
Towards Programmable Chemistries?

Dandolo Flumini1, Mathias S. Weyland1, Johannes J. Schneider1, Harold
Fellermann2, and Rudolf M. Füchslin1

1School of Engineering, Zurich University of Applied Sciences, Technikumstrasse 9,
8400 Winterthur, Switzerland, {flum,weyl,scnj,furu}@zhaw.ch

2 School of Computing, Newcastle University, Newcastle-upon-Tyne, NE4 5TG,
harold.fellermann@ncl.ac.uk

Abstract. We provide a practical construction to map (slightly modi-
fied) GOTO-programs to chemical reaction systems. While the embed-
ding reveals that a certain small fragment of the chemtainer calculus is
already Turing complete, the main goal of our ongoing research is to
exploit the fact that we can translate arbitrary control-flow into real
chemical systems. We outline the basis of how to automatically derive
a physical setup from a procedural description of chemical reaction cas-
cades. We are currently extending our system in order to include basic
chemical reactions that shall be guided by the control-flow in the future.

Keywords: Programmable Chemistry · Compartmentalization · Bio-
chemical Engineering · Theoretical Computer Science

1 Introduction

In order to “program” chemical reaction systems, we provide a construction to
map procedural control-flow to chemical reaction systems.

The computational framework that we use to represent arbitrary control flow
is (slightly modified) GOTO programs. In section 3 we give a short introduction
to the GOTO formalism. The results presented in this section are standard. The
related result presented in Lemma 1 (section 4) is also considered to be known;
however, no corresponding reference was found.

The system to represent chemical reaction systems is the chemtainer calculus.
In section 2, we give a short introduction to the relevant notions of the formalism.
For a more detailed account, the reader is referred to [16].

Section 4 is the main contribution of the present work. We discuss the actual
embedding of arbitrary GOTO programs into the chemtainer calculus. We also
discuss a variation of the construction that solves some issues that render the
original embedding unsuitable for practical use in a “programmable chemistry”
setting. All of the work presented is original research.

In section 5 we discuss our results, ongoing research, and future directions.

? Funded by Horizon 2020 Framework Programme of the European Union (project
824060)

This version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature’s AM terms of use, but is not the Version of
Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: https://doi.org/10.1007/978-3-030-45016-8_15

https://doi.org/10.1007/978-3-030-45016-8_15
https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms

2 D. Flumini et al.

1.1 Related Work

Chemical reaction systems are formally described by chemical reaction networks
(CRNs) [1, 2]. They can be used to facilitate the analysis of artificial chemistries
[3] and real chemistries. To name a few applications, CRNs have been used to
predict reaction paths [4], to model spontaneous emergence of self-replication
[5], to synthesize optimal CRNs from prescribed dynamics [6], and to design
asynchronous logic circuits [7].

In the European Commission-funded project ACDC, we are developing a
programmable artificial cell with distributed cores. An important feature of the
systems studied in the context of ACDC is compartmentalization. CRNs alone
are not suitable to model compartmentalization. However, formalisms with the
ability to express compartmentalization have been developped [8–16]. Our sys-
tems can be described particularly well with the chemtainer calculus [16], one
of the aforementioned formalisms. Thus, the chemtainer calculus is chosen for
emulating computations with chemical reaction systems in the present work.

2 The Chemtainer Calculus

As discussed in the previous section, the chemtainer calculus is a formal calculus
capable of describing compartmentalized reaction systems [16]. In this section,
the subset of chemtainer calculus necessary for the emulation of computations
with chemical reaction systems is introduced. It consists of the following objects:

– Molecules: Objects that can undergo reactions as specified in a CRN. Cap-
ital letters (A,B,C, ...a) are used to denote molecules.

– Chemtainers: Compartments that contain objects (including other chem-
tainers). The symbols $ and % are used to indicate objects enclosed in
chemtainers.

– Address tags: Tags that are in solution or attached to a chemtainer. Lower
case greek letters (τ, σ, ...) are used to denote tags.

