Supplementary Materials to

Bradyrhizobium ivorense sp. nov. as a potential local bioinoculant for *Cajanus cajan* cultures in Côte d'Ivoire

by Romain K. Fossou, Joël F. Pothier, Adolphe Zézé and Xavier Perret*

* Corresponding author: xavier.perret@unige.ch

- **Table S1.** Origin of the *C. cajan* nodule isolates proposed as *B. ivorense* sp. nov. strains.
- **Table S2.** List of primers and sequences of *C. cajan* nodule isolates used in this study.
- Table S3A.
 Names and corresponding GenBank accessions for eight type strains selected to represent the *B. japonicum* super clade.
- Table S3B.
 Names and corresponding GenBank accessions for the 21 type strains of the *B. elkanii* supergroup that were used for phylogenetic analyses.
- Table S4.
 Levels of similarity between concatenated dnaK-glnII-gyrB-recA-rpoB sequences of bradyrhizobia.
- **Table S5.** Overview and general characteristics of the $CI-1B^{T}$ and CI-41S genomes.
- **Table S6.** Phenotypic characteristics of *B. ivorense* sp. nov. strains and *B. elkanii* USDA 76^T.
- **Table S7.** Symbiotic phenotype of selected *B. ivorense* sp. nov. isolates on diverse legumes.
- Figure S1. Maximum likelihood phylogram inferred from partial 16S rRNA gene sequences.
- Figure S2. Maximum likelihood phylogram inferred from partial *dnaK* gene sequences.
- Figure S3. Maximum likelihood phylogram inferred from partial *glnII* gene sequences.
- Figure S4. Maximum likelihood phylogram inferred from partial gyrB gene sequences.
- Figure S5. Maximum likelihood phylogram inferred from partial *recA* gene sequences.
- Figure S6. Maximum likelihood phylogram inferred from partial *rpoB* gene sequences.
- **Figure S7.** Maximum likelihood phylogram inferred from concatenated partial *glnII* and *recA* gene sequences
- Figure S8. Maximum likelihood phylogram inferred from partial *nifH* gene sequences.

	Strain	Plant #	Field # (GPS coordinates)	Locality				
1.	<u>CI-1B^T</u> *	1						
	<u>CI-4A2</u>							
	<u>CI-4A3</u>	4	1 (N 7°17′45″ - W 5°49′00″)	Kossou-Bouafla				
	<u>CI-4C</u>	4						
5.	<u>CI-4D</u>							
	<u>CI-14A</u>	14						
	CI-14B	14	3					
	<u>CI-15A</u>	45	(N 6°51′19″ - W 5°14′38″)					
	CI-15D	15		Yamoussoukro				
10.	<u>CI-18C</u>	18		ramoussoukro				
	CI-19A1		4					
	<u>CI-19D</u>	19	(N 6°51′02″ - W 5°13′31″)					
	CI-19E							
	<u>CI-33F</u>	22						
15.	CI-33K	33	5 (N 7°55′28″ - W 2°57′45″)					
	<u>CI-35B</u>	35	(Pandaukau				
	CI-41B			DUHUUUKUU				
	CI-41L	41	6 (N 7°56′50″ - W 2°56′26″)					
19.	<u>CI-41S</u> *		(

Table S1. Origin of the C. cajan nodule isolates proposed as B. ivorense sp. nov. strains.

Legend to Table S1. Nodule isolates that were sequenced for multilocus sequence analyses (MLSA) are shown in bold and those for which genome data was collected are marked by an asterisk. Strains that are underlined were tested for nodulation and symbiotic nitrogen-fixation on *C. cajan* cvs. ILRI 16555 and "Light Brown". Strains in bold were also inoculated onto *Glycine max* cv. Davis, *Macroptilium atropurpureum* cv. Siratro, *Leucaena leucocephala*, *Tephrosia vogelii*, *Vigna radiata* cv. King and *Vigna unguiculata* cv. Red Caloona, and the phenotypes on these host plants can be found in Table S7.

