on clusters with two, four and eight 
worker nodes with 16, 32 and 64 CPU cores, respectively. We executed each query 
five times and report the average response time. Moreover, we randomly sampled the 
query values from the available value space of the respective column.

Experiment 1: A comparison between partitioning and Z-ordering for one-dimen-
sional queries In the first set of experiments we compare different optimization strat-
egies on the synthetic dataset with attribute cardinalities of 104 . In particular, we 
analyze the performance of one-dimensional point and range queries using the fol-
lowing three different table configurations:

•	 Non-partitioned: The table is physically stored without optimization and specifi-
cally without partitioning.

•	 Z-ordering: The table is stored using a specific attribute for Z-ordering. The 
Z-ordered attribute is also accessed by the queries.

•	 Partitioned: The table is partitioned by a specific attribute. This partitioned attrib-
ute is accessed by the queries.

Table 1  Characteristics of the synthetic dataset used for our benchmarks

Nrows 10
10

Ncols 16

Data size 240 GB
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Figure 5 shows the query performance using these three configurations. The top part 
shows the performance of one-dimensional point queries (1D-PQ). The bottom part 
shows one-dimensional range queries (1D-RQ). Note that the y-axis is scaled loga-
rithmically to the base 2. We can see that partitioning leads to the lowest response 
times of less than 1 second both for point queries and for range queries. Z-ordering is 
slower by a factor of 3 for point, and a factor of 16 to 32 for range queries, depending 
on the cluster size. The difference for range queries is that on average a larger number 
of files needs to be analyzed than for point queries. Not utilizing any of the optimi-
zations is slower than partitioning by a factor of 20 to 32. Note that Z-ordering has 
the highest variance in response times – that is, the strongest sensitivity towards the 
specific queried values. Moreover, Z-ordered range queries are faster than queries on 
non-partitioned attributes by a factor of two.

Even though queries against non-partitioned attributes are the slowest, they show 
almost linear scalability with respect to the cluster size. For range queries against 
Z-ordered attributes we see similar linear scalability. For queries against partitioned 
attributes we do not see this positive scalability effect. However, the query response 
times against partitioned attributes is already below 1 second and hence is hard to 
further improve due to network latencies and thus increased communication costs 
between 4 or 8 worker nodes.

Fig. 5  Response times for 1D point queries (top figure: 1D-PQ) and 1D range queries (bottom figure: 1D-RQ) 
on the synthetic dataset. The cardinality for all attributes is 104 . The queries are of the from WHERE a1 = X, 
where a1 is a non-partitioned, partitioned or Z-ordered attribute, respectively
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The high query performance of the partitioned table can be explained by the fact that 
Spark can take advantage of file-level statistics, indicating which attribute ranges are 
contained in the partition and thus narrowing down the amount of data access during 
query processing (as they are co-located in the same partition folder). Z-ordering, how-
ever, (and especially in the case of range queries) has a disadvantage since rows cannot 
be selected by only looking at partitions containing the queried attribute ranges. Instead, 
every file has to be checked individually.

Experiment 2: Multi-dimensional queries against partitioned attributes In our pre-
vious experiments we showed that partitioning performs better than Z-ordering for 
one-dimensional queries. In our next set of experiments we analyze the performance of 
multi-dimensional conjunctive queries against partitioned attributes.

In particular, we create tables with one, two and four partitioned attributes with attrib-
ute cardinalities of 104 , 102 and 101 , respectively. This means that the cardinality product 
of all partitioned attributes is 104 for all three configurations.

As shown in Fig.  6, for all queries the response times stay below one second, even 
in the case of range queries. In other words, increasing the dimensionality of the que-
ries only marginally increases the response times of queries. In practise, a response time 

Fig. 6  Response times for one- and multi-dimensional point and range queries against partitioned attributes 
on the synthetic dataset. The x-axis indicates the dimensionality of the executed query, i.e. 2D-RQ-AND 
refers to a 2D range query of the form WHERE p1 = X AND p2 = Y 
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below one second is very acceptable. All these queries are very likely limited not by the 
dataset size but by the computational overhead of Spark or the network latency13.