The notion of space is implemented with discrete locations (x, y,mi, ...) at
which objects reside. A number of instructions are used to alter the system state.
They are introduced below by examples:

– feed(x, A, 3): A chemtainer containing 3 instances of molecule A is fed into
location x. Starting from an empty state, this yields:

∅ → x : $3A%

– feed tag(x, σ, 1): One tag with address σ is fed into location x. Again
presuming an empty initial state, the instruction yields:

∅ → x : 1σ

Towards Programmable Chemistries 3

– tag(x): Decorate chemtainer in location x with the tags surrounding the
chemtainer:

x : 1σ + $3A%→ x : 1σ$3A%

– move(σ, x, y): Move any tag σ (including potentially attached chemtainers)
from location x to location y:

x : 1σ$3A%→ y : 1σ$3A%

– fuse(x): Fuse chemtainers in location x:

x : $2A% + $2B%→ x : $2A+ 2B%

– flush(x): Remove any objects from location x:

x : $2A+ 2B%→ x : ∅

– burst(x): Burst chemtainers in location x, releasing any contained molecules
and leaving behind empty chemtainers:

x : $2A+ 2B%→ 2A+ 2B + $%

Chemtainer programs are a sequence of such instructions that alter the sys-
tem state.

3 GOTO-Programs

We work with a slight variation of the standard syntax of GOTO programs as
presented in [17]. Our syntactic building blocks are as follows:

– Countably many variables x0, x1, x2, . . . ,

– literals 0, 1, 2, . . . for nonegative integers,

– markers M1,M2,M3, . . . ,

– separator symbols =, :,

– operator and relationsymbols +,−, >,

– and keywords GOTO, IF,THEN,HALT.

Instructions of GOTO-programs take one of the following forms:

– Assignments: xi := xi ± c where i ∈ N, c is a literal (for a nonnegative
integer), and ± stands for either + or −.

– Jumps: GOTO Mk where k ∈ N
– Conditional Jumps: IF xi > 0 THEN GOTO Mk where i, k ∈ N
– Halt instruction: HALT

4 D. Flumini et al.

A GOTO-program is a finite sequence of instructions, each of which is given
with a unique label of the form Mi where i ∈ N. In order to enhance readability,
we will generally write up GOTO-programs in vertical order

M1 : I1

...

Mk : Ik.

In section 4, we observe how every computation of a GOTO-program can be
“emulated” by the state-transitions of a suitably constructed chemical reaction
system. As a result, we obtain that a suitable chemical reaction system can
emulate every computation (in the sense of Turing completeness).

To match GOTO-program computations with state-transitions of a chemical
reaction system, we introduce an operational semantics for the GOTO language
that captures the idea of a global state being mutated while instructions are
executed sequentially.

The state of a GOTO-program-computation is completely determined by
a marker (stating the “current” instruction) and the values held by relevant
variables (i.e. all variables occurring in the program at hand). Thus, for a given
GOTO-program P with variables x0, . . . , xn and markers M1, . . . ,Mk, the state
of a computation can be modelled as a tuple (X, y) where X ∈ {M1, . . . ,Mk,⊥}
indicates the “current” instruction and y ∈ Nn+1 holds the values stored in
the variables x0, . . . , xn. Cases where X = ⊥ indicate that the computation
has halted. The (deterministic) operational semantics is given by the following
transition relation:

Let P be any GOTO-program with variables among x0, . . . , xn, let y0, y1, . . .
range over natural numbers, and let lc stand for the literal associated with a
natural number c.

– If Mi : xr := xr ± lc is part of P , and if the following line is labelled with
marker Mk, then

(Mi, y0, . . . , yr, . . . , yn)
P−−−→

{
(Mk, y1, . . . , 0, . . . , yn) if yr ± c ≤ 0

(Mk, y1, . . . , yr ± c, . . . , yn) otherwise.

– If Mi : xr := xr ± lc is the last line of P , then

(Mi, y0, . . . , yr, . . . , yn)
P−−−→

{
(⊥, y1, . . . , 0, . . . , yn) if yr ± c ≤ 0

(⊥, y1, . . . , yr ± c, . . . , yn) otherwise.

– If Mi : GOTO Mk is a line of P , then

(Mi, y0, . . . , yn)
P−−−→

{
(Mk, y0, . . . , yn) if Mk is a label in P

(⊥, y0, . . . , yn) otherwise

Towards Programmable Chemistries 5

– If Mi : IF xj > 0 THEN GOTO Mk is a line in P , and if yj > 0, then

(Mi, y0, . . . , yn)
P−−−→

{
(Mk, y0, . . . , yn) if Mk is a label in P

(⊥, y0, . . . , yn) otherwise.

