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26 LINES OF CODE TO PRICE SINGLE FACTOR DERIVATIVES

NORBERT HILBER

Abstract. We provide short, easy to use Matlab and Python codes to solve
derivative pricing problems for one underlying whose evolution is modelled by a
diffusion with possibly time-dependent coefficients.
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1. Introduction

The pricing and hedging of financial derivatives as well as the calibration of mod-
els to market data are major challenges in the financial derivatives industry. Over
the last decades, the complexity of the used models and of the payoff structure
of derivatives written on different types of stochastic underlyings have constantly
grown. Great efforts have been undertaken both in academia as well as in the finan-
cial industry to solve the corresponding pricing, hedging and calibration problems.
Due to the mathematical complexity, most of these can not be solved analytically,
but a solution has to be found by some approximation procedure. Here, we have
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available (borrowed mostly from other areas of science) different types of meth-
ods, for example Monte Carlo simulation, solving numerically (stochastic, ordinary,
partial) differential equations, non-linear regression, particle method and neural net-
works, to name but a few. The findings of the research undertaken are summarised
and made available to a greater audience in well written books; we just mention
[Ber16, BR02, Bos14, BL02, BM06, BMP13, CT03, Cré13, DS06, Duf06, Fil09, Gla03,
JL14, Hir13, Kwo08, Lab09, PS06, ZWCS13]. and we are aware that this list is sub-
jective and far of being complete. These books describe the numerical procedure
used to solve a specific pricing, hedging or calibration problem at different levels of
detailing, ranging from a sketchy to an in-depth description. In most of these books,
however, a code which could be directly used by the reader is not available. The
goal of this note is to partially close this gap. We give short Matlab and Python
codes which solve (linear) pricing problems for derivatives written on a single factor
diffusion by the finite-difference-method.

The note is organised as follows. In chapter 2, we give a short description of the
considered pricing problems and partial differential equations (PDEs), respectively.
In the next chapter 3, we derive a second-order finite difference discretisation (in the
space variable) used to approximate the solution of the pricing PDE. Here, special
attention is paid to the incorporation of different types of (the important) boundary
conditions. Chapter 4 is then devoted to the discretisation with respect to time,
which we achieve by considering the Padé approximation of the exponential function
(a topic which seems not to be widespread in the finite difference community). In
chapter 5 we provide Matlab/Octave and Python codes to solve numerically the
PDE of chapter 2. In the last chapter 6, we apply the routine presented in chapter
5 to four particular pricing problems. For each of these problems we again provide
codes.

2. Pricing equation

Consider a stochastic process X(t) modelling (for example) a stock price at time t.
We assume that X solves (under a local unique martingale measure) the stochastic
differential equation (SDE)

(2.1) dX(t) = µ(X(t), t)dt+ σ(X(t), t)dW (t), X(0) = x0 ,

with given bivariate deterministic functions µ(x, t) and σ(x, t) > 0 and with W (t) a
standard Brownian motion. Now consider a non-american style financial derivative
with payoff (function) g and maturity T written on X. Furthermore, let r(t) be
the (deterministic) continuously compounded risk free. By the general principles
of derivatives theory, the value V (x, t) of the derivative is given by the conditional
expectation

(2.2) V (x, t) = E
[
e−

∫ T
t r(u)dug(X(T )) | X(t) = x

]
.

To find V (x, t), one can try to solve the expectation analytically which is, however,
only possible for (very) few models of X. For most models, we have to apply nu-
merical methods to get the pricing function. The prevailing method used in the
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financial industry is Monte Carlo simulation, since it is relatively easy to realise it
on a computer. To estimate the expectation, one integrates numerically N -times
(for example by using the Euler approximation) the SDE (2.1) to get approximate

realisations xiT of X(T ) and then sets V (x, 0) ≈ e−
∫ T
0 r(u)du 1

N

∑N
i=1 g(xiT ), see e.g.

[Gla03]. Other possible methods are transform methods (like the Laplace trans-
form, the fast Fourier transform or the cos-method) and trees; in this note we
focus on approximating V by solving partial differential equations (PDEs) with the
finite-difference-method. An alternative method to solve PDEs is the mighty finite-
element-method, which is not considered here, since its mathematical foundation is
much more involved, see for example [HRSW13]. The link between the expectation
(2.2) and partial differential equations is provided by the Feynman-Kac theorem. It
states that, under certain conditions on r, µ, σ and V , the function V in (2.2) solves
the partial differential equation (on the domain G ⊂ R of X)

(2.3)

{
∂tV +AV − r(t)V = 0 in G× [0, T [

V (x, T ) = g(x) in G

see e.g. [HS00]. Herein, A is the so-called (infinitesimal) generator of the process X
defined, for f being a continuous function, as

Af(x) := lim
t→0

E[f(X(t)) | X(0) = x]− f(x)

t
.

The operator A is the generator of the semigroup {E[f(X(t)) | X(0) = x] : t ≥ 0},
see any book on Functional Analysis for the notion of a semigroup and its generator.
It turns out that the generator of X in (2.1) is given by the second order differential
operator

(2.4) A =
1

2
σ2(x, t)∂xx + µ(x, t)∂x .

We refer to (2.3) as the pricing equation.

Example 2.1. i) In the (standard) Black-Scholes model the process X(t) (the
stock price) follows a geometric Brownian motion, i.e.,

dX(t) = (r − q)X(t)dt+ σX(t)dW (t), X(0) = x0 > 0 .

Here, the underling pays a constant continuous dividend yield q ≥ 0 and
σ > 0 is the constant volatility. Thus the functions in (2.1) are µ(x, t) =
(r − q)x and σ(x, t) = σx, G = R+, and the pricing equation becomes the
Black-Scholes equation

∂tV +
1

2
σ2x2∂xxV + (r − q)x∂xV − rV = 0 .

ii) It turns out that the Feyman-Kac theorem also holds if X is the short rate,
X = r, see e.g. [Fil09]. In the CIR short rate model for example there holds

(2.5) dX(t) = κ(m−X(t))dt+ σ
√
X(t)dW (t), X(0) = x0 ≥ 0
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for some constants κ, θ, σ > 0. The price V (x, t) of a zero-bond with maturity
T then satisfies V (x, T ) = g(x) = 1, G = R+

0 and

∂tV +
1

2
σ2x∂xxV + κ(m− x)∂xV − xV = 0 .

Note that for some path-dependent derivatives the payoff g in (2.2) does not only
depend on X(T ), but also on other variables like mint∈[0,T ]X(t), maxt∈[0,T ]X(t) or
X(tj), where the tj ’s are observation dates. As an example, consider the payoff of
a (knock-out) double barrier call with strike K and with lower and upper barriers
L,U , given by

g
(
X(T ), min

t∈[0,T ]
X(t), max

t∈[0,T ]
X(t)

)
= max{X(T )−K, 0}1{mint∈[0,T ]X(t)>L}1{maxt∈[0,T ]X(t)<U} .

It turns out that in this case the pricing equation (2.3) still holds, with G =]L,U [.
If the payoff additionally depends on the underlying evaluated at some observa-
tion points tj ∈ [0, T ], the pricing PDE (2.3) has to be replaced by a sequence
of PDEs. Examples are discretely monitored barrier options, plain vanillas with
discrete dividend payments of the underlying or some (auto-)callable structured
products, compare with the last example in chapter 6.

To solve the PDE (2.3) by the finite-difference-method, we change to the time-to-
maturity t 7→ T −t, restrict the (typically unbounded) domain G to an open interval
]xl, xr[ (which we again call G) and set (contract dependent) boundary conditions
on xl and xr. Thus, the (truncated) pricing problem is a particular case of the
problem: Find w(x, t) such that

(2.6)


∂tw + a(x, t)∂xxw + b(x, t)∂xw + c(x, t)w = f(x, t) in G×]0, T ]

∂
(nl)
x w(xl, t) = wl(t) in ]0, T ]

∂
(nr)
x w(xr, t) = wr(t) in ]0, T ]

w(x, 0) = g(x) in G

.

Here, a, b and c are some given functions and by ∂
(n)
x w(z, t) we denote the n-th

derivative of w with respect to x evaluated at x = z. Thus, n = 0 corresponds to a
Dirichlet boundary condition and n = 1 to a Neumann boundary condition. Note
that nl and nr are typically different.

