
www.embedded-world.eu

Security on IoT Devices with Secure Elements

Tobias Schläpfer, Andreas Rüst

Zurich University of Applied Science (ZHAW)

Institute of Embedded Systems (InES)

Winterthur, Switzerland

tobias.schlaepfer@zhaw.ch

andreas.ruest@zhaw.ch

Abstract—The emergence of new low power IoT networks in

which leaf nodes have native IPv6 connectivity and the grown

awareness for data protection of IoT devices require leaf nodes to

provide a higher level of security, similar to the level of a standard

computer system. Especially in terms of energy consumption and

device cost, the intensive cryptographic operations of well-known

computer security algorithms are a big challenge for resource

constrained devices. To face these challenges, semiconductor

vendors have recently introduced new dedicated hardware, so

called secure elements. These devices provide hardware

accelerated support for cryptographic operations and tamper

proof memory for the secure storage of cryptographically sensitive

material. Moreover, they employ specific techniques against so-

called side channel attacks. The paper describes and specifies

different classes of secure elements and discusses their

opportunities and challenges. Furthermore, the paper provides

multiple detailed examples how secure elements can be used for

different applications. Finally, this paper briefly presents general

measurement results from a performed evaluation with four

selected secure elements from different vendors. A more complete

report about the performed evaluation will be presented in a

following paper. The purpose of this paper is to introduce the

concept of secure elements and provide a generic overview of their

features, serving as starting point to work with secure elements.

Keywords—IoT security, secure elements, hardware

cryptography, authentication, tamper proof memory, side channel

protection, resource constrained devices, Thread network,

I. INTRODUCTION

Newly introduced IoT networks such as Thread [1], which

is based on the 802.15.4 standard [2], provide native Internet

Protocol version 6 (IPv6) connectivity down to the resource

constrained device. This paper refers to resource constrained

devices as leaf nodes and understands them as a battery

powered electronic device which is controlled by a

microcontroller unit (MCU). The native IPv6 connectivity

offers many opportunities such as service discovery, end-to-end

security and transparent routing down to the leaf node. Due to

the transparent routing, there is also no need for a complex and

energy consuming gateway. However, due to the missing

gateway and straightforward accessibility, the leaf node is

exposed to attacks from the outside world. Furthermore, the leaf

node can be directly connected to the IT infrastructure and

therefore may serve as a simple entry point for attackers. As a

result, the required security level for a leaf node is much higher

in such IoT networks. The challenge is to leverage the elaborate,

well-known computer security, which otherwise would be

provided by a gateway, to the resource constrained device

without dramatically increasing the power consumption nor the

cost with regard to memory sizes and required processor

performance.

To face these challenges, semiconductor vendors have

recently introduced dedicated hardware devices, so called

secure elements. Secure elements execute cryptographic

operations in hardware, which allows for fast and energy

efficient execution of cryptographic algorithms. Furthermore,

secure elements provide tamper proof memory for secure

storage of cryptographic material. These features allow the leaf

node to provide a high security level and to be an authentic and

secure member of an IT infrastructure.

This paper is structured accordingly. First, we introduce the

concept of secure elements by providing a categorization for

secure elements and a detailed description how secure elements

are used. In chapter three and four, we show opportunities as

well as challenges of secure elements. Subsequently, we discuss

energy and execution time measurements with four different

secure elements we performed. The paper closes with

appropriate conclusions.

II. SECURE ELEMENTS

Secure elements emerged from the field of security

controllers used in smart / banking card applications. These

security controllers offer communication interfaces compliant

to the ISO7618 [3] standard and provide an operating system

(OS) for their specific application. The application on the

security controllers are typically written by external security

experts. As awareness for security issues in the IoT industry

rises, semiconductor vendors strive to offer an easy to use, out-

of-the-box solution with already integrated firmware

specifically for IoT applications. Furthermore, these new secure

elements offer serial communication interfaces to communicate

with a main MCU on the IoT device. This paper focuses on

these new secure elements for IoT applications.

Fig. 1 Secure element architecture

Fig. 1 shows a generic secure element architecture. Secure

elements support the MCU by executing standard cryptographic

algorithms, e.g. Advance Encryption Standard (AES) [4] or

Elliptic Curve Diffie-Hellman (ECDH) [5] operations, in

hardware. Typically, all secure elements support elliptic curve

cryptography (ECC) [6] on the NIST p-256 curve. The

foundation of strong cryptography is a reliable entropy source.