– If Mi : IF xj > 0 THEN GOTO Mk is a line in P , and if yj = 0 and the
following line is labelled with marker Mk, then

(Mi, y0, . . . , yn)
P−−−→ (Mk, y0, . . . , yn)

– If Mi : IF xj > 0 THEN GOTO Mk is the last line in P , and if yj = 0, then

(Mi, y0, . . . , yn)
P−−−→ (⊥, y0, . . . , yn).

– If Mk : HALT is a line in P , then

(Mk, y0, . . . , yn)
P−−−→ (⊥, y0, . . . , yn)

– No other cases are considered.

Further, we write x
P, 1−−−→ y if x

P−−−→ y, and x
P, n+1−−−−−→ y if there is a state z

such that x
P, n−−−→ z and z

P−−−→ y. Since labels in G-programs are unique, the

resulting transition system is deterministic in the sense that x
P−−−→ y∧x P−−−→ y′

implies y = y′ for all states x, y and y′. Therefore it is meaningful to write xP,n

for the unique state of P that satisfies x
P, n−−−→ xP,n.

Based on the given transition relation we can introduce the usual denotational
semantics for GOTO-programs; for every GOTO-program P and every k ∈ N
the (partial) function [P, k] : Nk → N is given from:

[P, k](y1, . . . , yk) = y ⇔ ∃n, z((m, (0, y1, . . . , yk,0))P,n = (⊥, (y, z)) (1)

where m denotes the marker of the first line in P and 0 represents a sequence of
zeros, so that all variables in P are initialized properly. The equivalence stated
in (1) means that we evaluate a GOTO program P as a k-ary [P, k] function as
follows:

– Initialize the variables x1, . . . , xk with the input values (additional variables
of P are initialized with 0).

– Execute the program P starting with the first instruction and according to
the state transitions given above.

– If the execution halts, read the variable x0 to obtain the output of the func-
tion [P, k] for the given input vector.

It is well known that GOTO is Turing complete with respect to this semantics
[17].

6 D. Flumini et al.

4 Emulating Computations with Chemical Reaction
Systems

In this section, we rely on the notions of artificial cellular matrices, the chem-
tainer calculus as introduced in section 2, and chemtainer programs. We refer
the reader to [16] for further details.

We demonstrate how given any GOTO-program P , we can construct an
artificial cellular matrix M together with a chemtainer program to simulate P .
In a first step, we will show how to match any state x of a GOTO-program to
a global state pxq of the chemtainer calculus, and then we will describe how to
translate the GOTO program P into a corresponding chemtainer program 〈〈P 〉〉,
so that all state transitions of P are simulated in M (Proposition 1).

4.1 Matching States of GOTO-Program-Computations with Global
States of the Chemtainer Calculus

For a givenGOTO-program P with variables x0, . . . , xn and markersM1, . . . ,Mk,
we identify states (Mi,y) of the computations of P with global states p(Mi,y)q
of the chemtainer calculus as follows: We use tags τ0, . . . , τn, a special “control-
flow” tag σ, and locations m̃0,m1, m̃1 . . . ,mk, m̃k as well as a special location
halt to stipulate

p(Mi,y)q =

m̃0 : 0 ◦ m̃1 : 0 ◦m1 : 0 ◦ · · · ◦mi : τy0

0 . . . τyn
n $0% ◦ · · · ◦mk : 0 ◦ halt : 0

and

p(⊥,y)q = m̃0 : 0 ◦ m̃1 : 0 ◦m1 : 0 ◦ · · · ◦mk : 0 ◦ halt : τy0

0 . . . τyn
n $0%

where τyi

i stands for the yi fold repetition of τi. An illustration of the correspon-
dence is shown in figure 1.

m̃0 m̃1

m1

m̃i

mi

m̃k

mk halt

τ2
στ3

τ3
τ0
τ2 τ2

Fig. 1. An illustration of the state (Mi, 1, 3, 2, 0, . . . , 0) of a GOTO-program-
computation interpreted as a global state of the chemtainer calculus.