The switch from the pricing PDE (2.3) to the PDE (2.6) is called localisation
and typically introduces a localisation error, e(x, t) := |w(x, t) − V (x, T − t)| > 0,
(x, t) ∈]xl, xr[×]0, T [. From an analytical point of view, this is unsatisfactory, from
a financial point of view however the situation is not that bad. Usually, we are
interested in prices V only for a certain range of the value of the underlying x and
we therefore may chose xl and xr such that the localisation error becomes negligible
small in the range of interest. Of course, if x represents a non-negative quantity
(stock-prices, variance), then we can not chose xl to be negative. Note that for
certain derivatives the boundary conditions are known. For example, for a knock-
out (single) barrier option with barrier B there holds xl = B, w(xl, t) = 0 if it is
down-and-out option and xr = B, w(xr, t) = 0 if it is a up-and-out option. For most
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pricing problems however, the boundary conditions are not known and it is tempting
in such situations to solve the pricing PDE up to the boundary. However, it is not
clear wether stating no conditions for w(x, t) on {xl}×]0, T [ and/or {xr}×]0, T [
constitutes a well defined problem. For the case xl = 0 a partial answer is given by
the theory of PDEs of second order with non-negative characteristic form, see for
example [OR73]. Applied to the equation (already switched to time-to-maturity)

∂tw + a(x, t)∂xxw + b(x, t)∂xw + c(x, t)w = 0

in (2.6) the theory states that there is no boundary condition needed if a(0, t) = 0,
∀t and if

(2.7) b(0, t)− ∂xa(0, t) ≤ 0, ∀t
holds. For illustration, we apply this to the pricing problems in example 2.1.

Example 2.2. i) In the Black-Scholes pricing equation there holds a(x, t) =
−1

2σ
2x2, ∂xa(x, t) = −σ2x and b(x, t) = −(r − q)x, such that the condition

(2.7) is satisfied and the Black-Scholes PDE holds also at x = 0: it is not
necessary to specify a boundary condition.

ii) Consider the pricing of a zero-bond in the CIR short-rate model. Since
a(x, t) = −1

2σ
2x, ∂xa(x, t) = −1

2σ
2 and b(x, t) = −κ(m − x), the condition

(2.7) translates to

−κm+
1

2
σ2 ≤ 0⇒ κm ≥ 1

2
σ2 .

Hence, if 2κm ≥ σ2, then the pricing equation also holds at x = 0 and there
are no conditions needed. However, it is shown in [ET11] that we need not
to specify a boundary condition even if 2κm < σ2.

In the next section, we develop a second order finite-difference-method to solve
(2.6) numerically. Special attention is payed on the realisation of different boundary
conditions, where we allow nl, nr to take the values 0, 1, 2. We also consider the case
where no boundary conditions are needed/given, i.e., we solve the PDE also on the
boundary of G.

3. Spatial discretisation - Finite difference method

In this section, we assume for simplicity that the coefficients a, b and c in (2.6)
do not depend on t. The idea of the finite-difference-method is to consider the
PDE not for all x ∈ G but only for a finite number of so-called grid points xi ∈ G
and to replace at these grid points the partial derivatives (with respect to x) by
their corresponding finite difference quotients. Let N ∈ N× and define the grid
Gx := {xi | i = 0, . . . , N + 1} with

xl = x0 < x1 < · · · < xN < xN+1 = xr .

For simplicity, we chose an equidistant grid with xi = x0 + ih, where h = xr−xl
N+1 is

the (constant) mesh width. By Taylorexpansion, we have

(3.1) ∂xw(xi, t) = δhw(xi, t) +O(h2), ∂xxw(xi, t) = δ2hw(xi, t) +O(h2) ,
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where δh and δ2h are the difference-operators

δhf(x) :=
f(x+ h)− f(x− h)

2h
, δ2hf(x) :=

f(x− h)− 2f(x) + f(x+ h)

h2
.

Thus, by (2.6), for an arbitrary grid point xi, i = 1, . . . , N , there holds

∂tw(xi, t) + a(xi)δ
2
hw(xi, t) + b(xi)δhw(xi, t) + c(xi)w(xi, t) = f(xi, t) +O(h2) .

Setting wi(t) ≈ w(xi, t), the above becomes, for i = 1, . . . , N ,

∂twi(t) + a(xi)
wi−1(t)− 2wi(t) + wi+1(t)

h2

+ b(xi)
wi+1(t)− wi−1(t)

2h
+ c(xi)wi(t) = f(xi, t) .(3.2)

3.1. Dirichlet boundary conditions. Assuming for a brief moment Dirichlet
boundary conditions, i.e., w0(t) = wl(t), wN+1(t) = wr(t), the N equations in
(3.2) can simply written as

(3.3)

{
w′(t) + Aw(t) = f(t)

w(0) = g
.

Herein, we define the vectors (for the definition of the vector f(t) see the equation
(3.5) below)

(3.4) w(t) :=


w1(t)
w2(t)

...
wN (t)

 , w′(t) :=


∂tw1(t)
∂tw2(t)

...
∂twN (t)

 , g :=


g(x1)
g(x2)

...
g(xN )

 .

The N × N -matrix A in (3.3) is a discrete version of the differential operator
a(xi)∂xx + b(xi)∂x + c(xi) and is thus the sum of three matrices

A = M(2)
a + M

(1)
b + M(0)

c .

For k = 0, 1, 2, and a continuous function y, the tridiagonal matrices M
(k)
y are

defined in the following definition, compare also with [HRSW13, section 9.5].

Definition 3.1. Let y be a continuous function. Then, the entries (m
(k)
y )i,j of the

N ×N -Matrices M
(k)
y are given as

(m(0)
y )i,i = y(xi) ,

(m(1)
y )i,i+1 =

y(xi)

2h
, (m(1)

y )i+1,i = −y(xi+1)

2h
,

(m(2)
y )i,i = −2

y(xi)

h2
, (m(2)

y )i,i+1 =
y(xi)

h2
, (m(2)

y )i+1,i =
y(xi+1)

h2
.

Herein, i = 1, . . . , N for the main diagonal elements and i = 1, . . . , N − 1 for the
sub-and super diagonal elements. Furthermore, xi = x0 + ih are the equidistant
grid points, and h = (xN+1 − x0)/(N + 1). Unspecified entries are zero.
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A remark to the definition 3.1 is at order. The superscript (k) in M
(k)
y indicates

the order of the derivative considered (second k = 2, first k = 1 or no derivative

k = 0) such that, for example, the matrix M
(2)
a is a discrete version of the operator

a(xi)∂xx.
The vector f in (3.3) is, in case of Dirichlet boundary conditions, given by

(3.5) f(t) = f rhs(t)−
(
M(2),bc

a + M
(1),bc
b

)
wbc(t) ,

with the (column) vectors of length N

(3.6) f rhs(t) :=


f(x1, t)
f(x2, t)

...
f(xN−1, t)
f(xN , t)

 , wbc(t) :=


wl(t)

0
...
0

wr(t)

 .

The entries (m
(k),bc
y )i,j of the N×N -matrices M

(k),bc
y in (3.5) (belonging to Dirich-

let boundary conditions, thus the additional superscript bc) are all zero, except the
entries

(3.7)

(m(1),bc
y )1,1 =

y(x1)

2h
, (m(1),bc

y )N,N = −y(xN )

2h
, (m(2),bc

y )i,i =
y(xi)

h2
, i ∈ {1, N} .

3.2. Non-Dirichlet boundary conditions. If nl,r 6= 0 in (2.6), we need to adapt
the matrices appearing in (3.3). As an example, assume that we need to apply a
Neumann boundary condition in (2.6) on xr, i.e., ∂xw(xr, t) = wr(t). Observe that,
in contrast to a Dirichlet boundary condition, the function value w(xr, t) is also
unknown. As a consequence, the function wN+1(t) in the last of the N equations in
the system (3.2) has to be found as well. It turns out however that we can eliminate
this unknown function by using the Neumann condition. This can be achieved by
approximating the derivative ∂xw(xr, t) by a non-central finite difference quotient.
Indeed, using a Taylorexpansion one can show

f ′(x) =
±3f(x)∓ 4f(x∓ h)± f(x∓ 2h)

2h
+O(h2)(3.8)

f ′′(x) =
2f(x)− 5f(x± h) + 4f(x± 2h)− f(x± 3h)

h2
+O(h2) .(3.9)

Thus, we have with (3.8) left to xN+1 = xr,

∂xw(xr, t) = wr(t)⇒
w(xN+1 − 2h, t)− 4w(xN+1 − h, t) + 3w(xN+1, t)

2h
≈ wr(t)

or
wN−1(t)− 4wN (t) + 3wN+1(t)

2h
= wr(t) ,
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such that

wN+1(t) = −1

3
wN−1(t) +

4

3
wN (t) +

2

3
hwr(t) .