To provide such a reliable entropy source, secure elements are

equipped with a certified true random number generator

(TRNG). Furthermore, secure elements provide tamper proof

memory to store cryptographic material, such as private keys,

long living session keys or public-key certificates which serve

as root of trust.

Additionally, secure elements provide up to 4 kBytes of

general purpose memory to securely store e.g. application data.

Furthermore, secure elements provide monotonic counters.

These counters can only be increased and never be reset. They

may be used in multiple ways, e.g. to restrict the use of certain

keys to only a certain number of times or to prevent replay

attacks. Secure elements also have a unique device number,

which may be used to authenticate the secure element to the

MCU, allowing to detect unauthorized substitution of the secure

element.

Communication between the secure element and its host

MCU is typically realized over an I2C interface with max. data

rates up to 1 Mbit/s. Table 1 in the appendix, summarizes

common secure element features. However, there are secure

elements that additionally to the I2C offer a single-wire

interface (SWI) or a serial peripheral interface (SPI).

Secure elements may be used in applications for various

purposes such as authentication, secure storage and for

cryptographic operations support. Applications include

protection of intellectual property, device authentication, secure

end-to-end channel establishment and many more.

A. Categories of secure elements

Yet not all secure elements have the same range of features

nor do they target the same application use cases. Essentially,

they can be divided into two categories.

First, there is the category of supporting secure elements.

These secure elements are intended to support the software

execution of cryptographic operations by a library such as

mbedTLS [7], running on a host MCU. Supporting secure

elements provide secure storage for sensitive material and

hardware acceleration for a variety of cryptographic operations.

This increases the leaf nodes security by physically isolating

private keys and other secrets as well as by significantly

reducing the energy consumption through the hardware

accelerated execution. If a cryptographic software is needed on

the MCU, e.g. because special cryptographic algorithms like the

JPAKE [8] cipher suite are used, supporting secure elements

are an appropriate choice.

The second category are standalone secure elements. These

secure elements are capable to autonomously handle a security

layer. To achieve this, they provide a complete set of

cryptographic operations with additional control features to

establish and maintain a secure and authentic connection

without software support on the host MCU. Therefore, they

have to be able to handle messages for a (Datagram) Transport

Layer Security (D)TLS [9] session. Yet, standalone secure

elements are also able to support a host MCU that uses a

cryptographic software, like the supporting secure elements.

For both categories of secure elements, one can say that, if

all the cryptographic operations are executed on a secure

element, the overall security of an IoT device can be enhanced,

because all the sensitive material for the cryptographic

operations always remains within the tamper proof memory of

the secure element.

B. Opportunities of secure elements

A typical IoT device is equipped with an MCU that has

constrained processing power. Therefore, elaborate

cryptographic operations, e.g. sign and verify operations of the

elliptic curve digital signature algorithm (ECDSA) [10], have

long execution times. This results in a high energy

consumption. Since IoT devices are mostly battery powered,

the high energy consumption therefore significantly reduces the

battery lifetime by providing hardware acceleration for

cryptographic operations. Secure elements enable resource

constrained devices to execute elaborate cryptographic

algorithms fast and energy efficient. Allowing even a battery-

powered device to use well-known computer security

algorithms.

Another issue with MCUs is that their memory is accessible,

which means that it can be read or even manipulated with a

debugger. This exposes sensitive material and makes stored

data not reliable. Secure elements on the other hand provide

secure and authentic data storage. Secure, due to the tamper

www.embedded-world.eu

proof memory which protects the stored data against physical

attacks, such as imaging or fault injection [11] and authentic

because memory access on the secure element requires

authentication by its host MCU before data can be read or

altered. Additionally, there is also the issue that MCUs mostly

offer only a limited amount of memory size. Due to this, MCUs

may not be able to store multiple x509 certificates [12], since

these certificates can be well up to 1 kBytes or even bigger.

Secure elements provide storage capacity for multiple x509

certificates and further capabilities regarding certificates, such

as the creation of certificate signing requests (CSR) [13].

Another key feature is the protection of private keys. It is

impossible to extract any private key from a secure element,

neither by software nor physically. The private key may be

either generated inside the secure element itself or inserted in a

secure environment at a manufacturer site.