Primer	5' to 3' sequ	ience	Size (bases)	Amplicon (bp)	Reference
dnaK-For	GGTGACCTT	CGACATCGACG	20		this work
dnaK-Rev	CGGTGAACT	CCGCGTCGAC	19	461	this work
gInII-For1	TGACCAAGT	ACAAGCTCGAGT	21		this work
glnII-Rev1	GAGAAGTTG	GCGTGCATGCC	20	700	this work
gyrB-For1*	TTCGACCAG	AACTCCTACAAGG	22		this work
gyrB-Rev1*	AGCTTGTCC	TTGGTCTGCG	19	710	this work
recA-For	CAAGGGCTC	GGTGATGAAGC	20		this work
recA-Rev	CGATGCGGC	GGATGTCGAG	19	623	this work
rpoB-For	ACGGCACCG	AGCGCGTCAT	19		this work
rpoB-Rev	GTCGTCGAT	CTCGCCCTTGC	20	923	this work
Strain	Gene	Size (bp)	Access	ion	Reference
CI-1B	16S-ITS-23S	2540	KX3965	570	Fossou et al. 2016
	dnaK	422	MK3763	326	this work
	glnll	659	MH756 ⁻	157	this work
	gyrB	669	MH756 ⁻	161	this work
	recA	584	MK3763	330	this work
	rpoB	923	KX3883	93	Fossou et al. 2016
CI-14A	16S-ITS-23S	2540	KX3965	573	Fossou et al. 2016
	dnaK	422	MK3763	327	this work
	gInII	659	MH756 ⁻	158	this work
	gyrB	669	MH756 ⁻	162	this work
	recA	584	MK3763	331	this work
	rpoB	884	MK3763	334	this work
CI-19D	16S-ITS-23S	2539	KX3965	575	Fossou et al. 2016
	dnaK	422	MK3763	328	this work
	glnll	659	MH756 ⁻	159	this work
	gyrB	669	MH756 ⁻	163	this work
	recA	584	MK3763	332	this work
	rpoB	884	MK3763	335	this work
CI-41S	16S-ITS-23S	2540	KX3965	584	Fossou et al. 2016
	dnaK	422	MK3763	329	this work
	glnll	659	MH756 ⁻	160	this work
	gyrB	669	MH756 ⁻	164	this work
	recA	584	MK3763	333	this work
	rpoB	884	MK3763	336	this work

Table S2. List of primers and sequences of *C. cajan* nodule isolates used in this study.

Legend to Table S2. *GyrB-For1 and GyrB-Rev1 were derived from gyrB343F and gyrB1043R proposed by Martens et al. (2008).

Table S3A. List of the eight type strains and corresponding GenBank accessions used in this study as data for members of the Bradyrhizobium japonicum supergroup. The underlined accession includes one ambiguous (N) position.

				GenBa	ank accession f	or correspondin	g gene	
	Type strain	Type strain genome data	16S rRNA	dnaK	glnll	gyrB	recA	rpoB
ŧ	B. arachidis CCBAU 051107 ^T	NZ_FPBQ01000000	HM107167	JX437668	HM107251	JX437675	HM107233	JX437682
ebel	B. betae LMG 21987 ^T	no genome available	<u>AY372184</u>	FM253303	AB353733	AB353735	AB353734	FM253260
er c	B. canariense BTA-1 ^T	no genome available	AJ558025	AY923047	AY386765	FM253220	AY591553	FM253263
dns ı	B. diazoefficiens USDA 110 ^T	NC_004463		dene sedu	ences derived f	rom archived ge	enome data	
uno	B. iriomotense EK05 ^T	no genome available	AB300992	JF308944	AB300995	AB300997	AB300996	HQ587646
uod	B. japonicum USDA 6^{T}	NC_017249		dene sedu	ences derived f	rom archived ge	enome data	
eį .E	B. liaoningense USDA 3622 ^{T}	no genome available	AF208513	FM253309	AY386775	FM253223	AY591564	EF190181
1	B. ottawense $OO99^{T}$	CP029425	JN186270	JF308816	HQ587750	HQ873179	HQ587287	HQ587518

B. ivorense sp. nov. description - Fossou et al. 2019

genome data are shown in bold and those with ambiguous nucleotides (e.g. N, R or Y) are underlined. Note that recA of B. ferriligni CCBAU 51502^T Table S3B. Type strains of the B. elkanii supergroup and corresponding sequences selected for phylogenetic analyses. Accessions that differ from (KJ818112) was identical to recA of B. elkanii CCBAU 05737 at both, genomic (NZ_AJPV00000000) and single gene accessions (HM057521).