We plug in this expression into the N -th equation of (3.2) and end up with an
equation which does not involve wN+1(t) anymore

∂twN (t) + a(xN )
2
3wN−1(t)−

2
3wN (t) + 2

3hwr(t)

h2
(3.10)

+ b(xN )
−4

3wN−1(t) + 4
3wN (t) + 2

3hwr(t)

2h
+ c(xN )wN (t) = 0 .

Similarly, for a Neumann condition on the left boundary xl = x0 the first equation
in (3.2) changes to

∂tw1(t) + a(x1)
−2

3w1(t) + 2
3w2(t)− 2

3hwl(t)

h2
(3.11)

+ b(x1)
−4

3w1(t) + 4
3w2(t) + 2

3hwl(t)

2h
+ c(x1)w1(t) = 0 .

By introducing Neumann boundary conditions, the equations satisfied by the func-
tions wi(t), i = 2, . . . , N − 1 in (3.2) do not change. Thus, assuming that we apply
a Neumann condition on both boundaries xl and xr, the N unknown functions
w1(t), . . . , wN (t) are again solutions of the system (3.3), but the matrix A as well
as the vector f(t) change to

(3.12)
A = n

nM
(2)
a + n

nM
(1)
b + M

(0)
c

f(t) = f rhs(t)−
(
n
nM

(2),bc
a + n

nM
(1),bc
b

)
wbc(t) .

In ··M
(k)
y we use the left subscript to indicate the boundary condition on the left

boundary xl and the left superscript to indicate the boundary condition on the

right boundary xr. Thus, for example, nsM
(2)
a means that we consider the operator

a(xi)∂xx together with the condition ∂xxw(xl, t) = wl(t) on the left boundary xl (s
stands for second derivative) and a Neumann condition on the right boundary (n
stands for Neumann). If there is a Dirichlet boundary condition, we use equivalently
no left sub-or superscript (as in definition 3.1) or the letter d (for Dirichlet). For
example, the operator b(xi)∂x with a Dirichlet condition both on xl and xr can be

denoted by d
dM

(1)
b or by M

(1)
b .

The Neumann matrices n
nM

(k)
y only differ from the Dirichlet matrices M

(k)
y in

the first and last row. For example, by definition 3.1, the first three entries of the

first row of the matrix M
(2)
y are y1

h2
(−2, 1, 0), whereas the same entries of the matrix

·
nM

(2)
y are given by y1

h2
(−2

3 ,
2
3 , 0). We denote by jm

(k) the (vector of) the first three

elements of the first row of the matrix ·
jM

(k)
y with j ∈ {d, n, s} and by jm(k) the

(vector of) the last three elements of the last row of the matrix j
·M

(k)
y . Thus, for

example, there holds nm(1) = yN
2h (0,−4

3 ,
4
3) by (3.10) or nm

(2) = y1
h2

(−2
3 ,

2
3 , 0) by

(3.11). Table 1 summarises the possible boundary conditions and their resulting
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first and last rows of the matrices ··M
(k)
y , respectively. Note that the case j = d is

already covered in the definition 3.1.

matrix row Dirichlet Neumann second der.
j = d j = n j = s

·
·M

(1)
y first, jm

(1) = y1
2h(0, 1, 0) y1

2h(−4
3 ,

4
3 , 0) y1

2h(−5
2 , 3, −1

2)

last, jm(1) = yN
2h (0, −1 0) yN

2h (0, −4
3 ,

4
3) yN

2h (12 , −3, 5
2)

·
·M

(2)
y first, jm

(2) = y1
h2

(−2, 1, 0) y1
h2

(−2
3 ,

2
3 , 0) y1

h2
(12 , −1, 1

2)

last, jm(2) = yN
h2

(0, 1, −2) yN
h2

(0, 2
3 , −

2
3) yN

h2
(12 , −1, 1

2)

Table 1. For non-Dirichlet boundary conditions, the first and the

last row of the matrices M
(k)
y in definition 3.1 have to be adapted.

Similarly, we have to adapt the entries (m
(k),bc
y )i,i for i = 1 and i = N of the

matrices in (3.7), compare with table 2. We realise the different types of boundary

entry i Dirichlet Neumann second der.
j = d j = n j = s( ·

·m
(1),bc
y

)
i,i

1 − y1
2h

y1
3 −y1

4 h

N yN
2h

yN
3

yN
4 h( ·

·m
(2),bc
y

)
i,i

1 y1
h2

−2y1
3h

y1
2

N yN
h2

2yN
3h

yN
2

Table 2. For non-Dirichlet boundary conditions, the entries(
M

(k),bc
y

)
i,i

in (3.7) have to be adapted.

conditions in one routine in a such a way that we are able to combine arbitrary
(different) conditions. To do so, we define the auxiliary functions

hd(x) :=
1

2
x2 − 3

2
x+ 1, hn(x) := −x2 + 2x, hs(x) :=

1

2
x2 − 1

2
x .

The variables nl, nr ∈ {0, 1, 2} in (2.6) indicate the order of the derivative of the
function w(x, t) at the left and right boundary of the interval ]xl, xr[. The auxiliary
functions have the property that, for x = nl or x = nr, there holds

h·(x) = 0 or 1 .
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Using the functions h·, the first three entries of the first row of the matrices ··M
(k)
y

are for some boundary condition on xl just given by∑
j∈{d,n,s}

hj(nl) jm
(k) .

Analogously, there holds for the last three entries of the last row of ··M
(k)
y∑

j∈{d,n,s}

hj(nr)
jm(k) .

Thus, we just need to specify nl and nr and the routine then overwrites the first
and last row of the Dirichlet matrices in (3.1) by the corresponding sums.

Now we consider the case where no boundary conditions are set. Since there is
no additional information on the function w(x, t) at x ∈ {xl, xr}, we have to solve
the PDE up to the boundary, i.e. we have to let the index i in (3.2) run from 0 to
N + 1 and the number of unknowns becomes N + 2. Now consider exemplarily the
left boundary, i = 0. As before, we need non-centered finite differences based on
grid points to the right of xl. By (3.8) and (3.9), we have

∂tw0(t) + a(x0)
2w0(t)− 5w1(t) + 4w2(t)− w3(t)

h2

+b(x0)
−3w0(t) + 4w1(t)− w2(t)

2h
+ c(xl)w0(t) = 0 .

As similar equation can derived at the right boundary (i = N+1). The equations in
(3.2) for i = 1, . . . , N do not change such that we end up again with the system (3.3)
for the N + 2 functions w(t) = (w0(t), . . . , wN+1(t))

>, where the (N + 2)× (N + 2)-
matrix A is given by

(3.13) A = i
iM

(2)
a + i

iM
(1)
b + i

iM
(0)
c .

Herein, we use the following definition, compare with definition 3.1. The left sub/-
superscript i stands for “intrinsic”.

Definition 3.2. Let y be a continuous function. Then, the (N+2)×(N+2)-matrices
i
iM

(k)
y are given as

i
iM

(0)
y :=


y(x0)

y(x1)
. . .

y(xN )
y(xN+1)

 ,
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i
iM

(1)
y :=

1

2h



−3y(x0) 4y(x0) −y(x0)
−y(x1) 0 y(x1)

−y(x2) 0 y(x2)
. . .

. . .

−y(xN ) 0 y(xN )
y(xN+1) −4y(xN+1) 3y(xN+1)


,

i
iM

(2)
y :=

1

h2



2y(x0) −5y(x0) 4y(x0) −y(x0)
y(x1) −2y(x1) y(x1)

y(x2) −2y(x2) y(x2)
. . .

. . .

y(xN ) −2y(xN ) y(xN )
−y(xN+1) 4y(xN+1) −5y(xN+1) 2y(xN+1)


.

Herein, xi = x0+ih are the N+2 equidistant grid points, and h = (xN+1−x0)/(N+
1).