IoT devices are typically physically accessible for an

attacker, which exposes them to hardware attacks such as

manipulation, brute force or side channel attacks. With a brute

force attack, an adversary systematically tests all possible keys

hoping to find the correct one. A side channel attack is an attack

where an attacker tries to gain sensitive information by

observing and analyzing properties of an IoT device, e.g. power

consumption, execution time or electromagnetic leakage.

Secure elements provide specific protection measures, such as

secure boot, security monitoring or constant-time-

implementation, to prevent hardware attacks.

C. Challenges of secure elements

Although, secure elements have many positive features,

there are also challenges in using secure elements. The

communication between the MCU and the secure element over

I2C poses a potential security threat. Since an attacker may

probe this interface, he may be able to read content and to

execute replay or fault injection attacks. However, there are

multiple ways to secure the I2C interface. One way is by

encrypting or obfuscating the content on the I2C lines.

Therefore, a symmetric secret or asymmetric keys need to be

inserted into the secure element and the MCU. However, this

method has a major drawback, since the secret or key to decrypt

messages is stored on the accessible memory of the MCU.

Furthermore, not all secure elements offer the feature to

obfuscate the I2C communication. The second method is to

protect the interface by actively shielding the I2C lines. To

achieve this, the lines must be placed between two reference

layers (VCC or GND) of the PCB. This may result in higher

design effort and cost but provides an effective protection

against probing. However, most important is that the developer

is aware of the problem and knows exactly which content may

be transferred in plain text across the I2C interface and

implements according protection measures. The optimal

solution is to never exchange sensitive material between the

MCU and the secure element.

Another issue with secure elements is more an

administrative one. Currently, if one would like to get detailed

information about a secure element a non-disclosure agreement

(NDA) between the customer and the secure element vendor

has to be in place. Furthermore, the development effort and

expertise required to integrate the individual secure element is

extremely high. In this study, the integration of all four secure

elements required thorough support from the field application

engineers of the respective vendors for a successful integration

into an existing application. These points pose major obstacles

to widely adopt and deploy secure elements in IoT devices.

Therefore, the authors of this paper see a strong need for an

open information exchange and harmonization of the interfaces.

III. USAGE OF SECURE ELEMENTS

Secure elements contribute to applications in many different

ways e.g. secure boot, secure messaging or (D)TLS. These three

selected examples are presented in detail in the following

section.

A. Example 1: Secure boot with secure elements

Secure boot is defined as a boot sequence in which the

MCU, secure element pair is authenticated. This sequence is

designed to detect and prevent manipulations either on the

MCU or the secure element, e.g. to prevent the unauthorized

execution of software on the MCU or unauthorized usage of

cryptographic material stored on the secure element. Fig. 2

illustrates how a secure boot process may be executed.

Fig. 2 Secure boot process

This process is executed during the boot process of an

MCU. The secure boot process is initiated with the MCU

hashing the Application Image (AI). The resulting digest is sent

to the secure element. Furthermore, the AI digest combined

with a symmetric secret and a random number, are hashed

creating the message authentication code (MAC). The MAC as

well as the random number are sent to the secure element. The

secure element reproduces the MAC using the AI digest and

random number received from the MCU as well as the

symmetric secret stored on the secure element. This reproduced

MAC is then compared with the MAC received from the MCU.

If the two MACs coincide, the MCU, secure element pair is

mutually authenticated. If the verification fails e.g. due to

unauthorized exchange of the MCU, the secure element no

longer allows the MCU to use stored keys and denies access to

stored data. On the other hand, if the secure element has been

exchanged, the MCU must not execute the application image

due the secure boot failure.

To shorten the secure boot process, the AI digest may be

stored on the secure element after the first successful boot

process. This has also the advantage that an attacker is not able

to get the AI digest by probing the I2C lines and allows for the

detection of unauthorized changes in the application image. The

random number is used to prevent replay attacks and may be

generated either on the MCU or the secure element. The

symmetric secret stored on both the MCU and the secure

element obfuscates the process for an attacker and makes it

impossible to guess the MAC even if an attacker is in

possession of the AI digest and the random number. The secret

is unique to each leaf node device and should be inserted at the

manufacturer site, in a secure environment, e.g. during

production testing. Additionally, even if an attacker finds the

secret on the accessible memory of the MCU, only a single leaf

node device is compromised. This secure boot could also be

executed with asymmetric keys, by signing the AI digest on the

MCU and verifying the signature with a protected public key

on the secure element. However, the cryptographic algorithms

needed for the asymmetric version may exceed the processor

capacity of the MCU bootloader. [14]

B. Example 2: Secure messaging with secure elements

One of the key features of a secure element is the protection

of private keys. Key pairs (private / public key) may be

generated inside the secure element. The stored key pair can be

used to en- / decrypt messages for the MCU.