				GenBa	nk accession fo	or correspondinç	g gene	
	Type strain	Type strain genome data	16S rRNA	dnaK	gInII	gyrB	recA	rpoB
	B. algeriense RST89 ^T	NZ_PYCM01000000	FJ546419	n.a.	FJ264924	n.a.	FJ264927	n.a.
	B. brasilense UFLA03-321 ^T	NZ_MPVQ01000000	KF311068	KF452791	n.a.	KF452827	KT793142	KF452879
	B. centrolobii BR 10245 ^T	NZ_LUUB01000000	KF927049	KX527928	KX527991	n.a.	KX527954	KF983827
	B. elkanii USDA 76 ^T	NZ_ARAG00000000	HQ233240	AM168363	AY599117	AB070584	AY591568	LC167350
	B. embrapense SEMIA 6208 ^{T}	NZ_LFIP00000000	АҮ904773	KP234519	GQ160500	HQ634891	<u>HQ634899</u>	<u> HQ634910</u>
	B. erythrophlei CCBAU 53325 ^T	no genome available	KF114645	MG811656	KF114693	KF114717	KF114669	MG811654
	B. ferriligni CCBAU 51502 ^T	no genome available	KX683400	MG811657	KJ818099	KJ818102	KJ818112	MG811655
6	B. icense LMTR 13^{T}	CP016428	KF896156	KF896182	KF896175	KF896201	JX943615	n.a.
epek	B. jicamae PAC68 ^T	NZ_LLXZ01000000	AY624134	JN207408	FJ428204	HQ873309	HM590776	HQ587647
oer c	<i>B. lablabi</i> CCBAU 23086 ^T	NZ_LLYB01000000	<u>GU433448</u>	KF962687	GU433498	JX437670	GU433522	JX437677
dns <u>i</u>	B. macuxiense BR 10303 ^T	NZ_LNCU01000000	KX527919	KX527932	KX527995	KX528008	KX527958	KX527969
įиеу	B. mercantei SEMIA 6399 ^T	NZ_MKFI01000000	FJ025102	KX690617	KX690621	KX690623	KX690615	n.a.
lə .5	B. namibiense 5-10 ^T	no genome available	KX661401	KP402058	KM378440	KX661393	KM378377	KM378306
1	B. neotropicale BR 10247 ^T	NZ_LSEF01000000	KF927051	KJ661693	KJ661700	KJ661707	KJ661714	KF983829
	B. pachyrhizi PAC48 ^T	NZ_LFIQ01000000	<u>AY624135</u>	JN207406	FJ428201	KF532651	HM047130	LM994172
	<i>B. paxllaeri</i> LMTR 21 ^T	NZ_MAXB01000000	AY923031	AY923038	KF896169	KF896195	JX943617	KP308154
	B. retamae Ro 19^{T}	NZ_LLYA00000000	KC247085	LM994150	KC247108	KF962698	KC247094	LM994174
	B. ripae WR4 ^T	no genome available	MF593081	MF593102	MF593086	MF593094	MF593090	MF593098
	B. tropiciagri SEMIA 6148 ^T	NZ_LFLZ01000000	AY904753	FJ391008	FJ391048	HQ634890	FJ391168	<u> HQ634909</u>
	B. valentinum LmjM3 ^T	NZ_LLXX01000000	JX514883	n.a.	JX518575	n.a.	JX518589	n.a.
	B. viridifuturi SEMIA 690 ^T	NZ_LGTB0100000	FJ025107	KR149128	KR149131	KR149134	KR149140	KU724169