Thus, no matter which boundary condition applies (Dirichlet, Neumann, second
derivative, none), we end with a system w′(t) + Aw(t) = f(t) of ordinary first order
differential equations. In Table 3 we summarise our findings.

typ p matrix A ∈ Rp×p vector f(t) = f rhs(t)−

Dirichlet N M
(2)
a + M

(1)
b + M

(0)
c

(
M

(2),bc
a + M

(1),bc
b

)
wbc(t)

Neumann N n
nM

(2)
a + n

nM
(1)
b + M

(0)
c

(
n
nM

(2),bc
a + n

nM
(1),bc
b

)
wbc(t)

second derivative N s
sM

(2)
a + s

sM
(1)
b + M

(0)
c

(
s
sM

(2),bc
a + s

sM
(1),bc
b

)
wbc(t)

intrinsic N + 2 i
iM

(2)
a + i

iM
(1)
b + i

iM
(0)
c 0

Table 3. Boundary conditions. p is the number of unknowns.

Note that for homogeneous boundary conditions, i.e. wl(t) = wr(t) = 0, there

holds f(t) = f rhs(t), independently of the type of boundary condition. Also note
that we can arbitrarily combine the considered boundary conditions. For example,
we might have no condition on the left boundary and a Neumann condition on the

right boundary. The matrix A becomes then A = n
iM

(2)
a + n

iM
(1)
b + iM

(0)
c and is a

(N + 1)× (N + 1)-matrix, since there are N + 1 unknowns w0(t), . . . , wN (t).

4. Time stepping

As we have seen in the previous section, the finite difference discretisation (with
respect to x) of the pricing PDE (2.6) leads to the system (3.3) of ordinary dif-
ferential equations satisfied by the p unknown functions wi(t). These functions
approximate at the grid points xi the value (2.2) of the financial derivative under
consideration, wi(t) ≈ V (xi, T−t). The system (3.3) is a special case of the problem



26 LINES OF CODE TO PRICE SINGLE FACTOR DERIVATIVES 12

{
w′(t) + Aw(t) = f(t)

w(tj) = wj

where tj ≥ 0 is arbitrary. The solution of the system at some time tj+1 = tj + k is
given by

(4.1) w(tj+1) = e−kAwj + k

∫ 1

0
e−kA(1−s)f(tj + ks)ds .

Typically tj = 0, tj+1 = T , wj = w0 = g, f = 0 and the i-th component of the
vector e−ATg contains the price of the derivative at inception t = 0 for the value xi
of the underlying. However, calculating the matrix exponential of −kA is feasible
(in Matlab and/or Python) only for a moderate size of A. This fact leads to the
necessity of approximating the solution of the system (3.3) rather than calculating
it analytically. We achieve such an approximation by looking at the so-called Padé
approximation of e−x. The following definition will help us to do so.

Definition 4.1. The Padé approximation of function f : R→ R admitting a power
series around x = 0, i.e., f(x) =

∑∞
j=0 cjx

j for some sequence (cj) is a rational
function of the form

(4.2) R`,m(x) :=
p`(x)

qm(x)
:=

a0 + a1x+ · · ·+ a`x
`

1 + b1x+ · · ·+ bmxm

such that

qm(x)f(x)− p`(x) = O(x`+m+1), as x→ 0 .

If this holds, we say that the order of the Padé approximation is `+m.

For f(x) = e−x it is possible to show (see for example [Tho06]) that the polyno-
mials p` and qm are given by
(4.3)

p`,m(x) =
∑̀
j=0

(`+m− j)!`!
(`+m)!(`− j)!j!

(−x)j , q`,m(x) =
m∑
j=0

(`+m− j)!m!

(`+m)!(m− j)!j!
xj .

Thus, the solution of (4.1) is, for f = 0, approximated by

w(tj+1) ≈ R`,m(kA)wj

which is with wj+1 ≈ w(tj+1) equivalent to

q`,m(kA)wj+1 = p`,m(kA)wj .

If f 6= 0, we need to approximate the integral

k

∫ 1

0
e−kA(1−s)f(tj + ks)ds

by the finite sum

k

p∑
i=1

Pi(kA)f(tj + ksi) .
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Here, the functions Pi are again rational and the numbers si ∈ [0, 1], i = 1, . . . , p, are
quadrature points. If the denominator of all the Pi’s are equal to the denominator
q`,m of the rational function R`,m, then the solution of (4.1) is approximated by

(4.4) q`,m(kA)wj+1 = p`,m(kA)wj + k

p∑
i=1

pi`,m(kA)f(tj + ksi) ,

where pi`,m is the numerator of the rational function Pi. Equation (4.4) defines a

fully discrete scheme of order O(h2 + k`+m) to solve (2.6) as follows. Set w0 = g,
chose M ∈ N∗ and let k = T

M be the time step as well as tj = jk. Then, apply the
recursion (4.4) for j = 0, 1, . . . ,M − 1 to eventually end up with wM . An element
wi,M of wM is an approximation to the function w in (2.6) evaluated at (xi, T ), which
corresponds to - up to a possible localisation error - the value of the derivative under
consideration, i.e., wi,M ≈ w(xi, T ) ≈ V (xi, 0). In order for the time stepping error
being (at least) of the same order as of the finite-difference-method (applied to x),
we must have `+m = 2.

Example 4.1. In (4.3) let ` = m = 1. Thus

p1,1(x) = 1− 1

2
x, q1,1(x) = 1 +

1

2
x .

We apply the procedure described in [Tho06][Lemma 9.2] to find the Pi’s belonging
to the rational function R1,1. It turns out that p = 1, s1 = 1

2 as well as P1(x) =
1

q1,1(x)
. Thus

(4.5)
(
I +

1

2
kA
)
wj+1 =

(
I− 1

2
kA
)
wj + kf(tj + k/2) , j = 0, 1, . . . ,M − 1

is a second-order approximation to (3.3). This scheme is called the Crank-Nicolson
scheme.

For ` = 0 and m = 1 we find p0,1(x) = 1, q0,1(x) = 1 + x and obtain the implicit
Euler scheme

(I + kA
)
wj+1 = wj + kf(tj + k) ;

for ` = 1 and m = 0 we have p1,0(x) = 1−x, q0,1(x) = 1, which leads to the explicit
Euler scheme

wj+1 = (I− kA
)
wj + kf(tj) .

Both Euler schemes have order ` + m = 1 (with respect to t) and are therefore
not interesting to be combined with the second-order approximations (3.1) with
respect to x. However, a Fourier analysis shows - see for example [GC06] - that
the Crank-Nicolson scheme in example 4.1 is not able to dampen un-smooth payoffs
appearing, for instance, in binary options (in this regard, compare also with the
pricing problem in section 6.4 for another example). This, in general, reduces the
order of the Crank-Nicolson scheme for such contracts typically from two to one.
The implicit Euler scheme, on the other hand, is known to dampen such shocks,
but converges only with first order. It was then the idea of Rannacher [Ran84] to
combine these schemes to a scheme which is, even when applied to pricing problems
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with un-smooth g, of second order. This scheme is known as the Rannacher scheme.
The idea is to apply first R > 0 (R is even) implicit Euler steps of step size k/2 and
then to use the Crank-Nicolson scheme (with step size k) for the remaining M−R/2
steps. Thus, instead of (4.5) we do the following. Set again w0 = g. Then, first do

(4.6)
(
I +

k

2
A
)
w(j+1)/2 = wj/2 +

k

2
f(tj/2 + k/2), j = 0, 1, . . . , R− 1

(where we denote by wj/2 the approximation to w(·, tj/2), with tj/2 = jk/2), then
do

(4.7)
(
I +

k

2
A
)
wj+1 =

(
I− k

2
A
)
wj + kf(tj + k/2) , j = R/2, . . . ,M − 1 .

Typically, R = 2 initial implicit Euler steps with halved time step are sufficient.
Note that we derived the Rannacher scheme (4.6)–(4.7) under the assumption

that the coefficients a, b and c in (2.6) do not depend on t. However, it turns out
that the scheme also applies in the case the coefficients are time-dependent. Since
the (constant) matrix A in (3.3) becomes in this case the matrix-valued function

t 7→ A(t) := M
(2)
a (t) + M

(1)
b (t) + M

(0)
c (t), we just need to replace the matrix A

by A(tj/2 + k/2) in (4.6) and by A(tj + k/2) in (4.7). Hence, we are able to price
derivatives for example also in the important so-called local volatility model, where
σ(x, t) in (2.1) is given by σ(x, t) = σLV(x, t)x and the coefficient a in the PDE
(2.6) becomes a(x, t) = −1

2σ
2
LV(x, T − t)x2. The construction of the local volatility

function σLV from option market data is a different story and cannot be addressed
here. We refer to [GJ14], for example.