Fig. 3 Generation of an ECC public/private key pair on a secure element

followed by an exchange of public keys between the leaf node and a cloud

Fig. 3 shows the key generation on a secure element

followed by an exchange of public keys between a leaf node

and a cloud server. A key point is, that the private key always

remains on the secure element whereas the public key is sent to

the cloud server. The cloud stores the public key of the leaf node

and in exchange sends its public key to the leaf node, where the

MCU forwards the public key to the secure element for storage.

Fig. 4 shows how the leaf node may use the previously

exchanged keys, to en- / decrypt messages. As an example, the

MCU first collects data from a sensor and generates the

message. The message is then handed to the secure element,

which encrypts the message using the previously stored public

key of the cloud server. The encrypted message is then sent to

the cloud. The cloud processes the message and sends an

encrypted response to the leaf node. The MCU forwards this

response to the secure element which uses its internally

generated private key to decrypt it. The response is transferred

to the MCU, which acts accordingly.

Fig. 4 Encrypted exchange of messages between leaf node and cloud

C. Example 3: DTLS session with secure elements

New IoT networks, such as Thread, provide IPv6 all the way

down to the resource constrained device. The new IP

connectivity on the leaf node offers the opportunity to establish

secure end-to-end channels between a leaf node and a server,

shown in Fig. 5.

Fig. 5 Thread network with native IPv6 connectivity on the leaf node

A standard way to establish an authentic secure channel is

by using the (D)TLS protocol. To establish a (D)TLS session a

handshake needs to be executed first. During this process, the

leaf node and the server present their respective public-key

certificates to authenticate themselves and then use asymmetric

keys to derive a shared secret. This shared secret is used as a

symmetric key to en- / decrypt messages between the leaf node

and the server. To authenticate the server to the leaf node, the

leaf node requires the public-key certificate of the server’s

certificate authority (CA). This previously obtained and stored

certificate allows to verify the server certificate presented

during the handshake. The CA public-key certificate is the root

of trust and therefore must be protected against manipulation.

Accordingly, the public-key certificate should be stored in the

secured memory of the secure element. Furthermore, the secure

element can accelerate the handshake execution and therefore

reduce energy consumption.

For both of the before discussed usage examples, secure

boot and secure messaging, it does not matter whether a

supporting or a standalone secure element is used. This changes

for a (D)TLS handshake. Supporting secure elements only

support the cryptographic software, in executing the handshake

by executing cryptographic operations and providing trusted

www.embedded-world.eu

memory storage. On the other hand, standalone secure elements

are able to autonomously handle the handshake messages with

no further support of the MCU.

Fig. 6 DTLS handshake using a supporting secure element

Fig. 6 shows a DTLS handshake executed with the support

of a supporting secure element. The MCU uses the supporting

secure element to outsource specific cryptographic operations,

e.g. ECDSA sign and verify ECDH calculation of the shared

secret or en- / decryption with AES. This allows for faster

execution of the handshake and increases the overall security

since sensitive material such as the shared secret and the derived

keys remain on the secure storage of the secure element. After

the handshake is successfully executed, the messaging process

is the same as in the secure messaging example. The difference

is that with a (D)TLS session in place, the communication is not

just encrypted but also authentic. This means, the leaf node

knows to whom it is talking, whereas in the key exchange

example it has not been able to verify that the cloud server is

indeed who it claims to be.

Fig. 7 shows a DTLS handshake with a standalone secure

element. These secure elements are able to autonomously

handle the handshake process. The MCU only sends the

messages from the secure element to the cloud and forwards the

received messages to the secure element. By executing the

DTLS handshake on the secure element it-self, all sensitive data

is stored on the secure element alone. In addition, the secure

element accelerates the execution of the handshake.

