
www.embedded-world.eu

Combining Bluetooth Mesh and KNX

 The Best of Both Worlds

Mario Noseda, Manuel Böbel, Marcel Schreiner, Andreas Rüst
Zurich University of Applied Science (ZHAW)

Institute of Embedded Systems (InES)
Winterthur, Switzerland
mario.noseda@zhaw.ch
andreas.ruest@zhaw.ch

Abstract—Bluetooth Mesh (BT Mesh) is a promising wireless
technology for building automation. At the same time, KNX is a
well-established building automation system that has a vast
installed base. Specifically, the strength of KNX lies in its proven
semantic models. These models are the foundation for
interoperability and the implementation of larger systems. The
presented project demonstrates how a user can easily connect a
new BT Mesh system to a well-established, wired KNX building
automation system. Notably, the project achieves this through a
self-developed stateless gateway, which allows controlling BT
Mesh devices from the KNX network and vice versa. As a result,
it is possible to leverage existing management systems from KNX
building automation systems in BT Mesh networks. Furthermore,
the project validates this concept using Home Assistant, a well-
known open-source home automation platform and demonstrates,
that heterogeneous KNX and BT Mesh systems are feasible.

Keywords—Bluetooth Mesh, KNX, Home Assistant, gateway,
topology scan, mesh networks,

I. INTRODUCTION
Many of today’s buildings employ a cable-based building

automation system. KNX [1] is among the most used and
deployed building automation standards. Such systems not only
encompass sensors and actuators with local control loops but
also higher-layer automation stations and management software
to control the building. Importantly, building automation,
including its software, constitutes a significant investment for a
building owner. Replacing an installed system comes at huge
costs.

However, in the case of extension of existing installations,
cable-based systems have their limits. E.g. the installation of
additional lights and switches requires running the twisted-pair
(TP) cable (most used physical communication medium for
KNX) to all newly installed devices. Installation of such wires
is often not feasible for cost reasons and constraints of the
building structure. In contrast, a building owner can deploy
wireless Bluetooth-Mesh-enabled devices with a minimal
amount of installation effort. However, maintaining a new
system in parallel to the already running building control system
over KNX increases complexity and cost significantly.

So, what if you could easily combine the best of both worlds?
The study covered in this paper aimed to investigate precisely
this question by extending a preexisting KNX network with a
new wireless Bluetooth Mesh network. An existing building that
has already been fitted with lights and switches controlled over
KNX using TP cables served as a fictional scenario for this use
case.

Importantly, the two networks connect through a stateless
gateway. This gateway is entirely agnostic to the devices and
their associated models. Neither data nor addresses need to be
reformatted or translated in the gateway. All the gateway does is
to forward the KNX messages transparently in both directions.
This approach has the benefit that updates to devices and
topology have no impact on the gateway. This approach
provides maximum flexibility as the gateway does not require
an update if a new device type is introduced. In particular, our
approach makes use of the option to create custom Bluetooth
Mesh models. Models are objects used for describing the
communicational abilities of a node. In our case, we have
created custom Bluetooth models matching the KNX message
format. Furthermore, “Home Assistant” has been used to
showcase the connectivity potential if such a system is
connected to an appropriate home automation platform. As a
result, various other interfaces and protocols can be added to the
current system with minimal effort.

This paper is structured accordingly. Section II discusses the
protocols and tools used in this project. In the following section,
we continue by describing the developed system itself. Section
IV discusses the hardware used, and the key findings acquired
during the implementation of the system and the final section
draws appropriate conclusions.

II. PROTOCOLS & TOOLS
The project made use of various preexisting protocols and

tools, which we will introduce here.