B. ivorense sp. nov. description - Fossou et al. 2019

japonicum super-clade representative strain USDA 6^T (#24) shaded in light grey. DNA sequences were from type strains *B. algeriense* RST89^T (#18), *B. brasilense* UFLA03-*321^T* (#7), *B. elkanii* USDA 76^T (#5), *B. embrapense* SEMIA 6208^T (#9), *B. erythrophlei* CCBAU 5325^T (#13), *B. ferriligni* CCBAU 51502^T (#12), *B. icense* LMTR 13^T (#17), *B. jicamae* PAC68^T (#16), *B. lablabi* CCBAU 23086^T (#14), *B. macuxiense* BR 10303^T (#11), *B. mercantei* SEMIA 6399^T (#10), *B. namibiense* 5-10^T (#19), *B. pachythizi* PAC48^T (#6), *B. paxllaeri* LMTR 21^T (#15), *B. retamae* R019^T (#20), *B. ripae* WR4^T (#4), *B. tropiciagri* SEMIA 6148^T (#3), *B. valentinum* LmjM3^T (#21) and *B. viridifuturi* SEMIA 690^T (#8). Values above the 97% threshold proposed by Durán et al. (2014) are underlined. Levels of the highest similarity to CI-1B^T and CI-41S are in bold. **Table S4.** Similarity levels between concatenated *dnaK-gInII-gyrB-recA-rpoB* (2,560 bp) sequences of bradyrhizobia. Strains were ordered by highest similarity to *B. ivorense* sp. nov strains CI-1B^T and CI-41S, except for *B. centrolobii* BR 10245^T (#22) and *B. neotropicale* BR 10247^T (#23) that better matched sequences of the *B.*

23		B. neotropicale												100	93.6									
22									E	3. се	entro	olob	ii									100	95.7	93.7
21									В.	vale	entin	um									100	88.8	88.4	89.3
20									B. r	retai	mae									100	91.1	88.8	88.2	88.9
19								B. r	nam	iibie	nse								100	91.0	90.3	90.5	90.2	89.5
18							E	3. al	geri	iens	е							100	90.0	91.6	94.8	88.9	88.5	89.0
17							E	3. ic	ens	е							100	92.2	92.3	95.4	92.2	89.5	88.9	89.4
16							B. j	ican	nae							100	94.2	92.2	92.8	93.7	91.9	89.9	89.6	89.6
15						В.	. pa	xllae	əri						100	97.4	94.3	92.2	92.5	93.6	91.8	89.9	89.4	89.5
14						В.	labl	abi						100	<u>97.1</u>	96.6	94.5	92.4	92.2	94.0	91.9	90.1	89.7	89.8
13					В. е	eryth	nrop	hlei					100	90.4	90.4	90.4	90.5	90.2	90.4	89.8	89.9	91.1	90.5	90.1
12	B. ferriligni								93.0	90.4	90.7	90.5	90.8	89.6	90.1	90.1	89.5	89.8	89.3	90.06				
11	B. macuxiense							100	94.0	94.1	91.3	91.0	91.0	90.7	90.5	90.7	90.3	90.0	91.1	90.6	90.9			
10	B. mercantei						94.6	95.8	93.6	91.3	91.2	91.0	91.1	90.5	90.3	90.7	89.9	90.5	89.9	90.5				
6			В. є	emb	rape	ense)		100	95.5	94.6	95.6	93.8	91.1	91.1	90.9	91.2	89.8	90.6	90.8	89.7	90.6	90.2	90.7
8		I	B. v	iridit	futui	ri		100	96.2	96.7	94.6	95.9	93.9	91.3	91.2	90.9	91.0	90.0	90.5	90.5	89.6	90.8	90.1	91.0
7		В.	bra	siler	ise		100	96.5	96.1	96.3	95.2	97.1	93.7	91.4	91.3	91.2	91.4	90.4	90.4	91.1	89.8	90.7	90.1	90.8
9	E	3. ра	ach	yrhiz	zi	100	99.1	96.5	96.2	96.3	95.3	96.9	93.7	91.3	91.1	91.0	91.2	90.1	90.4	90.7	89.5	90.7	90.06	90.7
5	E	3. el	lkan	ii	100	97.8	97.9	96.5	3.96	96.3	95.6	96.9	94.1	91.5	91.3	91.3	91.5	90.2	91.0	90.9	90.06	91.0	90.3	91.0
4	В.	ripa	ae	100	96.7	96.6	96.5	96.2	92.6	96.1	94.3	95.7	93.6	90.7	91.1	90.6	91.0	90.06	90.06	90.4	89.6	90.7	90.2	90.9
3			100	96.6	96.6	96.8	96.8	97.2	96.4	96.7	94.8	96.2	93.9	91.1	91.1	91.0	90.9	90.4	90.6	90.7	89.9	90.5	90.4	91.0
2		100	95.3	95.1	95.0	94.9	95.1	94.8	94.5	94.3	94.6	93.9	93.9	91.3	91.3	91.1	91.0	90.2	90.8	90.4	89.9	90.8	90.9	90.7
-	100	98.4	95.2	95.1	95.1	95.1	95.0	94.9	94.5	94.5	94.4	93.8	93.7	91.0	91.0	90.7	90.8	90.4	90.3	90.1	89.8	90.7	90.5	90.5
Strain	CI-1B ^T	CI-41S	B. tropiciagri	B. ripae	B. elkanii	B. pachyrhizi	B. brasilense	B. viridifuturi	B. embrapense	B. mercantei	B. macuxiense	B. ferriligni	B. erythrophlei	B. lablabi	B. paxllaeri	B. jicamae	B. icense	B. algeriense	B. namibiense	B. retamae	B. valentinum	B. centrolobii	B. neotropicale	B. japonicum
	-	2	ю	4	5	9	2	ω	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24