Towards Programmable Chemistries 7

4.2 The Construction of the Chemtainer Program

The mapping of states defined in section 4.1 now enables us to specify a construc-
tion enabling us to translate any GOTO program P to a chemtainer program
〈〈P 〉〉 that emulates the computation of P . Our general strategy is first to asso-
ciate lines (i.e., tagged instructions) Mj : Ij of the GOTO-language to simple
chemtainer programs 〈Mj : Ij〉, and then to show how the mapping can be
extended to translate complete GOTO programs consisting of several lines of
code.

The basic chemtainer programs 〈Mj : Ij〉 are specified by case analysis as
follows:

〈Mj : xi := xi + lc〉 = feed tag(mj , τi, c); tag(mj)

〈Mj : xi := xi − lc〉 = feed tag(mj , τ̄i, c)

〈Mj : GOTO Mi〉 = move(σ,mj , m̃i−1)

〈Mj : IF xr > 0 THEN GOTO Mi〉 = move(τr,mj , m̃i−1)

〈Mi : HALT〉 = move(σ, i, halt).

Next, we translate GOTO programs that are composed of several instructions.
In favor of a more concise description, we will here and henceforth assume
(without loss of generality) that GOTO program-lines are marked in order
M1,M2,M3, . . . , and that jump instructions may only lead to markers that
are present in the program at hand. We thus assume, that the given program P
is of the form

M1 : I1

...

Mk : Ik,

and we stipulate 〈〈P 〉〉 for the following chemtainer program:

〈M1 : I1〉;
〈M2 : I2〉;

:

〈Mk : Ik〉;
move(σ,m1, m̃1); . . . ; move(σ,mk, m̃k);

flush(m1); . . . ; flush(mk)

move(σ, m̃0,m1); move(σ, m̃1,m2); . . . ; move(σ, m̃k, halt);

Now, given a global state S of the chemtainer calculus, we write SP,n for
the global state (in order to obtain determinism, we here need to restrict the

8 D. Flumini et al.

original rule number 56 of the chemtainer calculus (as introduced in [16]) to only
be admissible if the respective location is empty.) that results from S when the
program 〈〈P 〉〉 is applied exactly n times. In the next lemma, we state that the
correspondence declared in section 4.1 is a simulation relation.

Proposition 1. Let P be any GOTO-program of the form

M1 : I1

...

Mk : HALT

such that all jump instructions in P refer to a marker M1, . . . ,Mk. If x is a
state in a computation of P , then for all n ∈ N,

pxP,nq = pxq〈〈P 〉〉,n.

Proof. Let P and x be as stated in the claim. Applying induction on n, we only
need to prove that pxP,1q = pxqP,1. Let x be

(Mi,y)

where y = y0, . . . , yn. The proof proceeds by case distinction on the instruction
Ii. We can assume that Ii is not the last instruction in P if Ii is not the HALT
instruction.

– If Ii is xj := xj + lc, then xP,1 is (Mi+1, y0, . . . , yj + c, . . . , yn) and thus

pxP,1q = m̃0 : 0 ◦m1 : 0 ◦ m̃1 : 0 ◦ . . . ◦mi+1 : τy0

0 . . . τ
yj+c
j

. . . τyn
n $0% ◦ · · · ◦mk : 0 ◦ halt : 0.

When running 〈〈P 〉〉 with initial state

pxq = m̃0 : 0 ◦m1 : 0 ◦ m̃1 : 0 ◦ . . .
◦mi : τy0

0 . . . τyn
n $0% ◦ · · · ◦mk : 0 ◦ halt : 0

the right number of tags are attached to the chemtainer in the “first part” of
the program, and the chemtainer is relocated to mi+1 in two steps resulting
in the same global state

pxq〈〈P 〉〉,1 = m̃0 : 0 ◦m1 : 0 ◦ m̃1 : 0 ◦ · · · ◦mi+1 : τy0

0 . . . τ
yj+c
j

. . . τyn
n $0% ◦ · · · ◦mk : 0 ◦ halt : 0.

– The case where Ii is xj := xj − lc works essentially like the previous case,
with the difference that no tagging instruction is introduced and the re-
leased tags bind to the complementary tags (that are already attached to
the chemtainer).