Similar to previous experiments with partitioning, the size of the cluster is not influ-
encing the response time in a significant way.

Experiment 3: Querying high cardinality attributes In our previous experiments we 
used low attribute cardinalities ranging from 102 to 104 . In the next set of experiments 
we evaluate the performance of queries against attributes with high cardinalities. For 
these types of attributes, data partitioning is not feasible anymore14 and Z-ordering is 
the recommended solution.

For our experiments, we perform one- and multi-dimensional point and range que-
ries for one, two and four Z-ordered attributes with cardinalities of 106 . Figure 7 indi-
cates that for such cardinality regions, Z-ordering shows a strong performance especially 
when few attributes are Z-ordered. Labels on the x-axis indicate the query type and the 
table configurations, e.g. “2D-PQ 2Z” refers to a two-dimensional point query against 
two Z-ordered attributes.

Fig. 7  Response times for Z-ordered attributes with cardinality of 106 . For instance, 2Z indicates that two 
attributes were used for Z-ordering. The flash symbol indicates that Spark was unable to create partitions 
using these attribute cardinalities

14  At a cardinality of 106 Spark was unsuccessful in creating partitioned tables leading to an unmanageable amount of 
files and folders.

13  Our experiments showed that even for very small dataset sizes, the minimum query response time of a query is on the 
order of half a second and cannot be further reduced due to Spark-internal overheads.
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Figure 7 further shows deteriorating performance for queries that do not include all 
Z-ordered attributes in their WHERE clause. Let us first focus on the query response 
times of point queries. In particular we analyze the effects of these two Z-ordering strat-
egies 1D-PQ 1Z vs. 1D-PQ 4Z. In the former case, one-dimensional point queries 
are executed using Z-ordering based on one attribute. In the latter case, one-dimensional 
point queries are executed using Z-ordering based on four attributes. We can observe 
that the query response times on 64 CPU-cores are about 8 times higher for 1D-PQ 4Z 
compared to the configuration of 1D-PQ 1Z. The reason is that Z-ordering aligns rows 
maximizing all Z-ordered attributes equally, such that there is a performance drop when 
applying Z-ordering to more attributes than those being used in the query. In summary, 
one-dimensional queries perform better on Z-ordering with one attribute rather than 
four attributes.

Let us now focus on the response times of range queries (see lower part of Fig. 7). We 
can observe that the response times are significantly higher than for point queries. The 
reason is that Z-ordering is very sensitive to the attribute range covered by the query. 
Hence, on average, for range queries a larger portion of the entire index has to be 
scanned as compared to point queries.

Best practices deduced from performance experiments With our experiments we 
showed that optimizing for attributes that are often queried yields substantial perfor-
mance benefits. As such we define the following best practices:

•	 Categorical attributes such as year, month, day or country have a low attribute car-
dinality. For these attributes, partitioning works well and should be used primarily. 
As a general rule of thumb, at a cardinality above 104 one should start to question, if 
partitioning is the right choice.

•	 Continuous attributes such as temperaturevalues typically have high attribute cardi-
nalities and are best suited for Z-ordering.

•	 In general, partitioning is faster than Z-ordering and should be preferred, if the car-
dinality is below 105 . Z-ordering is able to handle high attribute cardinalities where 
partitioning is not an option anymore.

•	 Unlike partitioning, the performance of Z-ordering degrades with multiple attributes 
that are Z-ordered, but not part of a query.

•	 Our performance experiments with real-world data showed similar results and could 
confirm our lessons learned.

In conclusion, the optimal strategy is strongly influenced by the nature of the attributes 
which are more commonly queried, by the characteristics of a typical query workload 
(point or range queries, aggregations, etc.) and by the decision, where performance is 
most critical.

