

Development of an assistive soft exoskeleton a multistakeholder endeavour

Markus Wirz, Christoph Bauer, Carole Pauli, Eveline Graf

Aim

Development of a soft and modular exoskeleton to assist people with mobility impairments, which incorporates the needs and requirements of future users.

Methods

Patients (primary-users), n=8

- incomplete spinal cord injury
- · hemiparesis post-stroke
- · age-related weakness

Caregivers (secondary-users), n=8

- professional: physiotherapists, occupational therapists, nurses
- · non-professional: relatives

Procedures

- · formulation of basic requirements based on use-case derived from primary-user interviews
- testing of 4 prototypes
 - o primary-users: function, usability
 - o secondary-users: rating of videos using questionnaires and interviews

Results

Changes achieved throughout prototype development:

Function

- notable active support
- ankle dorsiflexion & hip flexion assistance well received
- suitable for limited users
- ⊗ too noisv

Design

- improved appearance
- @ donning/ doffing improved but still too slow and complex
- garment material potentially too warm
- ☼ backpack heavy and bulky

Conclusions

- Primary- and secondary users of a technology should be involved in the development from the very beginning.
- The choice of users and the level of involvement must be considered carefully and be adapted to the level of development.
- · All stakeholders should acquire basic knowledge and perspectives of the other involved disciplines.
- Physiotherapists play a key role by bridging user-perspectives with that of engineers.

Non-Professional Caregivers

- · practical aspects
- out of the box perspective

 focused on known individual case

Controller (backpack)

- · gait phase recognition · control of support
- elements energy supply

Support elements

 dynamic support of hip-, knee- or ankle joint

Sensors

 pressure motion

Engineers

- safety

technological solutions focus on technical feasibility

· too sophisticated (nonpractical) features

Professional Caregivers

- clinical needs and
 technology reluctance requirements
- · implementation in treatment path

Patients

- · honest feedback direct user-perspective
- · individual needs
- hopes or exaggerated expectations
 - · heterogeneity

References

- · Buurke, J., Nikamp, C., Baten, C., Bauer, C., Grav, E., Schuelein, S., Power, V., O'Sullivan, L.W., de Eyto, A., & Ortiz, J. (2017). XoSoft -Development of a Soft Modular Lower Limb Exoskeleton. Gait & Posture, 57(1), 274.
- · Power, V., Eyto, A. d., Bauer, C., Nikamp, C., Schulein, S., Muller, J., Ortiz, J. and O'Sullivan, L. (2018) 'Exploring user requirements for a lower body soft exoskeleton to assist mobility' in Bai, S., Virk, G. S. and Sugar, T., eds., Wearable Exoskeleton Systems; Design, control and applications, Institution of Engineering and Technology, 67-95.

Acknowledgements

The research leading to these results has received funding from the European Union's Horizon 2020 framework programme for research and innovation under grant agreement No. 688175 (XoSoft).

Contact

Markus Wirz, ZHAW, Institute of Physiotherapy markus.wirz@zhaw.ch