5. Code

The considerations of the previous sections lead to the following pseudo-code to
find the approximative value of a derivative. Note/recall that n = 0 indicates a
Dirichlet boundary condition, n = 1 a Neumann boundary condition, n = 2 the
second derivative and n = 3 no boundary condition (in this case, the functions wl
and wr are ignored). The input parameters to the routine are the problem dependent
“parameters” given by the coefficients a(x, t), b(x, t) and c(x, t) of the PDE, the right
hand side function f(x, t), the initial condition g(x), the domain G =]xl, xr[, and
boundary conditions wl(t), wr(t) (together with nl and nr). Furthermore, we have to
specify the discretisation parameters N (number of (inner) grid points), M (number
of time steps) and R (number of initial implicit Euler time steps). The routine then
returns the vector of grid points xi as well as the functions values w(xi, T ) of w(x, t)
at these grid points at time t = T .

If at least one of the coefficients a, b or c are time-dependent, we need to re-
calculate the matrices A(tj) and Mbc(tj) in every time step. This is time consuming
and can not be avoided. If none of the coefficients depend on t, the matrix-valued
function t 7→ A(t) is constant and can be evaluated once outside the loop of the time
stepping. The time stepping is realised in the subroutine rannacher; the parameter
td indicates wether the coefficients depend on t (td 6= 0) or not (td = 0).

In Matlab/Octave, the pseudo code may thus take the following form.
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Define the functions a(x, t), b(x, t), c(x, t), f(x, t) and g(x). Define T > 0.
Define xl, xr ∈ R, nl, nr ∈ {0, 1, 2, 3}, and wl(t), wr(t).
Chose N,M,R ∈ N×, R even. Set k := T/M .

Get the matrix-valued function t 7→ A(t) := M
(2)
a (t) + M

(1)
b (t) + M

(0)
c (t).

Get the matrix-valued function t 7→Mbc(t) := M
(2),bc
a (t) + M

(1),bc
b (t).

Set w0 := g.

For j = 0, 1, . . . , R− 1,

Set tj := (j + 1)k/2. Set fj := f rhs(tj)−Mbc(tj)w
bc(tj).

Solve the system(
I + k

2A(tj)
)
w(j+1)/2 = wj/2 + k

2 fj

For j = R/2, . . . ,M − 1,

Set tj = (j + 1/2)k. Set fj = f rhs(tj)−Mbc(tj)w
bc(tj).

Solve the system(
I + k

2A(tj)
)
wj+1 =

(
I− k

2A(tj)
)
wj + kfj

Output the vector x of grid points and the function values wM

at these grid points.

Table 4. Description of the fully discrete scheme to solve the PDE (2.6)

1 function [x,w] = pricing_1d(a,b,c,T,xl ,wl,nl,xr ,wr,nr,g,f,N,M,R,td)

2

3 % define grid , mesh width , time step , boundary conditions

4 h = (xr-xl)/(N+1); x = (xl:h:xr) ’; BC = [nl nr];

5 if nl < 3; x(1) = []; end , if nr < 3; x(end)= []; end

6

7 % define matrix functions t -> A(t), t -> Mbc(t)

8 [M2 ,M1,M0,M2bc ,M1bc] = matgen_t ({{’M2’,a},{’M1’,b},{’M0’,c}},BC,xl ,xr,N);

9 A = @(t)M2(t)+M1(t)+M0(t); I = speye(length(x)); Mbc = @(t)M2bc(t)+M1bc(t);

10

11 % the vector valued function t -> wbc(t), time stepping

12 wbcl = sparse(length(I) ,1); wbcr = wbcl;

13 wbcl (1) = 1; wbcr(end) = 1; wbc = @(t)wl(t)*wbcl+wr(t)*wbcr;

14 w = rannacher(I,A,g(x),@(t)f(x,t)-Mbc(t)*wbc(t),T/M,M,R,td);

15

16 function w = rannacher(I,A,w,f,k,M,R,td)

17 if td == 0

18 A = A(0); for j = 1:R, tj = j*k/2; w = (I+k/2*A)\(w+k/2*f(tj)); end

19 B = I + k/2*A; C = I - k/2*A;

20 for j = R/2+1:M, tj = (j -1+0.5)*k; w = B\(C*w+k*f(tj)); end

21 else

22 for j = 1:R, tj = j*k/2; w = (I+k/2*A(tj))\(w+k/2*f(tj)); end

23 for j = R/2+1:M

24 tj = (j -1+0.5)*k; Aj = A(tj); w = (I+k/2*Aj)\((I-k/2*Aj)*w+k*f(tj));

25 end
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26 end

The corresponding Python code looks almost the same.

1 import numpy as np; from scipy import sparse;

2 from scipy.sparse.linalg import spsolve; from matgen_t import matgen_t

3

4 def rannacher(I,A,w,f,k,M,R,td):

5 if td == 0:

6 A = A(0); B = I + k/2*A; C = I - k/2*A;

7 for j in range(0,R): tj = (j+1)*k/2; w = spsolve(I+k/2*A,w+k/2*f(tj))

8 for j in range(int(R/2),M): w = spsolve(B,C*w+k*f(tj));

9 else:

10 for j in range(0,R):

11 tj = (j+1)*k/2; B = I+k/2*A(tj); w = spsolve(B,w+k/2*f(tj));

12 for j in range(int(R/2),M):

13 tj = (j+0.5)*k; Aj = A(tj); B = I+k/2*Aj; C = I-k/2*Aj;

14 w = spsolve(B,C*w+k*f(tj));

15 return w

16

17 def pricing_1d(a,b,c,T,xl,wl ,nl,xr,wr ,nr,g,f,N,M,R,td):

18 # define grid , mesh width , time step

19 h = (xr-xl)/(N+1); x = np.arange(xl,xr+h,h);

20 x = x[1:] if nl <3 else x; x = x[:-1] if nr <3 else x

21

22 # define matrix functions t -> A(t), t -> Mbc(t)

23 I = sparse.eye(N+(nr==3)+(nl==3));

24 Mat = matgen_t ([["M2",a],["M1",b],["M0",c]],[nl,nr],xl ,xr,N);

25 A = lambda t:Mat [0](t)+Mat [1](t)+Mat [2](t); Mbc = lambda t: Mat [3](t)+Mat

[4](t)

26

27 # the vector valued function t -> wbc(t), time stepping

28 wbcl = np.zeros(len(x)); wbcr = np.zeros(len(x))

29 wbcl [0] = 1; wbcr[-1] = 1; wbc = lambda t:wl(t)*wbcl+wr(t)*wbcr;

30

31 w = rannacher(I,A,g(x),lambda t:f(x,t)-Mbc(t)*wbc(t),T/M,int(M),R,td);

32 return x, w

The subroutine matgen t outputs for any of the discussed boundary conditions

the matrix-valued functions t 7→M
(k)
y (t) and t 7→M

(k),bc
y (t).

6. Examples

In this section, we give examples which fit into the framework of the pricing
problem (2.6). For each of these examples, we provide (uncommented) Matlab and
Python codes which solve the corresponding pricing problems. Whereas both Matlab
and Python yield the same prices, the computation time in Matlab is typically
shorter than in Python, especially if the coefficients a, b, c of the PDE do not depend
on t.

6.1. Double knock-out call in the CEV model. We consider a double barrier
(knock-out) call option with lower and upper barriers L and U , respectively, and
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strike K in the CEV model. Hence, the domain G in (2.3) is equal to G =]L,U [, and,
since the option becomes worthless when the underlying hits L or U , the boundary
conditions in (2.6) are wl(t) = wr(t) = 0 (homogeneous Dirichlet conditions). The
functions µ and σ in (2.1) are in the CEV model µ(x, t) = (r−q)x and σ(x, t) = δxβ,
where δ > 0 and β ∈ R are model parameters to be found by calibration of the model
to market data. Hence, the coefficients a, b, c and f in (2.6) are a(x, t) = −1

2δ
2x2β,

b(x, t) = −(r − q)x, c(x, t) = r and f ≡ 0.
The function doubleknockoutcall realises this in Matlab/Octave

1 function V = doubleknockoutcall(x0 ,beta ,delta ,r,q,U,L,K,T)

2

3 a = @(x,t) -0.5* delta ^2*x.^(2* beta); b = @(x,t) -(r-q)*x;

4 c = @(x,t)r*x.^0; g = @(x)max(x-K,0); N = 2^11 -1; M = ceil (0.1*N);

5 [x,w] = pricing_1d(a,b,c,T,L,@(t)0,0,U,@(t)0,0,g,@(x,t)0,N,M,2,0);