Statistical and machine learning algorithms for intelligent maintenance

Use case description

In this section we focus on a specific use-case for data-driven methods for the detec-
tion of faulty behavior in the laser cutting machine, that can in turn allow for more 
intelligent maintenance measures. In particular, we demonstrate the possibility of 
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early fault detection in the optical system based on sensor data. We then suggest to 
train, validate and deploy the derived detection models in the infrastructure pre-
sented in the previous sections. This use case is currently based on machine data out 
of laboratory experiments rather than field data, but is intended as a proof of concept 
for later implementation with real-time field data collected from a fleet of machines. 
The main purpose of the presented use case is to detect contamination of optical 
components that are likely to lead to reduced production quality of the machine. The 
components can then either be cleaned or exchanged early enough to avoid low qual-
ity production outcomes. To this end we developed two alternative fault detection 
algorithms. The first one uses convolutional neural networks (CNNs) for classification 
of sensor signals into “healthy” and “faulty”. The second algorithm uses conventional 
statistical analysis and signal processing methods in order to construct direct health 
indicators for fault detection.

From the perspective of a machine operator, early fault detection must be accurate. 
Detected faults should correspond to real faults and not mere abnormalities in the data. 
False positives would result in unnecessary service measures, that would reduce the 
availability and therefore the productive use of the machine.

Datasets

We collected laboratory data from 14 different machines. 12 of the machines were 
labelled as healthy and 2 of them as faulty. The implications of a faulty machine are low 
quality production outcomes under certain operational conditions. Clearly, not all oper-
ational conditions have the same impact on the production outcomes. However, the aim 
of the present work is to detect underlying faulty behavior even under conditions which 
might be interpreted as benign. The raw data is obtained with a maximal time resolution 
of 1msec and is then down sampled to a time resolution of 100msec. We extracted input 
sequences of length 120 (corresponding to 12 seconds) with partial overlap (shifted by 
200msec). These parameters were selected to optimally capture the time correlations of 
the input series and to maximally augment the data. This yields a total amount of train-
ing sequences of 38,990 and a total amount of testing sequences of 304,507. The purpose 
here is to demonstrate that there is no need in very large amounts of training data to 

Fig. 8  Convolutional neural network architecture for machine classification
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obtain good results on a large and diverse test set, as long as the training data is repre-
sentative enough.

Method 1: Machine classification based on convolutional neural networks

We construct a CNN for the binary classification of multivariate sequences (time series) 
into “healthy” and “faulty”. The goal is to identify faulty machines, which are defined as 
machines with more than 90% faulty samples. The CNN receives multivariate time series 
data as an input and delivers a binary output: healthy or faulty for each input sample.

*Network architecture We used a multivariate input sequence with 3 input variables, 
chosen based on engineering domain knowledge (see Fig. 8). The input is fed into three 
consecutive convolutional hidden units. Each unit contains a 1D convolutional layer with 
10 filters, a dropout layer classifier and a batch normalization layer. The binary fully con-
nected layer contains 80 units. For the implementation we used Keras of Tensorflow15.

The choice of a CNN architecture is done in order to exploit time dependent features 
of the sensor data. Comparing the results to a standard fully connected neural network 
(a Multilayer Perceptron) indicated a clear superiority of the CNN. A valid alternative 
would be Recurrent Neural Networks (RNNs). However, they require a more elaborate 
hyperparameter search and have been shown to perform similarly or even worse than 
CNNs for sequence modelling [31].

Training For training we used time sequences out of healthy as well as faulty machines. 
In each experiment we used data from only one of the two faulty machines as well as 
4 healthy machines for training (“training machines”). The rest of the machines were 
used exclusively for testing (“testing machines”). We randomly selected parts of the data 
of the training machines for training and used the rest for validation and testing. As a 
result, our training data contains sequences out of 5 different machines and our test data 
contains sequences out of all 14 machines; unseen data from the training machines and 

Table 2  CNN classification performance

Machine TN FN TP FP Accuracy

1 10963 0 0 0 1

2 13133 0 0 0 1

3 8817 0 0 0 1

4 7502 0 0 0 1

5* 0 2978 90876 0 0.968

6 7690 0 0 0 1

7 22899 0 0 21 0.999

8 28724 0 0 11 0.999

9 52533 0 0 0 1

10 3636 0 0 504 0.878

11* 0 184 23556 0 0.992

12 14933 0 0 0 1

13 5491 0 0 31 0.994

14 9992 0 0 33 0.997

15  https​://keras​.io/.

https://keras.io/
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unseen data from the testing machines. The training data was then balanced to contain 
an equal number of sequences out of healthy and faulty machines.