A. BT Mesh
BT Mesh has been published in July 2017 and introduces the

capability for m:m (many-to-many) communications [2]. The
message-oriented protocol makes use of a publish/subscribe

architecture using various address types to connect logically
associated devices efficiently. Messages are distributed using
managed flooding, which means that nodes simply broadcast a
packet and all receiving nodes compare the included address
with their subscriptions and process the message if necessary.
Nodes that implement the relay feature will then broadcast the
message themselves and are responsible for its propagation
through the whole network. Additionally, nodes can implement
a low power and a friend feature to allow especially battery-
constrained devices to be integrated into a BT Mesh network
while still being able to go into a deep sleep state. Friend nodes
receive and store messages meant for low power nodes while
low power nodes then poll their friend node for missed messages
after they wake up.

BT Mesh is a pure software stack and does not include its
own physical layer but instead makes use of Bluetooth Low
Energy (BLE). BT Mesh packets get sent as the payload of
conventional BLE packets which theoretically enables all BLE
ready devices to send and receive BT Mesh messages with just
a driver update. Lastly, a provisioner (usually a cellphone) is
needed to include new nodes into a network. During
provisioning, the unprovisioned node is supplied with
provisioning data (network key, application keys, etc.) which it
needs to further act as a part of the network. Moreover, restarting
or power cycling the node does not require the node to be
provisioned again. Therefore, once provisioned, a node can
start-up and immediately send and receive messages.

B. KNX
KNX is an open standard for building automation that may

be used domestically as well as commercially. With its
predecessor “EIB” dating back to 1990 [3], KNX has been well-
established and grew to have a vast installed base. Devices may
be connected using TP cable, powerline, radiofrequency or
ethernet [4]. In a given KNX network, each appliance has a
unique device address which is needed for the configuration of
each unit. More importantly, group addresses can be assigned to
the various devices which instructs them to process all messages
sent to these group addresses. Furthermore, KNX makes use of
a semantic library containing Datapoint Types (DPT). A DPT
describes how the message is formatted (unsigned integer, float,
etc.) and how the data is encoded (degrees Celsius, meters, etc.).
However, DPTs are only used during configuration. They need
to be stored in the devices as KNX messages do not carry any
information about the DPT used to encode the payload.

C. Zephyr
We used Zephyr as the basis for the firmware running on the

BT Mesh nodes. It is part of the Linux Foundation and is a real-
time operating system (RTOS) designed for resource-
constrained devices [5]. Thanks to Kconfig [6] and device tree
[7], the Zephyr kernel, as well as the application, are highly
configurable and platform-independent. Additionally, certified
software stacks, including BLE, BT Mesh, OpenThread, etc.
allow fast development.

D. Home Assistant
Home Assistant is an open-source platform for home

automation usually run on a Raspberry Pi [8]. Instead of
installing Raspbian and then running Home Assistant, hass.io [9]

can be used, which is a full Linux distribution that includes
everything necessary and is already setup correctly. So-called
“Integrations” are used to connect Home Assistant to the various
interfaces and protocols. At the time of this writing, users can
choose from more than 1500 integrations (KNX, Google Home,
Philips Hue, etc.) or create custom ones if necessary.

III. APPLICATION
Fig. 1 represents the architecture of the system. We have

implemented various functionalities in order to demonstrate the
different use cases possible within the scenario described in
section I. First, a control loop for lighting (subsection A)
represents two distinct forms of communication within the BT
Mesh network itself. Second, connecting KNX and BT Mesh
through a gateway shows the capability to communicate with
another network (subsection B). Third, a network topology scan
allows a system integrator to strategically place and configure
the nodes in order to keep the BT Mesh from getting to
sparse/dense (subsection C). Forth, adding Home Assistant
shows how an existing control system for building automation

Fig. 1: Architecture of the system

www.embedded-world.eu

can be leveraged and seamlessly extended to the BT Mesh part
of the network. This adoption is made possible through the
stateless gateway and the semantic KNX models implemented
on the BT Mesh nodes.

A. Control loop for lighting
Implementing a control loop in the BT Mesh network

demonstrates two distinct forms of communication: sporadic
messages with the target value and periodical updates containing
the actual value of the control loop.