	CI-1B [™]	CI-41S
Genome size (kb)	9,412	8,864
G+C content (mol%)	64.21	64.37
Number of contigs	44	59
Contig N ₅₀	466,280	253,924
Contig L ₅₀	4	11
Raw coverage	114.6 x	35.7 x
Number of predicted genes	8,546	8,123
Numbr of tRNAs	56	57

Table S5. Overview and general characteristics of the $CI-1B^{T}$ and CI-41S draft genomes.

Characteristic		CI-1B [⊤]	CI-14A	CI-19D	CI-41S	USDA 76 ^T
Growth in liquid RMS at (°C)	20	+	+	+	+	+
	25	+	+	+	+	+
	27	+	+	+	+	+
	30	+	+	+	+	+
	35	-	—	w	w	+
	40	-	-	-	-	-
Growth in liquid RMS at pH	4 to 5	-	—	—	—	—
	6 to 8	+	+	+	+	+
	9 to 12	-	-	-	—	-
Growth in RMM with 20 (*10) mM	fructose	W	n.t.	n.t.	w	w
	galactose	+	n.t.	n.t.	+	+
	glucose	+	n.t.	n.t.	+	W
	malate*	+	n.t.	n.t.	+	+
	maitose	_	n.t.	n.t.	_	-
	mannose	W	n.t.	n.t.	w	+
	pyruvate	+	n.t.	n.t.	+	+
	succinate	+	n.t.	n.t.	+	+
Crowth in VM at 27°C with NaCl at			n.ı.	n.t.	-	-
Growth in YM at 27 C with Naci at	0.04%	+	+	+	+	+
	0.23%	т 	т 	Ŧ	т м/	- -
	0.5%	т	т	_	vv	т м/
	1.0%	_	_	_	—	vv
Growth on PMS plates with ampie	1.070		_ _	_	_	
(ug per antibiotio disa)	mphonical (500)	т 	- -	vv _		_ _
(µg per antibiotic disc) childran	mycin (50)	+	+	+	+	+
gentan	$n_{\rm VCin}$ (50)	+	+	+	+	+
kanam	(100)	+	+	+	+	_
penicil	lin (10)	+	+	+	+	+
strepto	mycin (250)	+	+	+	+	+
tetracy	cline (50)	+	+	+	+	+
Reaction of (API 20NE) fermenta	ation	_	_	_	n.t.	_
esculin h	nydrolysis	w	_	_	n.t.	_
gelatin h	vdrolysis	_	_	_	n.t.	_
arginine	di-hydrolase	+	+	+	n.t.	+
indole p	roduction	_	_	_	n.t.	_
NO ₃ - rec	duced to NO ₂₋	_	_	_	n.t.	+
NO ₃₋ rec	duced to N ₂	_	_	-	n.t.	_
urease		+	+	+	n.t.	+
β-galact	osidase (PNPG)	_	_	-	n.t.	-
Assimilation of (API 20NE) adipic ad	cid	+	+	+	n.t.	+
capric a	cid	-	-	-	n.t.	-
D-glucos	se	+	w	+	n.t.	w
D-malto:	se	+	+	+	n.t.	w
D-mann	itol	+	+	+	n.t.	+
D-mann	ose	+	+	+	n.t.	+
L-arabin	ose	+	w	+	n.t.	w
malic ac	id .	W	w	w	n.t.	W
N-acetyl	glucosamine	+	+	+	n.t.	w
phenyla	cetic acid	w	w	w	n.t.	w
potassiu	m gluconate	+	+	+	n.t.	+
trisodiun	n citrate	W	W	W	n.t.	W