Towards Programmable Chemistries 9

– If Ii is IF xj > 0 THEN GOTO Mr and yj = 0, then the state xP,1 is
(Mi+1,y) and thus pxP,1q is

m̃0 : 0 ◦m1 : 0 ◦ m̃1 : 0 ◦ · · · ◦mi+1 : τy0

0 . . . τyn
n $0% ◦ · · · ◦mk : 0 ◦ halt : 0

On the other hand, if we run the chemtainer program 〈〈P 〉〉 with starting
state

pxq = m̃0 : 0◦m1 : 0◦m̃1 : 0◦ · · · ◦mi : τy0

0 . . . τyn
n $0%◦ · · · ◦mk : 0◦halt : 0,

we note that since yj = 0 there is no τj on the surface of the chemtainer,
thus no transition in the first “half” of 〈〈P 〉〉 is effective at all. Thus, the only
instructions that have an impact on the global state pxq are move(σ,mi, m̃i)
and move(σ, m̃i,mi+1), resulting in the global state pxqP,1 = pxP,1q.

– If Ii is IF xj > 0 THEN GOTO Mr and yj > 0, then the state xP,1 becomes
(Mr,y) (we assume that the marker Mr exists in P .), and thus

pxP,1q =

m̃0 : 0 ◦m1 : 0 ◦ m̃1 : 0 ◦ · · · ◦mr : τy0

0 . . . τyn
n $0% ◦ · · · ◦mk : 0 ◦ halt : 0.

Accordingly, if we run the chemtainer-program with initial state pxq, the
instructions of 〈〈P 〉〉 that actually alter the global state are 〈Mi : Ii〉 i.e.
move(τj ,mi, m̃r−1) and move(σ, m̃r−1,mr), thus we obtain

pxq〈〈P 〉〉,1 =

m̃0 : 0 ◦m1 : 0 ◦ m̃1 : 0 ◦ · · · ◦mr : τy0

0 . . . τyn
n $0% ◦ · · · ◦mk : 0 ◦ halt : 0

as desired.

– Nonconditional jump instructions are handled exactly like conditional jump
instructions where the condition is satisfied.

– If Ii is HALT , then xP,1 is (⊥,y) and thus pxP,1q is

m̃0 : 0 ◦ m̃1 : 0 ◦m1 : 0 ◦ · · · ◦mk : 0 ◦ halt : τy0

0 . . . τyn
n $0%

Since the only relevant transition in 〈〈P 〉〉 when applied to

pxq = m̃0 : 0 ◦m1 : 0 ◦ m̃1 : 0 ◦ . . .
◦mi : τy0

0 . . . τyn
n $0% ◦ · · · ◦mk : 0 ◦ halt : 0

is 〈Mi : Halt〉 = move(σ, i,halt) the states pxP,1q and pxq〈〈P 〉〉,1 coincide.

As a corollary we obtain that any (Turing) computable function can be eval-
uated by a suitable artificial cellular matrix together with an expression of the
chemtainer calculus.

10 D. Flumini et al.

Corollary 1. Given any recursive funtion f : Nk → N, then an artificial cellular
matrix, a natural number n and a chemtainer program P exist such that

(m̃0 : τy1

1 . . . τyn
n $0% ◦m1 : 0 ◦ · · · ◦mk : 0 ◦ halt : 0)P,n

= · · · ◦ halt : τ
f(y1,...,yn)
0 . . .$0%

holds whenever f(y1, . . . , yn) is defined.

Proof. This follows from Proposition 1 and equation 1.

4.3 Practical Considerations

While theoretically sound, we identified two main issues of our construction that
make it unsuitable for practical use in a “programmable chemistry” setting,
both of which have to do with how we encode natural numbers in quantities of
molecules:

– If a large number of variables occur in a program, then there might not be
a distinct (suitable) molecule for each variable to encode. We call this the
“finiteness of molecules problem”.

– It is generally infeasible to exactly count numbers of molecules (which means
that we cannot effectively read or write variables). We call this the “counting
problem”.

We can solve the finiteness problem by pointing out that there is a definite
natural number N0 such that every GOTO-computation can be realized by a
GOTO-program with no more than N0 many variables. This is equivalent to the
statement of the next lemma.

Lemma 1. A natural number N0 exists, such that for every GOTO program
P there is a GOTO program P ′ with no more than N0 many variables and
[P, 1] = [P ′, 1].