A possible use case for such a loop could be as follows: The
ambient brightness in a room may change drastically based on
daytime and current weather conditions. However, constant
brightness is usually desired. Moreover, lamps close to big
windows could sometimes turn off entirely while parts of the
room furthest away from the windows are still relatively dark.
Therefore, we have implemented a control loop that does not let
the user choose a power level output of the lamps (as a lot of
conventional, dimmable lamps do) but rather the desired
brightness. This control loop consists of three elements: (a) A
remote node to send on/off and brightness signals triggered by
the user, (b) the lamp node itself, and (c) a sensor node which
periodically sends the ambient brightness to the lamp node. The
latter allows for calculating the required amount of artificial
light.

B. KNX extension with BT Mesh
Typically, BT Mesh nodes implement models predefined by

the Bluetooth Special Interest Group (SIG). These models
provide a semantic representation and therefore describe the
functionality of a node and the structure of the data on a node.
Particularly, they represent data points that can be read from or
written to on devices like sensors, switches, and lamps.
Additionally, BT Mesh allows the creation of custom models in
order to handle situations not covered by the generic models.

Converting a KNX message to a BT Mesh message requires
a gateway with complete knowledge of all present nodes and a
table to translate KNX group addresses into BT Mesh addresses
and vice versa. Therefore, instead of using the newly introduced
BT SIG models, we implemented a BT Mesh model capable of
sending any KNX message in a BT Mesh network. Furthermore,
we also adopt the KNX addressing scheme inside our BT mesh
network. Fully encapsulating a KNX message inside of a custom
BT Mesh KNX model enables the use of a stateless gateway
which does not need to know anything about the nodes or
networks. This approach offers the benefit that an existing KNX
network can be easily extended without extensive configuration
of the gateway. As a result, a system integrator can communicate
with nodes on the BT mesh with precisely the same tools as he
has been using on KNX for years.

Fig. 2 illustrates the involved blocks and the basic
compositions of the packets at distinct points. As an example,
the user pushes the KNX switch (leftmost block), and a KNX
message gets sent to the KNX IP gateway over the TP cable. The
IP gateway packages the KNX message in an IP packet and
forwards it to our gateway using ethernet. The Raspberry Pi in
our gateway is not capable of sending BT Mesh messages itself.
Thus, it extracts the KNX message and sends it to the BT
interface over UART. The BT interface then packs the KNX

message in our custom BT Mesh KNX model and sends it to the
destination node over BT Mesh. The KNX message will then be
extracted and parsed by the addressed node. Hence, KNX
capable BT Mesh nodes not only need to be provisioned for the
BT Mesh network but also need to be supplied with all their
KNX configuration data. This procedure entails a somewhat
higher configurational effort for these nodes. However,
maintaining a gateway every time an address is changed, a node
gets removed, etc. is probably more time-consuming and
assuredly more error-prone.

C. Network topology of BT Mesh
As described in section II.A, relay nodes are used to forward

messages for the managed flooding approach. They relay every
packet only once, which prevents messages from traveling back
and forth (messages also include a time to live (TTL) field,
which is used to limit their lifetime). It is vital for these relay
nodes to be in radio range of each other. Otherwise, messages
may not be able to reach every addressed node in a given
network. However, enabling the relay feature in all nodes may
result in the network getting congested or completely
overloaded. As a result, the planning of the individual features
and placement of the nodes should be taken into careful
consideration. A network topology scan has been developed
during this study which commands the nodes to detect all other
nodes in direct radio range and transmit this information to the
gateway. First, the gateway instructs all nodes to start a topology
scan. Second, all nodes send ping messages with a TTL value of
0 to a broadcast address. Messages will not be relayed, and
therefore, only neighboring nodes will receive the message.
Third, all nodes reply to the received pings. Forth, nodes save
the sender addresses of the received replies in a neighbor list.
Fifth, all nodes send their neighbor list to the gateway. After a
successful measurement cycle, the gateway displays the current
mesh topology using a webpage which allows the system
integrator to distribute the relay nodes accordingly. Fig. 3
displays a possible outcome of such a topology scan.