Table S6. Phenotypic characteristics of *B. ivorense* sp. nov. strains and *B. elkanii* USDA 76^T

Legend to Table S6. +, positive for; –, negative for; w, weak for; n.t., not tested. For details on growth and resistance to antiobiotics, see main text. All strains were negative for catalase and positive for oxidase reactions.

				Host plant			
Inoculant	Cc (42 dpi)	Gm (49 dpi)	Ma (42 dpi)	Ll (98 dpi)	Tv (42 dpi)	Vr (35 dpi)	Vu (35 dpi)
CI-1B ^T	Nod+ / Fix+	Nod+ / Fix-	Nod+ / Fix+	poNq	Nod+ / Fix+	Nod+ / Fix+	Nod+ / Fix+
CI-14A	Nod+ / Fix+	Nod+ / Fix-	Nod+ / Fix+	n.t.	n.t.	Nod+ / Fix+	Nod+ / Fix+
CI-19D	Nod+ / Fix+	Nod+ / Fix-	Nod+ / Fix+	n.t.	n.t.	Nod+ / Fix+	Nod+ / Fix+
CI-41S	Nod+ / Fix+	Nod+ / Fix-	Nod+ / Fix ^{red}	poNq	Nod+ / Fix+	Nod+ / Fix ^{red}	Nod+ / Fix ^{red}
USDA 76 [⊤]	Nod+ / Fix+	Nod+ / Fix+	Nod+ / Fix+	n.t.	n.t.	Nod± / Fix ^{red}	Nod+ / Fix+
NGR234	Nod+ / Fix+	-poN	Nod+ / Fix+	Nod+ / Fix+	Nod+ / Fix+	Nod+ / Fix+	Nod+ / Fix+

Table S7. Symbiotic phenotype of selected *B. ivorense* sp. nov. isolates on diverse legumes.

max cv. Davis; Ma, Macroptilium atropurpureum cv. Siratro; Ll, Leucaena leucocephala; Tv, Tephrosia vogelii; Vr, Vigna radiata cv. King; Vu, Vigna unguiculata cv. Red Caloona. Nodulation assays were conducted in Magenta jars with two plants per pot, and with a fixed inoculum of 2 x 10⁸ bacteria in 200 µl of sterile water per seedling. When needed, plants were (dpi) before being harvested to assess the symbiotic phenotype of inoculated strains. Capacity of isolates to nodulate was scored as Nod+ for those forming nodules on all inoculated roots, Nod± for sporadic nodules formation, and pNod for strains that made only pseudonodules. Symbiotic nitrogen fixation was scored as strains being capable of sustaining harmonious Legend to Table S7. The following legumes were tested for nodulation: Cc, Cajanus cajan cv. ILRI 16555; Gm, Glycine watered using B&D nitrogen-free solution. Depending on the host, plants were grown for 35 to 98 days post-inoculation plant growth (Fix+), poor plant development (Fix^{red}) or no growth beyond seed reserves (Fix-). As positive controls for nodulation and symbiotic nitrogen fixation, control plants were inoculated with strains Bradyrhizobium elkanii USDA 76^T or Sinorhizobium fredii NGR234. Some plant/strain combinations were not tested (n.t.). Figure S1. Maximum likelihood phylogram inferred from partial 16S rRNA gene sequences.

