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Abstract—The emergence of new low power IoT networks in 

which leaf nodes have native IPv6 connectivity and the grown 

awareness for data protection of IoT devices require leaf nodes to 

provide a higher level of security, similar to the level of a standard 

computer system. Especially in terms of energy consumption and 

device cost, the intensive cryptographic operations of well-known 

computer security algorithms are a big challenge for resource 

constrained devices. To face these challenges, semiconductor 

vendors have recently introduced new dedicated hardware, so 

called secure elements. These devices provide hardware 

accelerated support for cryptographic operations and tamper 

proof memory for the secure storage of cryptographically sensitive 

material. Moreover, they employ specific techniques against so-

called side channel attacks. The paper describes and specifies 

different classes of secure elements and discusses their 

opportunities and challenges. Furthermore, the paper provides 

multiple detailed examples how secure elements can be used for 

different applications. Finally, this paper briefly presents general 

measurement results from a performed evaluation with four 

selected secure elements from different vendors. A more complete 

report about the performed evaluation will be presented in a 

following paper. The purpose of this paper is to introduce the 

concept of secure elements and provide a generic overview of their 

features, serving as starting point to work with secure elements.  

Keywords—IoT security, secure elements, hardware 

cryptography, authentication, tamper proof memory, side channel 

protection, resource constrained devices, Thread network,    

I.  INTRODUCTION  

Newly introduced IoT networks such as Thread [1], which 

is based on the 802.15.4 standard [2], provide native Internet 

Protocol version 6 (IPv6) connectivity down to the resource 

constrained device. This paper refers to resource constrained 

devices as leaf nodes and understands them as a battery 

powered electronic device which is controlled by a 

microcontroller unit (MCU). The native IPv6 connectivity 

offers many opportunities such as service discovery, end-to-end 

security and transparent routing down to the leaf node. Due to 

the transparent routing, there is also no need for a complex and 

energy consuming gateway. However, due to the missing 

gateway and straightforward accessibility, the leaf node is 

exposed to attacks from the outside world. Furthermore, the leaf 

node can be directly connected to the IT infrastructure and 

therefore may serve as a simple entry point for attackers. As a 

result, the required security level for a leaf node is much higher 

in such IoT networks. The challenge is to leverage the elaborate, 

well-known computer security, which otherwise would be 

provided by a gateway, to the resource constrained device 

without dramatically increasing the power consumption nor the 

cost with regard to memory sizes and required processor 

performance.  

To face these challenges, semiconductor vendors have 

recently introduced dedicated hardware devices, so called 

secure elements. Secure elements execute cryptographic 

operations in hardware, which allows for fast and energy 

efficient execution of cryptographic algorithms. Furthermore, 

secure elements provide tamper proof memory for secure 

storage of cryptographic material. These features allow the leaf 

node to provide a high security level and to be an authentic and 

secure member of an IT infrastructure. 

This paper is structured accordingly. First, we introduce the 

concept of secure elements by providing a categorization for 

secure elements and a detailed description how secure elements 

are used. In chapter three and four, we show opportunities as 

well as challenges of secure elements. Subsequently, we discuss 

energy and execution time measurements with four different 

secure elements we performed. The paper closes with 

appropriate conclusions. 

II. SECURE ELEMENTS 

Secure elements emerged from the field of security 

controllers used in smart / banking card applications. These 

security controllers offer communication interfaces compliant 

to the ISO7618 [3] standard and provide an operating system 

(OS) for their specific application. The application on the 

security controllers are typically written by external security 

experts. As awareness for security issues in the IoT industry 



rises, semiconductor vendors strive to offer an easy to use, out-

of-the-box solution with already integrated firmware 

specifically for IoT applications. Furthermore, these new secure 

elements offer serial communication interfaces to communicate 

with a main MCU on the IoT device. This paper focuses on 

these new secure elements for IoT applications.  

 

Fig. 1 Secure element architecture 

Fig. 1 shows a generic secure element architecture. Secure 

elements support the MCU by executing standard cryptographic 

algorithms, e.g. Advance Encryption Standard (AES) [4] or 

Elliptic Curve Diffie-Hellman (ECDH) [5] operations, in 

hardware. Typically, all secure elements support elliptic curve 

cryptography (ECC) [6] on the NIST p-256 curve. The 

foundation of strong cryptography is a reliable entropy source. 

To provide such a reliable entropy source, secure elements are 

equipped with a certified true random number generator 

(TRNG). Furthermore, secure elements provide tamper proof 

memory to store cryptographic material, such as private keys, 

long living session keys or public-key certificates which serve 

as root of trust.  