Proof. Since the GOTO language is Turing complete, a GOTO program I exists,
such that for a suitable encoding # of GOTO programs the equation

λx.[I, 2](#A, x) = [A, 1]

holds for every GOTO program A. Thus, given any GOTO program P a suitable
GOTO program P ′ that satisfies the claim is given from

Ma : x2 := x1 + l0;

Mb : x1 := l#P + l0;

I

where the markers Ma and Mb do not occur in I.

Towards Programmable Chemistries 11

In order to solve the counting problem, we have to modify our construction
slightly. Since exactly counting the numbers of molecules is not feasible, it is
not suitable to represent integer values by exactly matching numbers of specific
tags on the surface of a chemtainer. It is, however, simple to measure concen-
trations and thus to decide whether the concentration of a molecule is “high” or
“low” respectively. If not integer values, this enables us to code boolean values
effectively. The main idea is as follows:

Gbool-programs are obtained by restricting constant and variable values in
GOTO-programs to 0 or 1 respectively. In contrast to our first embedding, if
a variable xi holds the value 1, this is not translated in the sense that there is
exactly one tag τi on the surface of some vesicle, but rather that there are many
i.e., that the vesicles surface is “covered” with corresponding tags. Accordingly,
states of Gbool-program computations are identified with global states of the
chemtainer calculus similar as in section 4 but the τyk

k ’s stand for a very short
string of τk if yk = 0 and a very long string of τk otherwise. Similar to the
situation shown in figure 1, the state (Mi, 0, 1, 0, 1, 1, 0, 0, 0, 0) is represented by
a chemtainer in location mi with its surface populated by many σ, τ1, τ3 and τ4
tags and none or very few further tags.

The construction of simple chemtainer programs to emulate labeled instruc-
tions of Gbool-programs then essentially works as with GOTO-programs and is
given from

〈Mj : xi := xi + c〉 =

{
feed tag(mj , τi,∞); tag(mi) if c = 1

ε otherwise

〈Mj : xi := xi − c〉 =

{
feed tag(mj , τ̄i,∞); tag if c = 1

ε otherwise

〈Mj : GOTO Mi〉 = move(σ,mj , m̃i−1)

〈Mj : IF xr > 0 THEN GOTO Mi〉 = move(τr,mj , m̃i−1)

〈Mi : HALT〉 = move(σ, i, halt)

where feed tag(mj , τi,∞) means that the location mj is flooded with a non-
specific but abundant number of τi tags. The embedding of a Gbool program into
the chemtainer calculus remains exactly as in the case of GOTO programs.

5 From a Practical Embedding Towards a Higher Level
Programming Language for Chemical Reaction Control

Thus far, we have shown how to map modified GOTO-programs to chemtainer
systems and how those systems can simulate the computation of programs. While
these embeddings reveal that the chemtainer calculus is indeed Turing complete,
this does not come to a great surprise. However, our constructions are explicit;
they constitute an algorithm that translates given programs to actual chem-
tainer systems that can be executed chemically. In that sense, we have outlined

12 D. Flumini et al.

the construction of a very simple chemical compiler to capture the control-flow
of a simplified programming language in a setup of artificial cellular matrices.
Our current focus is now on adding proper chemical operations in the sense of
a library to our framework and to continue improving our system to denote in-
tended chemical reactions and products in a more declarative manner. In terms
of semantics, we are working on a probabilistic interpretation to capture the
nature of chemical reaction systems more accurately.

The embedding we have shown in this work is far away from what can be
done in a laboratory. Nevertheless, we claim that our work has some practical
implications. From a mathematical perspective, the presented embedding is a
solid starting point for further developments. Solid because Turing complete-
ness allows referring to a large body of well–established results. Adding further
functions will not change the property of Turing completeness, but only facil-
itate the implementation (additional functions may be chosen with particular
attention to chemical practicability). We aim at a bi-directional way of inspira-
tion. Mathematical consideration may suggest specific functions to be of high
usability (e.g., because they facilitate compilation). It is then a question for
chemistry whether these functions can be implemented. Going in the other di-
rection, biology provides us with sophisticated mechanisms, e.g. for the synthesis
of branched oligosaccharides [18]. Given a mathematical framework, one may ask
how to translate such evolved functions into a formal framework and to what
extent they offer general tools.

One may even go a step further. In this work, we emphasize Turing complete-
ness. Comparing our embedding to what one finds in biology may shed light on
the role of Turing completeness. We don’t assume biological systems to exhibit
specific mathematical properties; it is, however, of interest to analyze in what
respect biological process control differs from the ideal one has constructed in
computer science.