The unrooted maximum-likelihood phylogram was inferred from partial 16S rDNA sequences of 57 type strains of the *Bradyrhizobium* genus, of *B. ivorense* sp. nov. strains CI-1B^T and CI-41S (shown in bold) and of *Methylobacterium nodulans* strain ORS 2060^T that was used as the outgroup. Sequences were aligned with MAFFT version 7 using Q-INS-i. The T92+G+I model was used with 1,184 positions and 1,000 pseudoreplicates as parameters. Only bootstrap values >70% are shown at branch nodes. Scale bar indicates the number of substitutions per site.

Figure S2. Maximum likelihood phylogram inferred from partial dnaK gene sequences.

The unrooted maximum-likelihood phylogram was inferred from 279 bp *dnaK* sequences of type strains of all species included in the *Bradyrhizobium elkanii* supergroup at the time of submission, of a selected number of additional *Bradyrhizobium* species, of *B. ivorense* sp. nov. strains CI-1B^T and CI-41S (shown in bold) and of *Methylobacterium nodulans* strain ORS 2060^T that was used as the outgroup. The TN93+G model was used with 279 positions and 1,000 pseudoreplicates as parameters. Only bootstrap values >70% are shown at branch nodes. Scale bar indicates the number of substitutions per site.

⊢−−−−− 0.2	<i>B. elkanii</i> USDA 76 ^T (AM168363)
	B. pachyrhizi PAC48 [⊤] (JN207406)
	- <i>B. brasilense</i> UFLA03-321 ^T (KF452791)
	78 <i>∏ B. ferriligni</i> CCBAU 51502 [⊤] (MG811657)
	<i>B. viridifuturi</i> SEMIA 690 ^T (KR149128)
	<i>B. ripae</i> WR4 [⊤] (MF593102)
	<i>B. mercantei</i> SEMIA 6399 ^T (KX690617)
	<i>LB. tropiciagri</i> SEMIA 6148 ^T (FJ391008)
	<u></u> СІ-1В ^т (МК376326)
	СІ-415 (МК376329)
	B. embrapense SEMIA 6208 ^T (KP234519)
	B. erythrophlei CCBAU 53325 ^T (MG811656)
	$\Box B.$ macuxiense BR 10303 ^T (KX527932)
	B. oligotrophicum LMG 10732 ^T (KF962688)
	<i>B. betae</i> LMG 21987 [⊤] (FM253303)
	$\square \square B.$ neotropicale BR 10247 ^T (KJ661693)
	B. iriomotense EK05 [⊤] (JF308944)
	<i>B. centrolobii</i> BR 10245 ^T (KX527928)
	B. japonicum USDA 6 ^T (NC_017249)
	<i>B. ottawaense</i> OO99 ^T (JF308816)
	$98 - B. diazoefficiens USDA 110^{T} (NC_004463)$
	B. canariense BTA-1 ^T (AY923047)
	<i>B. arachidis</i> CCBAU 051107 ^T (JX437668)
	B. liaoningense USDA 3622 ^T (FM253309)
	<i>B. namibiense</i> 5-10 ^T (KP402058)
	<i>B. valentinum</i> LmjM3 ^T (NZ_LLXX01000000)
	<i>B. algeriense</i> RST89 ^T (NZ_PYCM01000000)
	☐ <i>B. retamae</i> Ro19 [⊤] (LM994150)
	$\Box B. icense LMTR 13^{T} (KF896182)$
	<i>B. paxllaeri</i> LMTR 21 ^T (AY923038)
	ل <i>B. jicamae</i> PAC68 [⊤] (JN207408)
	^L <i>B. lablabi</i> CCBAU 23086 ^T (KF962687)

Figure S3. Maximum likelihood phylogram inferred from partial glnll gene sequences.