6 V = interp1(x,w,x0 ,’spline ’);

respectively in Python

1 import numpy as np; from scipy.interpolate import interp1d

2 from pricing_1d import pricing_1d

3

4 def doubleknockoutcall(x0,beta ,delta ,r,q,U,L,K,T):

5

6 a = lambda x,t: -0.5* delta **2*x**(2* beta); b = lambda x,t: -(r-q)*x;

7 c = lambda x,t:r*(x)**0; f = lambda x,t:0;

8 g = lambda x: np.maximum(x-K,0); N = 2**11 -1; M = np.ceil (0.1*N);

9 x,w = pricing_1d(a,b,c,0.5,L,lambda t:0,0,U,lambda t:0,0,g,f,N,M,2,0);

10 return interp1d(x,w,kind=’cubic ’)(x0)

Now consider the particular example of a stock with initial price x0 = 100 which
pays no dividend, q = 0. The CEV model parameters are chosen to be β = −3

and δ = 0.25x1−β0 . The parameters of the option are set to L = 90, U = 120,
T = 0.5. The risk free is r = 0.1. We apply the function doubleknockoutcall

to strikes K ∈ {95, 100, 105} and obtain the corresponding option prices V ∈
{3.80882413, 2.50592423, 1.36967823}. In [DL01], the authors state the values V ∈
{3.8088, 2.5059, 1.3696}, which they obtain by inverting Laplace transforms.

We remark that Matlab finds the option values about 3 times faster than Python.

6.2. Fixed-strike asian call in the BS model. Consider a (discrete) set of J+1
observation points T := {t0, t1, . . . , tJ} with t0 = 0 and tJ = T . Denote by A(T )
the discrete average of the underlying X(t) over T , i.e.,

A(T ) :=
1

J + 1

J∑
j=0

X(tj) .

The payoff of a so-called fixed strike (discretely monitored) asian call option with
strike K and maturity T is then

g
(
A(T )

)
= max{A(T )−K, 0} .



26 LINES OF CODE TO PRICE SINGLE FACTOR DERIVATIVES 18

If we assume that the underlying X follows a geometric Brownian motion, then one
can show (see [Věc02]) that the price V (x0, 0) of this option at inception can be
written as the product

(6.1) V (x0, 0) = x0v
(
h(T )− e−rT K

x0
, T
)
,

where the function v = v(y, t) is solution of the PDE

(6.2)

{
∂tv + a(y, t)∂yyv = 0 in R×]0, T ]

v(y, 0) = g(y) in R ,

and where the coefficient a(y, t) as well as the initial condition g are given by

a(y, t) := −1

2
σ2
(
y − e−q(T−t)h(t)

)2
, g(y) = max{y, 0} .

The function t 7→ h(t) appearing in a(y, t) is given by

h(t) :=
1

J + 1
e−qt

J∑
j=ω(t)

e(−r+q)(T−tj) ,

with the step-function

ω(t) := j if tj ≤ T − t < tj+1 .

The PDE (6.2) needs to be localised to a finite interval ]yl, yr[ and boundary condi-
tions have to be set. We thus consider the particular problem of (2.6), which reads
as follows: Find w(y, t) such that

(6.3)


∂tw + a(y, t)∂yyw = 0 in ]yl, yr[×]0, T ]

w(yl, t) = 0 in ]0, T ]
∂yw(yr, t) = 1 in ]0, T ]
w(y, 0) = g(y) in ]yl, yr[

.

The boundary conditions as well as the values of boundaries

yl = − 1

J + 1

n∑
j=0

e(r−q+σ
2/2)tj+4σ

√
tj , yr = h(T )

are derived in [Yu12]. The function asiancall is a realisation of (6.3) in Mat-
lab/Octave

1 function V = asiancall(x0,sigma ,r,q,T,Tau ,K,N,M)

2

3 tj = [eps;Tau]; omega = @(t)find(tj+t-T>0,1,’first’) -1; J = length(tj) -1;

4 d = exp((-r+q)*(T-tj)); h = @(t)exp(-q*t)*sum(d(omega(t)+1:J+1))/(J+1);

5 a = @(x,t) -1/2* sigma ^2*(x-exp(-q*(T-t)).*h(t)).^2; b = @(x,t)0*x; c = @(x,t)

0*x;

6 g = @(x)max(0,x); yr = h(T); wr = @(t)1; wl = @(t)0;

7 yl = -exp(-r*T)*sum(exp((r-q+sigma ^2/2)*tj+4* sigma*sqrt(tj)))/(J+1);

8 [y,w] = pricing_1d(a,b,c,T,yl,wl ,0,yr ,wr ,1,g,@(x,t)0,N,M,2,1);

9 V = x0.* interp1(y,w,h(T)-exp(-r*T)*K./x0);

and in Python
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1 import numpy as np; from scipy.interpolate import interp1d

2 from pricing_1d import pricing_1d

3

4 def asiancall(x0,sigma ,r,q,T,Tau ,K,N,M):

5

6 tj = np.hstack ((0,Tau)); omega = lambda t: (tj+t-T>0).nonzero () [0][0];

7 J = len(tj) -1; d = np.exp((-r+q)*(T-tj));

8 h = lambda t: np.exp(-q*t)*np.sum(d[omega(t) -1*(t==T):J+2])/(J+1);

9 a = lambda x,t: -0.5* sigma **2*(x-np.exp(-q*(T-t))*h(t))**2; b = lambda x,

t:0*x;

10 c = lambda x,t:0*x; g = lambda x:np.maximum(x,0); yr = h(T); wr = lambda

t:1;

11 yl = -np.exp(-r*T)*np.sum(np.exp((r-q+sigma **2/2)*tj+4* sigma*np.sqrt(tj))

)/(J+1);

12 y,w = pricing_1d(a,b,c,T,yl,lambda t:0,0,yr ,wr ,1,g,lambda t,x:0,N,M,2,1);

13 return x0*interp1d(y,w,kind=’linear ’)(h(T)-np.exp(-r*T)*K/x0)

Here, Tau is a vector containing the observation points T = {t1, t2, . . . , tJ}
(without t0 = 0). We now consider the particular example where tj = j

250T ,

j = 0, 1, . . . , 250, T = 1, and K ∈ {90, 100, 110}1. For the values x0 = 100,
σ = 0.17801, r = 0.0367 and q = 0 we find by applying the function asiancall

with N = 211 − 1 (inner) grid points and M = J = 250 time steps the option
values V (x0, 0)

.
= {11.940566, 4.952142, 1.413360}. In [LX12], the authors state the

values V (x0, 0) = {11.940563, 4.952157, 1.414467}, which they obtain by applying a
transform method. Matlab/Octave is about 30% faster than Python.

6.3. Receiver-swaption in the CIR++ model. We consider the so-called CIR++
model, where the short rate X(t) is given by X(t) = Y (t) + ϕ(t). Here, Y (t) is a
stochastic process satisfying the CIR SDE (2.5), and ϕ(t) is a deterministic function
(called shift) chosen such that the zero-bond curve at t = 0 implied by the model
X coincides with the zero-bond curve of the market. It turns out then that ϕ must
be equal to the difference of the forward curve of the market and the forward curve
implied by the model Y , i.e., ϕ(t) = fM(0, t)− fY(0, t), see for example [BM06].

We price a swaption with strike K and maturity T = T0 written on a receiver-
swap with tenor T = {T1, T2, . . . , TJ}, where T < T1. For a description of these
financial products, see again [BM06]. The value V (x, t) of the swaption solves the
PDE {

∂tV +A(t)V − xV = 0 in G× [0, T [
V (x, T ) = g(VrS(T )) in G

with g(x) = max{x, 0}. Herein, A(t) is the (time-dependent) generator of the
process X

A(t) =
1

2
σ2
(
x− ϕ(t)

)
∂xx +

(
κ(m− x+ ϕ(t)) + ϕ′(t)

)
∂x

1We have to solve the PDE (6.2) only once and obtain the option values for an arbitrary number
of (different) strikes by (6.1) and interpolation.
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and VrS(T ) is the value at t = T of the corresponding receiver swap, which is (we
assume that the nominal is equal to 1) given by

VrS(T ) = P (T, TJ)− P (T, T0) +K

J∑
j=1

(Tj − Tj−1)P (T, Tj)

= K
J−1∑
j=1

(Tj − Tj−1)P (T, Tj) +
(
1 +K(TJ − TJ−1)

)
P (T, TJ)− 1 .(6.4)

Herein, every zero-bond with price P (T, Tj) := Vj(x, t) solves the PDE{
∂tVj +A(t)Vj − xVj = 0 in G× [T, Tj [

Vj(x, Tj) = 1 in G
.