Additionally, secure elements provide up to 4 kBytes of 

general purpose memory to securely store e.g. application data. 

Furthermore, secure elements provide monotonic counters. 

These counters can only be increased and never be reset. They 

may be used in multiple ways, e.g. to restrict the use of certain 

keys to only a certain number of times or to prevent replay 

attacks. Secure elements also have a unique device number, 

which may be used to authenticate the secure element to the 

MCU, allowing to detect unauthorized substitution of the secure 

element.  

Communication between the secure element and its host 

MCU is typically realized over an I2C interface with max. data 

rates up to 1 Mbit/s. Table 1 in the appendix, summarizes 

common secure element features. However, there are secure 

elements that additionally to the I2C offer a single-wire 

interface (SWI) or a serial peripheral interface (SPI). 

Secure elements may be used in applications for various 

purposes such as authentication, secure storage and for 

cryptographic operations support. Applications include 

protection of intellectual property, device authentication, secure 

end-to-end channel establishment and many more.  

A. Categories of secure elements 

Yet not all secure elements have the same range of features 

nor do they target the same application use cases. Essentially, 

they can be divided into two categories.  

First, there is the category of supporting secure elements. 

These secure elements are intended to support the software 

execution of cryptographic operations by a library such as 

mbedTLS [7], running on a host MCU. Supporting secure 

elements provide secure storage for sensitive material and 

hardware acceleration for a variety of cryptographic operations. 

This increases the leaf nodes security by physically isolating 

private keys and other secrets as well as by significantly 

reducing the energy consumption through the hardware 

accelerated execution. If a cryptographic software is needed on 

the MCU, e.g. because special cryptographic algorithms like the 

JPAKE [8] cipher suite are used, supporting secure elements 

are an appropriate choice.  

The second category are standalone secure elements. These 

secure elements are capable to autonomously handle a security 

layer. To achieve this, they provide a complete set of 

cryptographic operations with additional control features to 

establish and maintain a secure and authentic connection 

without software support on the host MCU. Therefore, they 

have to be able to handle messages for a (Datagram) Transport 

Layer Security (D)TLS [9] session. Yet, standalone secure 

elements are also able to support a host MCU that uses a 

cryptographic software, like the supporting secure elements. 

For both categories of secure elements, one can say that, if 

all the cryptographic operations are executed on a secure 

element, the overall security of an IoT device can be enhanced, 

because all the sensitive material for the cryptographic 

operations always remains within the tamper proof memory of 

the secure element. 

B. Opportunities of secure elements 

A typical IoT device is equipped with an MCU that has 

constrained processing power. Therefore, elaborate 

cryptographic operations, e.g. sign and verify operations of the 

elliptic curve digital signature algorithm (ECDSA) [10], have 

long execution times. This results in a high energy 

consumption. Since IoT devices are mostly battery powered, 

the high energy consumption therefore significantly reduces the 

battery lifetime by providing hardware acceleration for 

cryptographic operations. Secure elements enable resource 

constrained devices to execute elaborate cryptographic 

algorithms fast and energy efficient. Allowing even a battery-

powered device to use well-known computer security 

algorithms.  

Another issue with MCUs is that their memory is accessible, 

which means that it can be read or even manipulated with a 

debugger. This exposes sensitive material and makes stored 

data not reliable. Secure elements on the other hand provide 

secure and authentic data storage. Secure, due to the tamper 
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proof memory which protects the stored data against physical 

attacks, such as imaging or fault injection [11] and authentic 

because memory access on the secure element requires 

authentication by its host MCU before data can be read or 

altered. Additionally, there is also the issue that MCUs mostly 

offer only a limited amount of memory size. Due to this, MCUs 

may not be able to store multiple x509 certificates [12], since 

these certificates can be well up to 1 kBytes or even bigger. 

Secure elements provide storage capacity for multiple x509 

certificates and further capabilities regarding certificates, such 

as the creation of certificate signing requests (CSR) [13]. 

Another key feature is the protection of private keys. It is 

impossible to extract any private key from a secure element, 

neither by software nor physically. The private key may be 

either generated inside the secure element itself or inserted in a 

secure environment at a manufacturer site.  

IoT devices are typically physically accessible for an 

attacker, which exposes them to hardware attacks such as 

manipulation, brute force or side channel attacks. With a brute 

force attack, an adversary systematically tests all possible keys 

hoping to find the correct one. A side channel attack is an attack 

where an attacker tries to gain sensitive information by 

observing and analyzing properties of an IoT device, e.g. power 

consumption, execution time or electromagnetic leakage. 