The unrooted maximum-likelihood phylogram was inferred from 540 bp *glnll* sequences of type strains of all species included in the *Bradyrhizobium elkanii* supergroup at the time of submission, of a selected number of additional *Bradyrhizobium* species, of *B. ivorense* sp. nov. strains CI-1B^T and CI-41S (shown in bold) and of *Methylobacterium nodulans* strain ORS 2060^T that was used as the outgroup. The GTR+G+I model was used with 540 positions and 1,000 pseudoreplicates as parameters. Only bootstrap values >70% are shown at branch nodes. Scale bar indicates the number of substitutions per site.

Figure S4. Maximum likelihood phylogram inferred from partial gyrB gene sequences.

The unrooted maximum-likelihood phylogram was inferred from 588 bp *gyrB* sequences of type strains of all species included in the *Bradyrhizobium elkanii* supergroup at the time of submission, of a selected number of additional *Bradyrhizobium* species, of *B. ivorense* sp. nov. strains CI-1B^T and CI-41S (shown in bold) and of *Methylobacterium nodulans* strain ORS 2060^T that was used as the outgroup. The T92+G model was used with 594 positions and 1,000 pseudoreplicates as parameters. Only bootstrap values >70% are shown at branch nodes. Scale bar indicates the number of substitutions per site.

Figure S5. Maximum likelihood phylogram inferred from partial recA gene sequences.

The unrooted maximum-likelihood phylogram was inferred from 439 bp *recA* sequences of type strains of all species included in the *Bradyrhizobium elkanii* supergroup at the time of submission, of a selected number of additional *Bradyrhizobium* species, of *B. ivorense* sp. nov. strains CI-1B^T and CI-41S (shown in bold) and of *Methylobacterium nodulans* strain ORS 2060^T that was used as the outgroup. The T92+G model was used with 439 positions and 1,000 pseudoreplicates as parameters. Only bootstrap values >70% are shown at branch nodes. Scale bar indicates the number of substitutions per site.

Figure S6. Maximum likelihood phylogram inferred from partial rpoB gene sequences.

The unrooted maximum-likelihood phylogram was inferred from 714 bp *rpoB* sequences of type strains of all species included in the *Bradyrhizobium elkanii* supergroup at the time of submission, of a selected number of additional *Bradyrhizobium* species, of *B. ivorense* sp. nov. strains CI-1B^T and CI-41S (shown in bold) and of *Methylobacterium nodulans* strain ORS 2060^T that was used as the outgroup. The GTR+G+I model was used with 714 positions and 1,000 pseudoreplicates as parameters. Only bootstrap values >70% are shown at branch nodes. Scale bar indicates the number of substitutions per site.

Figure S7. Maximum likelihood phylogram inferred from concatenated glnII-recA sequences.

The unrooted maximum-likelihood phylogram was inferred from concatenated partial *glnII* (522 bp) and *recA* (411 bp) sequences of 57 type strains of the *Bradyrhizobium* genus, of *B. ivorense* sp. nov. strains $CI-1B^{T}$ and CI-41S (shown in bold) and of *Methylobacterium nodulans* strain ORS 2060^T that was used as the outgroup. The GTR+G+I model was used with 933 positions and 1,000 pseudoreplicates as parameters. Only bootstrap values >70% are shown at branch nodes. Scale bar indicates the number of substitutions per site.

Figure S8. Maximum likelihood phylogram inferred from partial nifH gene sequences.

The rooted maximum-likelihood phylogram was inferred from 285 bp *nifH* sequences of type strains of all species included in the *Bradyrhizobium elkanii* supergroup at the time of submission, of a selected number of additional *Bradyrhizobium* species, of *B. ivorense* sp. nov. strains CI-1B^T and CI-41S (shown in bold) and of *Methylobacterium nodulans* strain ORS 2060^T that was used as the outgroup. The T92+G model was used with 285 positions and 1,000 pseudoreplicates as parameters. Only bootstrap values >70% are shown at branch nodes. Scale bar indicates the number of substitutions per site. Genomes of *B. centrolobii* BR 10245^T, *B. neotropicale* BR 10247^T and *B. oligotrophicum* LMG 10732^T were found to code for two divergent copies of *nifH*, both of which were included in this phylogeny. No *nifH* record was found for *B. betae* LMG 21987^T, *B. liaoningense* USDA 3622^T and *B. ripae* WR4^T strains that were included in other gene phylogenies, however.