Hence, to find the value of the swaption with the proposed algorithm, we switch to
time-to-maturity and restrict the domain G to ]xl, xr[. We then solve first for the
J zero-bonds, conduct the summation (6.4) to get the payoff g(VrS(T )) and finally
solve the PDE for the swaption. The pricing equation of the j-th zero-bond becomes
a particular example of the PDE (2.6), with source-term f ≡ 0, maturity Tj − T0
and coefficients

a(x, t) = −1

2
σ2
(
x− ϕ(Tj − t)

)
,

b(x, t) = −
(
κ(m− x+ ϕ(Tj − t)) + ϕ′(Tj − t)

)
,

c(x, t) = x .

Furthermore, the pricing equation of the swaption itself is again of the form (2.6),
with maturity T0 and coefficients as above, where Tj has to be replaced by T0. In
all of the J + 1 PDEs, we let xr = 2 and chose no boundary condition on xl and
a homogenous Neumann condition on xr. It remains to specify xl. As the function
a(x, t) must be non-positive, we need x ≥ ϕ(Tj − t), t ∈ [0, Tj − T ]. If we assume
that ϕ is strictly increasing on [T, Tj ], then the minimum of ϕ(Tj − t) is attained at
t = Tj − T , such that we let xl = ϕ(T ).

We need to specify the deterministic shift ϕ(t) = fM(0, t) − fY(0, t) appearing
in the pricing equations. Since the CIR model is affine, the forward curve of Y is
known to be

fY(0, t) = ∂TA(0, t) + ∂TB(0, t)y0 ,

where ∂T means taking the derivative with respect to the second argument and
where the functions A(t, T ) and B(t, T ) are given by

A(t, T ) := −2κm

σ2
ln

2de(κ+d)(T−t)/2

Z
, B(t, T ) := 2

ed(T−t) − 1

Z
,

with Z := (κ + d)(ed(T−t) − 1) + 2d and d :=
√
κ+ 2σ2, compare for example

with [BM06]. The forward curve fM(0, t) of the market is given by fM(0, t) =
−∂T lnPM(0, t), such that we need the zero-bond curve t 7→ PM(0, t) of the market.
This mapping can be obtained by market prices PM

i of zero-bonds with maturity ti
and some interpolation procedure. We simplify things by assuming that PM(0, t) is



26 LINES OF CODE TO PRICE SINGLE FACTOR DERIVATIVES 21

given as PM(0, t) = e−αt+β(1−e
−γt) for positive constants α, β, γ, compare with figure

1. Note that since also ϕ′(t) appears in the coefficients a and b of the pricing equa-
tions, we will also need to calculate the second derivatives ∂TTA(t, T ), ∂TTB(t, T )
and ∂T f

M(0, T ) = −∂TT lnPM(0, T ).

T
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(0
,
T
)
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Figure 1. The hypothetical zero-bond curve T 7→ PM(0, T ) =

e−αT+β(1−e
−γT ) of the market. We take the parameter values α =

0.014806, β = 0.082234, γ = 0.235463.

The function receiverswaption returns the value of the swaption. Here, the
input parameter Tau is a vector corresponding to T , fM and fM t are the forward
curve of the market fM(0, T ) and its derivative ∂T f

M(0, T ), respectively. They need
to be entered as functions (via @ in Matlab, via lambda in Python).

1 function V = receiverswaption(y0,kappa ,m,sigma ,K,T,Tau ,fM ,fM_t)

2

3 d = sqrt(kappa ^2+2* sigma ^2); Z = @(x,y)(kappa+d)*(exp(d*(y-x)) -1)+2*d;

4 A_T = @(x,y)kappa*m*(d^2-kappa ^2)/sigma ^2*( exp(d*(y-x)) -1)./Z(x,y);

5 A_TT = @(x,y)2*d^2* kappa*m*(d^2-kappa ^2)/sigma ^2*exp(d*(y-x))./Z(x,y).^2;

6 B_T = @(x,y)4*d^2*exp(d*(y-x))./Z(x,y).^2;

7 B_TT = @(x,y) -4*d^3* exp(d*(y-x)).*(( kappa+d)*(exp(d*(y-x))+1) -2*d)./Z(x,y)

.^3;

8 fY = @(x)A_T(0,x)+B_T(0,x)*y0; fY_t = @(x)A_TT(0,x)+B_TT(0,x)*y0;

9 phi = @(x)fM(x)-fY(x); phi_t = @(x)fM_t(x)-fY_t(x);

10

11 g = @(x)1; wl = @(t)0; wr = @(t)0; xl = phi(T); c = @(x,t)x; Tau = [T;Tau];

12 z = K*diff(Tau); z(end) = 1+z(end); N = 2^10 -1; M = ceil (0.05*N); V = -1;

13

14 for j = 1: length(Tau)-1

15 a = @(x,t) -0.5* sigma ^2*(x-phi(Tau(j+1)-t));

16 b = @(x,t)-kappa *(m-x+phi(Tau(j+1)-t))-phi_t(Tau(j+1)-t);

17 [x,w] = pricing_1d(a,b,c,Tau(j+1)-Tau(1),xl ,wl ,3,2,wr ,1,g,@(x,t)0,N,M

,2,1);

18 V = V+z(j)*w;

19 end
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20

21 a = @(x,t) -0.5* sigma ^2*(x-phi(Tau(1)-t)); g = @(x)max(V,0); M = ceil (0.15*N);

22 b = @(x,t)-kappa *(m-x+phi(Tau(1)-t))-phi_t(Tau(1)-t);

23 [x,w] = pricing_1d(a,b,c,Tau(1),xl,wl ,3,2,wr ,1,g,@(x,t)0,N,M,2,1);

24 V = interp1(x,w,y0+phi(0));

1 import numpy as np; from scipy.interpolate import interp1d

2 from pricing_1d import pricing_1d

3

4 def receiverswaption(y0 ,kappa ,m,sigma ,K,T,Tau ,fM,fM_t):

5

6 d = np.sqrt(kappa **2+2* sigma **2); Z = lambda x,y:(kappa+d)*(np.exp(d*(y-x

)) -1)+2*d;

7 A_T = lambda x,y:kappa*m*(d**2-kappa **2)/sigma **2*(np.exp(d*(y-x)) -1)/Z(x

,y);

8 A_TT = lambda x,y:2*d**2* kappa*m*(d**2- kappa **2)/sigma **2*np.exp(d*(y-x))

/Z(x,y)**2;

9 B_T = lambda x,y:4*d**2*np.exp(d*(y-x))/Z(x,y)**2;

10 B_TT = lambda x,y:-4*d**3*np.exp(d*(y-x))*(( kappa+d)*(np.exp(d*(y-x))+1)

-2*d)/Z(x,y)**3;

11 fx = lambda x:A_T(0,x)+B_T(0,x)*y0; fx_t = lambda x:A_TT(0,x)+B_TT(0,x)*

y0;

12 phi = lambda x:fM(x)-fx(x); phi_t = lambda x:fM_t(x)-fx_t(x); g = lambda

x:x**0;

13

14 c = lambda x,t:x; wl = lambda t:0; wr = lambda t:0; xl = phi(T);

15 Tau = np.hstack ((T,Tau)); tau = np.diff(Tau); z = K*tau; z[-1] = 1+z[-1];

16 N = 2**10 -1; M = np.ceil (0.05*N); V = -1;

17

18 for j in range(0,len(Tau) -1):

19 a = lambda x,t: -0.5* sigma **2*(x-phi(Tau[j+1]-t));

20 b = lambda x,t:-kappa*(m-x+phi(Tau[j+1]-t))-phi_t(Tau[j+1]-t);

21 x,w = pricing_1d(a,b,c,Tau[j+1]-Tau[0],xl,wl ,3,2,wr ,1,g,lambda x,t:0,

N,M,2,1);

22 V = V+z[j]*w;

23

24 a = lambda x,t: -0.5* sigma **2*(x-phi(Tau[0]-t)); g = lambda x:np.maximum(V

,0);

25 b = lambda x,t: -kappa *(m-x+phi(Tau[0]-t))-phi_t(Tau[0]-t); M = np.ceil

(0.15*N);

26 x,w = pricing_1d(a,b,c,Tau[0],xl,wl ,3,2,wr ,1,g,lambda x,t:0,N,M,2,1);

27 return interp1d(x,w,kind=’linear ’)(y0+phi (0))

For the particular case y0 = 0.03, K = 0.02, T = T0 = 2, T = {3, 4, 5, 6, 7}
and κ = 2, m = 0.02, σ = 0.1, receiverswaption returns V

.
= 0.06034864. In

the CIR++ model, the value of the swaption can be obtained analytically (via
Jamshidian’s trick, see [BM06]); the exact value is V

.
= 0.06034871. Again, Matlab

is about 30% faster than Python.

