The Cloudification Perspectives of Search-based Software Testing

Diego Martin
Zurich University of Applied Science (ZHAW)
Winterthur, Switzerland
marg@zhaw.ch

Sebastiano Panichella
Zurich University of Applied Science (ZHAW)
Winterthur, Switzerland
panc@zhaw.ch

Abstract—To promote and sustain the future of our society, the most critical challenge of contemporary software engineering and cloud computing experts are related to the efficient integration of emerging cloudification and DevOps practices in the development and testing processes of modern systems. In this context, we argue that SBST can play a critical role in improving testing practices and automating the verification and validation (V&V) of cloudification properties of Cloud Native Applications (CNA). Hence, in this paper, we focus on the untouched side of SBST in the cloud field, by discussing (1) the testing challenges in the cloud research field and (2) summarizing the recent contributions of SBST in supporting development practices of CNA. Finally, we discuss the emerging research topics characterizing the cloudification perspectives of SBST in the cloud field.

Keywords—Cloud Native Applications, Search-based Software Testing, Test Suite Generation

I. INTRODUCTION

The first work on Search-Based Software Testing (SBST) appeared in 1976 [1] and in the last decade the SBST research field reached a high maturity, with several research work and tools [2]–[5] aimed at supporting test data generation and test suite quality assessment [6]–[9].

The most critical challenge of software engineering and cloud computing experts is related to the efficient integration of emerging cloudification [10] and DevOps practices in the development and testing processes of modern systems. This put in place the need of solutions ensuring, quantifying, and verifying the elastic scalability (i.e., adjusting their capacity by adding or removing resources) and resiliency (i.e., anticipating failures and fluctuation) [11] of the software/hardware (micro)services composing the systems.

In the cloud field, SBST strategies have been recently experimented for task scheduling [12] and service composition [13]. We argue that SBST can play a critical role in the supporting the verification and validation (V&V) of cloud native applications. Hence, in this paper, we summarize the main challenges and opportunities on the untouched side of the SBST in the cloud field.

II. ANALYSIS AND DISCUSSION

A. Cloud Testing Literature Insights

Cloud-native applications (CNAs) are “distributed, elastic and horizontal-scalable systems composed of (micro)services which isolates states in a minimum of stateful components” [14]. Each self-contained deployment unit of CNAs is designed according to cloud-focused design patterns and operated on a self-service elastic platform. This means that CNAs are supposed to be composable, decoupled, elastic and resilient [14].

Even though most of these properties have been investigated/analyzed in the literature [15], [16], there are still open problems/challenges where SBST could contribute:

2) CNAs Adaptations: Provide tools for V&V of cloud migrations or migration between cloud providers.

4) Local v.s. Global V&V: Provide automated V&V of microservices evolutions that verify the behaviour of each microservice in isolation (local level) as well as the global microservices’ behaviour and interactions in the system.

5) Execution Time: Execution of test suites should be efficient and effective, and should encapsulate advanced coverage criteria for microservices based architecture.

B. Literature review of SBST for the cloud

SBST literature in the cloud field focused on the optimization of testing frameworks [17], [18] and the stress of basic CNA properties (elasticity [19] and resiliency [20]), with some work analyzing the challenges of cloud migrations [21] and the possibilities of using combinatorial testing [22]. However, some of the challenges previously identified are completely untouched.

We conducted a literature review on SBST papers published in the last 5 years (period 2014-2019), focusing on the works that contributed to the cloud research field.

The literature review has been performed by using DBLP as main source of information. Specifically, in the period analyzed, the selection of papers in DBLP was performed by using specific sets of search keywords, according to the following logic formula: CLOUD ∧ (GENETIC ∨ COMBINATORIAL) ∨ SIMULATED ANNEALING ∨ TABU SEARCH ∨ PROFILING ∨ SLICING ∨ COVERAGE ∨ COEVOLUTION ∨ MUTATION ∨ MORPH ∨ HEALING ∨ SELF REPAIR ∨ HILL CLIMBING ∨ SEARCH BASED).

The aforementioned filter resulted in only 6 papers relevant to SBST applications in the cloud field from the 396
initial papers. Replication package available online\(^1\).

C. SBST cloud future perspectives

In this section, we discuss how SBST is a potential solution to the challenges identified in the cloud testing field.

1) V&V of CNA properties & Local vs. Global V&V: Test case generation for the V&V of CNA properties is still a widely unexplored field, and metrics and tools should be designed in order to guide the generation and the quality assessment of corresponding tests. Finally, to ensure a local and global V&V of CNA applications, properties, and microservices composition/interactions, we envision SBST strategies, encapsulating smart mechanisms able to assess the inputs that most impact, affect, interacts with the coordination and evolution of the microservices architecture.

2) CNA Adaptations: SBST techniques and their use for V&V of CNA properties has a perfect matching for the analytic support to CNA Adaptation/Migration challenges.

3) Microservices Evolution & System Coverage: The use of profiling and slicing dynamic analysis techniques can be combined with SBST strategies to understand/monitor how CNA code fragments behave, and to identify potential architectural flaws or flow bottlenecks in the execution time. This can give the developers a profound understanding/view of the evolution of a system as a whole.

4) Execution Time: SBST strategies, from Simulated Annealing, Hill Climbing to Ant Colonies techniques, are characterized by the capabilities to lead to autonomous optimizations, with high potential in helping developers achieve the typical execution-time requirements of CNA.

D. Position

The authors posit that SBST techniques can play a major role in the upcoming future of cloud testing, with automated strategies based on CNA properties and practices, enabling dynamic failures identification and fixing.

REFERENCES

\(^1\)https://github.com/GoDieNow/CloudSBSTPerspectives