Fig. 2: Connecting KNX with BT Mesh through our gateway

Fig. 3: Topology example for a BT Mesh network

D. Connectivity through Home Assistant
Home Assistant is one of a multitude of home automation

platforms available today. It can be connected with KNX by
using a KNX IP module that enables communication with a
KNX twisted-pair network through TCP/IP or UDP/IP. In our
case, Home Assistant serves as an example to show that an
existing control system for KNX building automation systems
can be used in a straightforward way to manage BT mesh nodes.
Thanks to the transparent extension of the KNX network to BT
mesh, there is no need to integrate newly defined BT mesh
models on the control system. In the presented case, Home
Assistant does not need to know any BT mesh models.

Moreover, Home Assistant provides an abundance of
integrations that allow the already connected KNX and BT Mesh
networks to be extended with even more interfaces and
protocols. For example, the addition of Google Assistant, Siri,
etc. is just a few mouse clicks away. Additionally, Home
Assistant provides its own web interface for checking and
controlling the system easily. Fig. 4 shows an exemplary Home
Assistant dashboard.

IV. RESULTS & FINDINGS
The following subsections cover our system capable of

handling all use cases described in section III.

A. BT Mesh
Fig. 5 displays the InES Sensornode hardware that we used

for the sensor and remote nodes of the lighting control loop.
Mainly, it consists of an nRF52840 MCU and various
environmental sensors fitted on an evaluation board with
buttons, LEDs, etc. in order to streamline development.
Additionally, the board is designed with cutouts to enable the
user to break out the core containing the MCU and the sensors.
Consequently, the Sensornode can be deployed in a small form
factor without any unnecessary pins and components usually
only needed during development and debugging. Fig. 6 shows

the LEDTubes (LED lamp in the form factor of a conventional
fluorescent tube) containing an nRF52832 MCU and radio for
BLE, which we used for the lamp nodes of the control loop. With
the use of sporadic and periodical messages, we were able to
implement the lighting control loop, as described in section
III.A. The user can set the brightness using the remote node,
which immediately supplies the lamp node with the new setting.
The lamp node updates the brightness periodically using the
measured data supplied by the sensor node. Furthermore, the
remote node is configured with the BT Mesh specific low power
feature, whereas the other nodes are configured as relay nodes.

Moreover, the Nordic SDK was used in a preliminary study
to program the BT Mesh nodes instead of Zephyr RTOS.
Switching to Zephyr increased our efficiency noticeably and
accelerated the development progress. Threads and other RTOS
specific advantages simplified the structure of the firmware
immensely. Although the configuration of the kernel, race
conditions and thread-safety introduced new issues, the benefits
outweighed the disadvantages without any doubt.

BLE is well-established and can be found in a lot of today’s
devices. Using this as the physical layer is a very effective way
to advertise BT Mesh as all these devices only need a driver
update in order to be BT Mesh ready. Hence, there is no need to
produce new radio hardware. However, BT Mesh nodes need to
be provisioned once in order to include them in a given network.
The BT SIG recommends a cellphone or other mobile device to
be used as the provisioner [10]. Unfortunately, the configuration
of each node and occasional connectivity issues took a
significant amount of time.

Fig. 4: Home Assistant dashboard

Fig. 5: InES Sensornode

Fig. 6: LEDTube from LEDCity with BLE radio

www.embedded-world.eu

B. BT Mesh & KNX gateway
Fig. 8 shows our gateway consisting of a Raspberry Pi and a

BT interface which we implemented using an nRF52840
development kit (DK). The Raspberry Pi is responsible for
managing the transmission of IP packets, whereas the DK
handles the BT Mesh communication. They are connected over

UART using a proprietary protocol to check for transmission
errors. As described in section III.B, the gateway does not have
to be supplied with any address tables or model mappings as all
the KNX messages can be transmitted using the same custom
BT Mesh model. Thus, the gateway can run completely stateless
and without the need for extensive configuration. Fig. 7 shows
the KNX demonstrator which we used to mimic an already
existing KNX network. It contains multiple KNX switches,
lights, indicators, and a KNX IP gateway.