When selecting a secure element for a specific application

that involves (D)TLS sessions, some important considerations

regarding secure elements have to be made. First, standalone

secure elements typically only support a single specific cipher

suite. Cipher suites are defined in Internet Engineering Task

Force (IETF) [15] standards and are used to determine the used

algorithms for the key exchange, signature, verification and

encryption.

Fig. 7 DTLS handshake using a standalone secure element

For example, the cipher suite

TLS_ECDHE_ECDSA_WITH_AES128_CCM_8 [16] defines

that ECDH ephemeral key exchange is used as well as ECDSA

for signing and verification. Finally, en- / decryption is done

using AES128 in the Counter CBC-MAC modus. Another

important aspect is the number of parallel sessions that need to

be established and maintained. There are secure elements,

which support up to four parallel sessions.

IV. EVALUATION OF SECURE ELEMENTS

As part of a project at the Institute of Embedded System a

detailed evaluation of four secure elements from four different

vendors has been performed. The evaluation features detailed

power measurements for two self-designed test cases with all

four secure elements. The measurements serve to uncover the

properties and familiarize with the handling of the individual

secure elements. As a final report of the evaluation a paper has

been planned. Unfortunately, one vendor is currently

preventing the publication based on the NDA that protects the

information about his secure element gained during the

evaluation. Therefore, the measurement results of the

evaluation are discussed only in general in this paper. As soon

as the legal issues will be resolved, a paper will follow,

discussing the measurement results in detail.

A. Performed measurements

The evaluation involved four secure elements, two from the

category of the supporting secure elements and two standalone

secure elements. The supporting secure elements are the

ATECC608A [17] from Microchip and the A71CH [18] from

NXP. The standalone secure elements are the TO136 [19] from

Trusted Objects and the OPTIGATM Trust X [20] from Infineon.

To provide a comparable environment for the measurements a

https://www.dict.cc/englisch-deutsch/familiarize.html

printed circuit board (PCB) with all four secure elements on it

has been designed, shown in Fig. 8.

Fig. 8 Leaf node with four different secure elements

As host MCU, a NRF52840 [21] from Nordic

Semiconductors is used. For the evaluation, two test cases have

been defined. The first one focuses on the execution of five

standard cryptographic operations allowing for a comparison

between the different secure elements. The following five

operations are executed:

 Generation of a random number

 Generation of an elliptic curve key pair

 Calculation of a SHA256 hash

 Calculation of an ECDSA signature

 Verification of the signature

The second test case focuses on a real-world application

case. In this test case, the leaf node executes a DTLS handshake

with a server and makes a CoAPs [22] GET request to the

server. The secure elements support the MCU in the execution

of the handshake, as described in the chapter III.C.

As a reference measurement, the test case has been executed

with the cryptographic software mbedTLS. Fig. 9 shows the

result of this reference measurement. The DTLS handshake

executed only in software needs about 4 s and 67’209 nWh. The

measurement results of the test case with the support of secure

elements show that both execution time and energy

consumption can be significantly reduced.

Fig. 9 Power measurement of a DTLS handshake executed with mbedTLS (no

secure element)

B. Measurement results

The measurements results show that there are significant

differences between the secure elements. The comparisons

between the secure elements in the first test case have revealed

that there are secure elements, which execute an ECDSA

operation in about 60 ms while others need up to 1 s. Even

though, the fast secure elements tend to have higher current

consumption, due to the fast execution the overall energy

consumption is significantly smaller than with the slow secure

elements. The same can be applied for the real-world

application test case, where the fast secure elements were able

to not only halve the execution time of the handshake but also

reduce the required energy by a factor 5 compared to the

reference measurement with mbedTLS (using no secure

element). As a result, using a secure element the DTLS

handshake could be executed in about 2 s and only required

about 15’000 nWh. Furthermore, the measurements show that

secure elements have reasonably small average currents, in a

range from 3 – 10 mA. Also, the sleep currents are low,

typically about 50 µA or even 0 µA for one specific secure

element.