Finally, we highlight the difference between procedural and declarative lan-
guages. The presented embedding follows the procedural paradigm. However,
chemical kinetics is, by its very nature a prime example for a declarative lan-
guage with a semantics that can be simulated by the Gillespie algorithm [19][20].
We claim that further progress towards the understanding of biological processes
and chemical process control has to include a shift from the procedural to the
declarative point of view in order to take account of the fundamental nature of
chemistry.

References

1. Feinberg, M.: Some recent results in chemical reaction network theory, In Patterns
and dynamics in reactive media, Springer, New York, NY, 1991.

2. Banzhaf, W., Yamamoto, L: Artificial chemistries, MIT Press, 2015.
3. Dittrich, P., Ziegler, . & Banzhaf, W.: Artificial chemistries – a review, Artificial

life, 7(3), 2001.
4. Kim, Y., Kim, J. W., Kim, Z. & Kim, W. Y: Efficient prediction of reaction paths

through molecular graph and reaction network analysis, Chemical science, 9(4), 2018.

Towards Programmable Chemistries 13

5. Liu, Y., Sumpter, D. JT: Mathematical modeling reveals spontaneous emergence
of self-replication in chemical reaction systems, Journal of Biological Chemistry,
293(49), 2018.

6. Cardelli, L., Češka, M., Fränzle, M., Kwiatkowska, M., Laurenti, L., Paoletti, N.
& Whitby, M.: Syntax-guided optimal synthesis for chemical reaction networks, In
International Conference on Computer Aided Verification, Springer, Cham, 2017.

7. Cardelli, L., Kwiatkowska, M. & Whitby, M.: Chemical reaction network designs for
asynchronous logic circuits, Natural computing, 17(1), 2018.

8. Nardin, C., Widmer, J., Winterhalter, M. & Meier, W.: Amphiphilic block copolymer
nanocontainers as bioreactors, The European Physical Journal E, 4(4), 2001.

9. Noireaux, V. & Libchaber, A.: A vesicle bioreactor as a step toward an artificial cell
assembly, Proceedings of the National Academy of Sciences, 101(51), 2004.

10. Roodbeen, R. & Van Hest, J. C.: Synthetic cells and organelles: compartmental-
ization strategies, BioEssays, 31(12), 2009.

11. Baxani, D. K., Morgan, A. J., Jamieson, W. D., Allender, C. J., Barrow, D. A.
& Castell, O. K.: Bilayer Networks within a Hydrogel Shell: A Robust Chassis for
Artificial Cells and a Platform for Membrane Studies, Angewandte Chemie Inter-
national Edition, 55(46), 2016.

12. Li, J. & Barrow, D. A.: A new droplet-forming fluidic junction for the generation
of highly compartmentalised capsules, Lab on a Chip, 17(16), 2017.

13. Păun, G.: Computing with membranes, Journal of Computer and System Sciences,
61(1), 2000.

14. Regev, A., Panina, E.M., Silverman, W., Cardelli, L. & Shapiro, E.: BioAmbients:
an abstraction for biological compartments, Theoretical Computer Science, 325(1),
2004.

15. Cardelli, L.: Brane calculi: Interactions of biological membranes, In Computational
methods in systems biology, Springer, Cham, 2005.

16. Fellermann, H. & Cardelli, L.: Programming chemistry in DNA-addressable biore-
actors, Journal of The Royal Society Interface, 11(99), 2014.

17. Schöning, U.: Theoretische Informatik - kurz gefasst, Spektrum Akademischer Ver-
lag, 2003.

18. Weyland, M. S., Fellermann, H., Hadorn, M., Sorek, D., Lancet, D., Rasmussen,
S., & Füchslin, R. M.: The MATCHIT automaton: exploiting compartmentalization
for the synthesis of branched polymers, Computational and mathematical methods
in medicine, 2013.

19. Gillespie, Daniel T.: A General Method for Numerically Simulating the Stochastic
Time Evolution of Coupled Chemical Reactions, Journal of Computational Physics,
22(4): 403–434, 1976.

20. Gillespie, Daniel T.: Exact Stochastic Simulation of Coupled Chemical Reactions,
The Journal of Physical Chemistry, 81(25), 1977.