C. Topology scan
We have implemented a webpage running on the Raspberry

Pi of the gateway displaying the last successful topology scan.
As discussed in section III.C, care needs to be taken while
planning the network structure and position of the relay nodes.
It was possible during measurements to overload the network
entirely by placing too many relay nodes in direct radio range of
each other. Nodes store a user-definable number of messages in
order to prevent relaying the same message multiple times.
Nevertheless, with enough traffic and nodes, it was possible to
let these buffers overflow, which resulted in messages getting
relayed repeatedly. This behavior may not be a problem in a
small network as the TTL field would be set suitably low. But
BT Mesh allows the use of up to 32’767 nodes which provides
the possibility of a very dense network using the highest TTL
possible in order to reach every node. Such a network will be at
risk of congestion if relay nodes are not distributed
appropriately.

D. Controlling BT Mesh & KNX through Home Assistant
Setting up Home Assistant on a Raspberry Pi with hass.io

was surprisingly simple, especially if compared to the benefits
of this extensive platform. We then configured the Home
Assistant to communicate directly with the KNX IP gateway

over ethernet. Nodes in the KNX, as well as the BT Mesh
network, can then be controlled equally by Home Assistant
thanks to our gateway.

V. CONCLUSION
In this study, we have shown that an existing KNX network

can be easily extended with BT Mesh using a self-made stateless
gateway and custom BT Mesh models. Moreover, messaging
within BT Mesh itself is not affected by this, demonstrated by
the always running control loop for lighting. However, relay
nodes need to be placed strategically in order to strike a balance
between path redundancy and susceptibility to overload. Using
our topology scan, a system integrator can identify sparse/dense
sectors and optimize coverage and performance of the network.
Lastly, we were able to show that by using Home Assistant, a
highly interconnectable network with a vast number of
interfaces and protocols can be created with minimal effort.

Fig. 7: KNX demonstrator

Fig. 8: Gateway hardware

ACKNOWLEDGMENT
KNX Swiss [11] supplied the project with a fully wired KNX

demonstration system which acted as the preexisting KNX
network described in section I. LEDCity [12] contributed
programmable LEDTubes containing an nRF52832 MCU and
BLE radio.

REFERENCES
[1] KNX, [Online] Available: https://www.knx.org/knx-en/for-

professionals/index.php [Accessed Jan. 2020]
[2] Introducing BT Mesh Networking, [Online] Available:

https://www.bluetooth.com/blog/introducing-bluetooth-mesh-
networking/ [Accessed Jan. 2020]

[3] A History of KNX, [Online] Available:
http://www.knxuk.org/images/pdf/A_History_of_KNX.pdf [Accessed
Jan. 2020]

[4] KNX Basics, [Online] Available: http://knx.fi/doc/esitteet/KNX-
Basics_en.pdf [Accessed Jan. 2020]

[5] Zephyr Project, [Online] Available: https://www.zephyrproject.org/
[Accessed Jan. 2020]

[6] Kconfig, [Online] Available:
https://www.kernel.org/doc/Documentation/kbuild/kconfig-language.txt
[Accessed Jan. 2020]

[7] Device tree, [Online] Available: https://www.devicetree.org/ [Accessed
Jan. 2020]

[8] Home Assistant, [Online] Available: https://www.home-assistant.io/
[Accessed Jan. 2020]

[9] hass.io, [Online] Available: https://www.home-assistant.io/hassio/
[Accessed Jan. 2020]

[10] Provisioning Bluetooth Mesh, [Online] Available:
https://www.bluetooth.com/blog/provisioning-a-bluetooth-mesh-
network-part-1/ [Accessed Jan. 2020]

[11] KNX Swiss, [Online] Available: https://www.knx.ch/knx-chde/
[Accessed Jan. 2020]

[12] LEDCity, [Online] Available: https://ledcity.ch/ [Accessed Jan. 2020]