V. KEY FINDINGS

Working with secure elements has shown their great

potential for resource constrained IoT devices. With the

dedicated hardware acceleration, cryptographic operations can

be executed faster and may save the leaf node energy and

therefore extend the battery lifetime. The tamper proof memory

combined with the access authentication provides a trustworthy

storage opportunity where sensitive data can be stored. This

allows the leaf node to become an authentic and trusted entity

of a network. The performed evaluation has revealed major

differences regarding execution time and energy consumption

between the four selected secure elements. This variety offers

the opportunity to use secure elements for many different

www.embedded-world.eu

applications. However, the evaluation has also shown that a lot

of effort has to be invested to integrate secure elements into an

application. This required effort poses a major obstacle to use

secure elements on IoT devices. Furthermore, the requirement

for an NDA before any detailed information is exchanged

between the costumer and the vendor raises the bar to use secure

elements. However, first impulses into a more open information

exchange have already been observed.

VI. CONCLUSION

This paper introduces the concept of secure elements and

provides a general description of their features on a basic level.

Furthermore, the paper defines two categories for secure

elements. The presented usage examples illustrate how secure

elements can be used in real-world applications. Although, for

legal reasons the made evaluation of four selected secure

elements is not yet ready to be published, this paper presents

first key learnings from the evaluation. This paper may be seen

as the introduction to a following paper describing the

performed evaluation and the selected secure elements in detail.

VII. APPENDIX

The following table lists a set of common secure elements

features and gives a short description.

TABLE 1 SET OF COMMON SECURE ELEMENT FEATURES

Feature Description

RNG

Certified random number generator, certifications include

AIS-31 [23], Common Criteria (CC) [24] or cryptographic

algorithm validation program (CAVP) [25]

ECDH Elliptic curve Diffie-Hellmann key exchange

ECDSA Elliptic curve digital signature algorithm

HMAC Key-Hash Message Authentication Code [26]

Key Gen ECC key pair generated within the secure element

Elliptic

Curve
Curves include NIST p-256, p-384

SHA Secure hash algorithm [27]

AES Hardware accelerated advanced encryption standard

(D)TLS

(Datagram) Transport layer security, supported cipher suites

are:

TLS_ECDH/E_ECDSA_WITH_AES128_CBC_SHA256 [28]

TLS_ECDHE_ECDSA_WITH_AES128_CCM_8

Memory Tamper proof memory, resistant against physical attacks

Cert.

handling
Handling and storage of x509 certificates

I2C Communication interface with speeds up to 1 Mbit/s

I2C

encrypt.

Possibility to encrypt the I2C interface either with symmetric or

asymmetric secrets

Avg.

Current
The average current consumption lies between 3 – 10 mA.

Sleep

Current
Sleep currents lie between 0 – 150 µA

REFERENCES

[1] Thread Group Inc., "About Thread," [Online]. Available:

https://www.threadgroup.org/What-is-Thread. [Accessed Dec 2018].

[2] IEEE Standart Association, "Low-Rate Wireless Network (802.15.4),"

[Online]. Available: https://standards.ieee.org/standard/802_15_4-

2015-Cor1-2018.html. [Accessed Dec 2018].

[3] CardLogix Corporation, "Smard Card Basics," [Online]. Available:

http://www.smartcardbasics.com/smart-card-standards.html.

[4] J. Daemen and V. Rijmen, "AES Standard," National Institute of

Standards and Technology (NIST), [Online]. Available:

https://doi.org/10.6028/NIST.FIPS.197. [Accessed Jan 2019].

[5] E. Rescorla and RTFM, "ECDH," Internet Engineering Task Force

(IETF), [Online]. Available: https://tools.ietf.org/html/rfc2631.

[Accessed Jan 2019].

[6] D. McGrew, K. Igoe, M. Salter, Cisco_Systems and

National_Security_Agency, "ECC," Internet Engineering Task Force

(IETF), [Online]. Available: https://tools.ietf.org/html/rfc6090.

[Accessed Dec 2018].

[7] Advanced RISC Machines (ARM), "MbedTLS," [Online]. Available:

https://tls.mbed.org. [Accessed Dec 2018].

[8] F. Hao and N. University, "JPAKE," Internet Engineering Task Force

(IETF), [Online]. Available: https://tools.ietf.org/html/rfc8236.

[Accessed Dec 2018].

[9] E. Rescorla, RTFM, N. Modadugu and Google, "DTLS," Internet

Engineering Task Force (IETF), [Online]. Available:

https://tools.ietf.org/html/rfc6347. [Accessed Dec 2018].

[10] T. Pornin, "ECDSA," Internet Engineering Task Force (IETF),

[Online]. Available: https://tools.ietf.org/html/rfc6979. [Accessed Jan

2019].