Results As explained above, we tested the performance of the classifier on two differ-
ent datasets. The first one is data from the same machines as in the training set and the 
second is mixed data out of the 5 training machines and the 9 machines not used for 
training.

Table 2 describes the results for the mixed test data. Note that machines 5 and 11 are 
the two faulty machines. Part of the data from machine 11 was used for training and the 
rest for testing. The healthy training data was gathered from machines 2, 4, 6 and 14.

The table shows the true negatives (TN), false negatives (FN), true positives (TP), 
false positives (FP) and the accuracy of our CNN. From the table it can be seen that all 
healthy test machines were identified as healthy with an accuracy higher than 0.878, that 
is with detection rate of more than 87.8% healthy samples. Moreover, we calculated the 
total precision, recall and accuracy rates over the entire data, gathering results form all 
machines. These are 0.995, 0.973 and 0.988, respectively. The accuracy rate means that 
close to 99% of the faulty data was identified as such. Hence, we conclude that the CNN 
was capable of identifying the faulty test machine based on data from another faulty 
machine.

In summary, the classification performance of the CNN is very high, with no need 
for feature engineering. However, the disadvantage of this method for fault detection 
is the lack of transparency of the results. In a future research we investigate the feature 
maps which dominate the classification in order to elucidate the underlying classifica-
tion mechanism.

Method 2: Machine classification based on statistical signal analysis

In this sub-section we perform an analysis using a simpler statistical method than 
CNNs, which we conducted with the same dataset, yielding a good performance in 
detecting faulty behavior of machines. In particular, we analyze the time series data of 
the 14 machines mentioned above in order to identify signatures which are unique for 
faulty machines and set a threshold for the detection of such faults.

Method We use the same dataset as described above, out of 14 different machines 
operating under a set of operating conditions. Here we perform a pre-processing of the 
data in order to select a subset of the operating conditions under which we then perform 
feature extraction for the construction of health indicators.

After an inspection of the data we observe that the output signal of one of the sen-
sors can be used to construct health indicators for the machine. We denote this signal 
by S(t). We observe that a subset of process parameters can be pre-selected such that 
production processes under these conditions can be used for early fault detection before 
the machine suffers from downtime. We show below that selecting data out of such pro-
cesses allows us to distinguish faulty from healthy machines. We can then detect these 
machines as faulty based on cutting processes in which the production outcomes are not 
yet deteriorated in quality. The pre-selection step of the data is implemented in practice 
using the query techniques that are mentioned above in “Analysis of query performance 
in Big Data architecture” section.
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The raw signal data S(t) is pre-selected and smoothed. On the smoothed data we run 
a sliding window robust linear regressor to extract the local slope. Next we perform 
counting statistics of the slopes within longer time windows, counting the fraction 
of slopes that exceed a certain slope threshold. This fraction is our health indicator. 
Using data out of faulty as well as healthy machines we could determine and validate 
a threshold fraction 0.5 per time window, above which a machine is declared faulty.

The smoothing and windowed operations are again implemented with the help of 
an efficient query technique as described in “Query processing and optimization” 
section.

Results: Figure  9 displays two examples of data out of a healthy and a faulty 
machine. The two upper panels display processes of a healthy machine. Figure  9a 
shows the raw sensor data and Fig.  9b displays the calculated health indicator as a 

Fig. 9  Fault detection using statistical analysis. a Sensor signal of healthy machine. b Health indicator for 
healthy machine. c Sensor signal for faulty machine. d Health indicator for faulty machine. Red dashed line 
indicates the detection threshold
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function of time for this machine. Indeed, during all measurements we observed no 
time windows with a high fraction of high slopes. Therefore, in this case no fault iden-
tification should be issued.