6.4. Express certificate in the BS model. Express certificates are structured
products belonging to the group of so-called yield enhancement products. A typical
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specification of the redemption of such a product is as follows. If there was no early
redemption, then the holder of the product receives (at the redemption date)

1{X(T )≤B}
X(T )

X(0)
N + 1{B<X(T )}N ,

where X(t) denotes the level of the underlying at t, B < X(0) is some barrier and
N is the denomination. If an early redemption occurs at a (pre-defined) autocall
observation date tAj , the product expires immediately and the holder receives (at the

corresponding early redemption date tRj ) the denomination plus an early redemption
coupon amount N + cj . Typically, there are J > 1 autocall observation dates
T A := {tA1 , tA2 , . . . , tAJ } and the last of these dates is equal to the maturity of the
product, T = tAJ . Furthermore, the j-th redemption date satisfies tRj > tAj , and the

time span δj := tRj − tAj between an autocall observation date and its corresponding

early redemption date (typically a few days) has taken into account when it comes
to the pricing of the product (compare with the payoff functions gj below).

An early redemption occurs if the underlying at the autocall observation date tAj
is above its so-called autocall trigger level B < Lj ≤ X(0), i.e., if X(tAj ) > Lj . Now

assume that the product was not early redeemed at tAJ−1. Then, since it could be

early redeemed at tAJ = T , the redemption of the product at tRJ > T is

(6.5) g(X(T )) = 1{X(T )≤B}
N

X(0)
X(T ) + 1{B<X(T )≤LJ}N + 1{X(T )>LJ}(N + cJ) .

To price this product, we thus need to solve a sequence of J PDEs: For j = J, J −
1, . . . , 1 find Vj(x, t) such that

(6.6)

{
∂tVj +AVj − rVj = 0 in G×]tAj−1, t

A
j ]

Vj(s, t
A
j ) = gj in G

,

where G = R+. Herein, we start with the payoff function

gJ(x) =
(

1{x≤B}
N

X(0)
x+ 1{B<x≤LJ}N + 1{x>LJ}(N + cJ)

)
e−rδJ ,

compare with (6.5), and the remaining payoff functions depend wether the underly-
ing at tAj is above or below the autocall trigger level Lj , i.e., for j = J−1, J−2, . . . , 1

gj(x) = (N + cj)1{x>Lj}e
−rδj + Vj+1(x, t

A
j )1{x≤Lj} .

The value V of the product at inception is then given by V1(x0, 0).
We now consider the particular example of such a product (with ISIN

CH0401668162) on the EURO STOXX 50, where t = 0 corresponds to 15/02/18
with X(0) = x0 = 3389.63 and where J = 6, N = 1000,

Lj = (1.04− 0.04j)X(0) ,

B = 0.55X(0) and cj = 55j, j = 1, . . . , J . Furthermore, the autocall observation
dates and early redemption dates are tA1 = 15/02/19, tA2 = 17/02/20, tA3 = 15/02/21,
tA4 = 15/02/22, tA5 = 15/02/23, tA6 = 15/02/24 as well as tR1 = 20/02/19, tR2 =
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20/02/20, tR3 = 19/02/21, tR4 = 18/02/22, tR5 = 20/02/23, tR6 = 22/02/24. To
measure the time spans τj := tAj − tAj−1 and δj , we need to agree on any of the

available day-count conventions. Here, we apply the so-called 30/360 European rule,
which leads to the sets (all values need to be divided by 360 to get year fractions)

T A = {tA1 , . . . , tAJ } = {360, 722, 1080, 1440, 1800, 2160} ,
T R = {tR1 . . . , tRJ } = {365, 725, 1083, 1443, 1805, 2167} .

To model the time evolution of the underlying, we use the Black-Scholes model,
such that the generator A in the sequence (6.6) is as in example 2.1, i.e., A =
1
2σ

2x2∂xx + (r − q)x∂x. To solve the sequence of PDEs (6.6), we switch to time-

to-maturity vj(x, t) := Vj(x, t
A
j − t), t ∈]tAj−1, t

A
j ] and need to restrict to a bounded

domain [0, xr[, where we apply no boundary condition on x = 0 and a homogeneous
Neumann condition on x = xr. Thus, each of the (localised) PDEs in (6.6) is of the
form (2.6),  ∂twj −Awj + rwj = 0 in [0, xr[×]0, τj ]

∂xwj(xr, t) = 0 in ]0, τj ]
wj(x, 0) = gj in [0, xr[

.

Here, j runs from J to 1, τj = tAj − tAj−1 with t0 := 0, and

gj(x) = (N + cj)1{x>Lj}e
−rδj + wj+1(x, τj+1)1{x≤Lj}, j = J − 1, J − 2, . . . , 1 .

The value of the express certificate at t = 0 is then V1(x0, 0) = v1(x0, t
A
1 ) ≈

w1(x0, t
A
1 ). The function expresscertificate is a realisation of the above se-

quence. Here, the inputs L,C,TauR,TauA are vectors of length J involving Lj , cj ,
tRj and tAj , respectively.

1 function V = expresscertificate(x0 ,sigma ,r,q,Nom ,B,L,C,TauR ,TauA)

2

3 D = exp(-r*(TauR -TauA)); Tau = [0,TauA]; tau = diff(Tau); xr = 4*x0;

4 a = @(x,t) -1/2* sigma ^2*x.^2; b = @(x,t)-(r-q)*x; c = @(x,t)r*x.^0;

5 wl = @(t)0; wr = wl; N = 2^11 -1; M = ceil (0.05*N);

6 g = @(x)(Nom*x./x0.*(x<=B)+Nom*(B<x).*(x<=L(end))+(x>L(end))*(Nom+C(end)))*D(

end);

7

8 for j = length(tau):-1:1

9 [x,w] = pricing_1d(a,b,c,tau(j),0,wl ,3,xr,wr ,1,g,@(x,t)0,N,M,2,0);

10 g = @(x)(Nom+C(j-1))*(x>L(j-1))*D(j-1)+w.*(x<=L(j-1));

11 end

12 V = interp1(x,w,x0);

1 import numpy as np; from scipy.interpolate import interp1d

2 from pricing_1d import pricing_1d

3

4 def expresscertificate(x0,sigma ,r,q,Nom ,B,L,C,TauR ,TauA):

5

6 D = np.exp(-r*(TauR -TauA)); Tau = np.hstack ((0,TauA)); tau = np.diff(Tau)

;

7 a = lambda x,t: -1/2* sigma **2*x**2; b = lambda x,t:-(r-q)*x; c = lambda x,

t:r*x**0;
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8 xr = 4*x0; wl = lambda t:0; wr = lambda t:0; N = 2**11 -1; M = np.ceil

(0.05*N);

9 g = lambda x: (Nom*x/x0*(x<=B)+Nom*(B<x)*(x<=L[-1])+(x>L[-1])*(Nom+C[-1])

)*D[-1];

10

11 for j in range(len(tau) ,0,-1):

12 [x,w] = pricing_1d(a,b,c,tau[j-1],0,wl ,3,xr ,wr ,1,g,lambda x,t:0,N,M

,2,0);

13 g = lambda x:(Nom+C[j-1])*(x>L[j-1])*D[j-1]+w*(x<=L[j-1]);

14

15 return interp1d(x,w,kind=’linear ’)(x0)

At t = 0, we take from Bloomberg the values σ = 0.173, q = 0.0336 and
r = 0.00685. The function expresscertificate then returns V1(x0, 0)

.
= 973.66,

whereas on the term sheet of the product the issuer states the value 981.50. Matlab
is about 3 times faster than Python.
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2006.

[Ran84] R. Rannacher, Finite element solution of diffusion problems with irregular data, Nu-
merische Mathematik 43 (1984), no. 2, 309–327.

[Tho06] V. Thomée, Galerkin Finite Element Methods for Parabolic Problems, 2nd ed., Springer
Series in Computational Mathematics, vol. 25, Springer, 2006.
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