[11] S. Skorobogatov, "Physical Attacks and Tamper Resistance,"

[Online]. Available:

https://pdfs.semanticscholar.org/d043/16ba2a6895febe541d566f2a141

168d6d7d5.pdf. [Accessed Jan 2019].

[12] D. Cooper, NIST, S. Santesson, Microsoft, S. Farrell,

Trinity_College_Dublin, S. Boeyen, Entrust, R. Housley,

Vigil_Security and W. Polk, "x509 Certificates," Internet Engineering

Task Force (IETF), [Online]. Available:

https://tools.ietf.org/html/rfc5280. [Accessed Dec 2018].

[13] M. Nystrom, B. Kaliski and RSA_Security, "CSR," Internet

Engineering Task Force (IETF), [Online]. Available:

https://tools.ietf.org/html/rfc2986. [Accessed Dec 2018].

[14] Microchip Technology, "Youtube," [Online]. Available:

https://www.youtube.com/watch?v=cbOuo-wL2Ms&t=563s.

[Accessed Dec 2018].

[15] Internet Engineering Task Force (IETF), "About IETF," [Online].

Available: https://www.ietf.org/about/. [Accessed Jan 2019].

[16] D. McGrew, Cisco_Systems, D. Bailey, Ruhr-University-Bochum, M.

Campagna, R. Dugal and Certicom_Corp., "Cipher CCM," Internet

Engineering Task Force (IETF), [Online]. Available:

https://tools.ietf.org/html/rfc7251. [Accessed Dec 2018].

[17] Microchip, "ATECC608A," [Online]. Available:

https://www.microchip.com/wwwproducts/en/ATECC608A.

[Accessed Dec 2018].

[18] NXP Semiconductor, "A71CH," [Online]. Available:

https://www.nxp.com/products/identification-and-

security/authentication/plug-and-trust-the-fast-easy-way-to-deploy-

secure-iot-connections:A71CH. [Accessed Dec 2018].

[19] Trusted Objects, "TO136," [Online]. Available: https://www.trusted-

objects.com/webtest/index.php?page=en-TO136-secure-element.

[Accessed Dec 2018].

[20] Infineon, "OPTIGA Trust X," [Online]. Available:

https://www.infineon.com/cms/de/product/security-smart-card-

solutions/optiga-embedded-security-solutions/optiga-trust/optiga-

trust-x-sls-32aia/. [Accessed Dec 2018].

[21] Nordic Semiconductor, "nRF52840," [Online]. Available:

https://www.nordicsemi.com/Products/Low-power-short-range-

wireless/nRF52840. [Accessed Dec 2018].

[22] Z. Shelby, ARM, K. Hartke, C. Bormann and U. B. TZI, "CoAP,"

Internet Engineering Task Force (IETF), [Online]. Available:

https://www.rfc-editor.org/rfc/rfc7252.txt. [Accessed Dec 2018].

[23] German Federal Office for Information Security, “AIS-31,” [Online].

Available:

https://www.bsi.bund.de/DE/Themen/ZertifizierungundAnerkennung/

Produktzertifizierung/ZertifizierungnachCC/Anwendungshinweiseund

Interpretationen/AIS-Liste.html. [Accessed Dec 2018].

[24] Common Criteria for Information Technology Security Evaluation

(CC), "CommonCriteria," [Online]. Available:

https://www.commoncriteriaportal.org. [Accessed Jan 2019].

[25] National Institute of Standards and Technology (NIST), "CAVP,"

[Online]. Available: https://csrc.nist.gov/projects/cryptographic-

algorithm-validation-program. [Accessed Jan 2019].

[26] H. Krawczyk, IBM, M. Bellare, UCSD and R. Canetti, "HMAC,"

Internet Engineering Task Force (IETF), [Online]. Available:

https://tools.ietf.org/html/rfc2104. [Accessed Dec 2018].

[27] D. Eastlake, Motorola_Labs, T. Hansen and AT&T_Labs, "SHA256,"

Internet Engineering Task Force (IETF), [Online]. Available:

https://tools.ietf.org/html/rfc4634. [Accessed Dec 2018].

[28] E. Rescorla and RTFM, "Cipher CBC," Internet Engineering Task

Force (IETF), [Online]. Available:

https://www.ietf.org/rfc/rfc5289.txt. [Accessed Dec 2018].