In contrast, Figure 9c, d show the sensor signal and the health indicator for a faulty 
machine. Here the health indicator, corresponding to the high slope fraction, crosses the 
threshold level several times during the measurement. This distinction between faulty 
and healthy machines repeats in all 14 machines that were examined in this experiment. 
The two faulty machines exhibit time slots with high fractions of high slopes. The detec-
tion threshold is therefore crossed repeatedly. In all other machines the threshold was 
never crossed. Based on the present experiment we conclude that the fraction of high 
slope data can be used as a health indicator. Note that this feature is independent of the 
absolute sensor values, but rather reflects their time dependence.

It is worth noting, that we deliberately avoid detecting faults based on the absolute 
level of the sensor reading S(t). The reason is, that despite the examples shown in the 
figure, there are cases of high sensor values that are known to be benign, that is, do not 
lead to reduced production outcomes. Therefore, faulty behavior cannot be detected by 
merely setting a threshold on the raw sensor reading.

Conclusions We analysed two possible intelligent algorithms for fault detection in the 
optical system. Both were capable of identifying clearly the two faulty machines out of a 
set of 14 machines. The first, based on CNN, has the advantage of not relying on a pre-
processing step of feature engineering. However, it is hard to interpret and is prone to 
be sensitive to the selection of training data, especially under variable operating condi-
tions. The second, based on standard statistical analysis, requires the manual extraction 
of features but is easily interpretable. Moreover, it has the potential to be robust and 
applicable to a large number of machines under diverse operating conditions. Therefore, 
in practical applications the second algorithm is often preferred.

Lessons learned and applying best practices

In the preceding proof-of-concept for the fault detection model we were able to verify 
that our algorithms can learn from data stemming from multiple machines. Moreo-
ver, since the input parameter space and the variable domain of operating conditions is 
huge, it is beneficial for the performance of the algorithms to include data from as many 
machines as possible for model training. In particular, there is strong evidence, that it 
is impossible to collect a representative dataset from a single machine in economically 
meaningful time.

Operating a machine learning model for a complex condition monitoring problem 
usually includes feature engineering of a vast space of operating conditions through-
out the entire asset life. To make it even worse, these operating conditions are partly 
dependent on the states of contributing subsystems, that deteriorate over time. Last but 
not least, the components may be replaced from time to time. If those replacements are 
performed with a new part of identical design, the major effort is to collect properly 
labeled data. However, if a revised design with a different data signature is put in place, 
the machine learning models might need to be completely retrained from scratch.
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How should these machine learning models be deployed as part of our overall system 
architecture? In order to enable a short-notice operator alerting system to prevent emi-
nent quality loss in a productive service support system for a fleet of machines, the fol-
lowing tasks are required:

•	 Periodic re-training and validation of the fault classification model on the entire fleet 
data.

•	 Verification of the defined business objectives making use of the precision, recall and 
accuracy metrics of the algorithms.

•	 Model deployment in a close to real-time data processing pipeline.

In our scenario, the machine learning models will be deployed and used on the incoming 
data stream. Upon a positive early fault detection on the continuous data received, the 
operator of the respective machines will be notified and preventive service measures can 
be undertaken.

Conclusion
In this paper we presented the design and implementation of an end-to-end Big Data 
architecture for a real-world use case of intelligent maintenance of a fleet of laser cutting 
machines.

First, we presented a Big Data architecture that enables both batch and stream pro-
cessing. In particular, we focused on the important aspect of how to design the system to 
be resilient to schema changes due to regular software updates of a fleet of laser cutting 
machines.

Next, we analyzed various physical design choices to optimize query processing in a 
Big Data architecture. In particular, we studied the impact of various data partitioning 
strategies as well as Z-ordering on the performance of multi-dimensional query process-
ing. The results show that data partitioning using Delta Lakes with a modest number of 
partitions is often the best strategy. The results also demonstrate that Z-ordering typi-
cally does not perform better than data partitioning. However, Z-ordering is a decent 
alternative design choice for high-cardinality attributes where data partitioning would 
break due to a high number of physical files.

Finally, we evaluated two different approaches for a specific use case of health moni-
toring. The first approach uses machine learning techniques based on convolutional 
neural networks, while the second approach uses standard statistical and signal pro-
cessing methods. Our results demonstrate that standard statistical methods are the bet-
ter design choice for our use case due to their robustness towards variable operating 
conditions.
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