Secure elements provide specific protection measures, such as 

secure boot, security monitoring or constant-time-

implementation, to prevent hardware attacks.  

C. Challenges of secure elements 

Although, secure elements have many positive features, 

there are also challenges in using secure elements. The 

communication between the MCU and the secure element over 

I2C poses a potential security threat. Since an attacker may 

probe this interface, he may be able to read content and to 

execute replay or fault injection attacks. However, there are 

multiple ways to secure the I2C interface. One way is by 

encrypting or obfuscating the content on the I2C lines. 

Therefore, a symmetric secret or asymmetric keys need to be 

inserted into the secure element and the MCU. However, this 

method has a major drawback, since the secret or key to decrypt 

messages is stored on the accessible memory of the MCU. 

Furthermore, not all secure elements offer the feature to 

obfuscate the I2C communication.  The second method is to 

protect the interface by actively shielding the I2C lines. To 

achieve this, the lines must be placed between two reference 

layers (VCC or GND) of the PCB. This may result in higher 

design effort and cost but provides an effective protection 

against probing. However, most important is that the developer 

is aware of the problem and knows exactly which content may 

be transferred in plain text across the I2C interface and 

implements according protection measures. The optimal 

solution is to never exchange sensitive material between the 

MCU and the secure element.  

Another issue with secure elements is more an 

administrative one. Currently, if one would like to get detailed 

information about a secure element a non-disclosure agreement 

(NDA) between the customer and the secure element vendor 

has to be in place. Furthermore, the development effort and 

expertise required to integrate the individual secure element is 

extremely high. In this study, the integration of all four secure 

elements required thorough support from the field application 

engineers of the respective vendors for a successful integration 

into an existing application. These points pose major obstacles 

to widely adopt and deploy secure elements in IoT devices. 

Therefore, the authors of this paper see a strong need for an 

open information exchange and harmonization of the interfaces. 

III. USAGE OF SECURE ELEMENTS 

Secure elements contribute to applications in many different 

ways e.g. secure boot, secure messaging or (D)TLS. These three 

selected examples are presented in detail in the following 

section.  

A. Example 1: Secure boot with secure elements 

Secure boot is defined as a boot sequence in which the 

MCU, secure element pair is authenticated. This sequence is 

designed to detect and prevent manipulations either on the 

MCU or the secure element, e.g. to prevent the unauthorized 

execution of software on the MCU or unauthorized usage of 

cryptographic material stored on the secure element. Fig. 2 

illustrates how a secure boot process may be executed.  

 

Fig. 2 Secure boot process 

This process is executed during the boot process of an 

MCU. The secure boot process is initiated with the MCU 

hashing the Application Image (AI). The resulting digest is sent 

to the secure element. Furthermore, the AI digest combined 

with a symmetric secret and a random number, are hashed 

creating the message authentication code (MAC). The MAC as 

well as the random number are sent to the secure element. The 

secure element reproduces the MAC using the AI digest and 

random number received from the MCU as well as the 

symmetric secret stored on the secure element. This reproduced 

MAC is then compared with the MAC received from the MCU. 

If the two MACs coincide, the MCU, secure element pair is 

mutually authenticated. If the verification fails e.g. due to 

unauthorized exchange of the MCU, the secure element no 

longer allows the MCU to use stored keys and denies access to 

stored data. On the other hand, if the secure element has been 

exchanged, the MCU must not execute the application image 

due the secure boot failure.  

To shorten the secure boot process, the AI digest may be 

stored on the secure element after the first successful boot 

process. This has also the advantage that an attacker is not able 

to get the AI digest by probing the I2C lines and allows for the 

detection of unauthorized changes in the application image. The 



random number is used to prevent replay attacks and may be 

generated either on the MCU or the secure element. The 

symmetric secret stored on both the MCU and the secure 

element obfuscates the process for an attacker and makes it 

impossible to guess the MAC even if an attacker is in 

possession of the AI digest and the random number. The secret 

is unique to each leaf node device and should be inserted at the 

manufacturer site, in a secure environment, e.g. during 

production testing. Additionally, even if an attacker finds the 

secret on the accessible memory of the MCU, only a single leaf 

node device is compromised. This secure boot could also be 

executed with asymmetric keys, by signing the AI digest on the 

MCU and verifying the signature with a protected public key 

on the secure element. However, the cryptographic algorithms 

needed for the asymmetric version may exceed the processor 

capacity of the MCU bootloader. [14] 

B. Example 2: Secure messaging with secure elements 

One of the key features of a secure element is the protection 

of private keys. Key pairs (private / public key) may be 

generated inside the secure element. The stored key pair can be 

used to en- / decrypt messages for the MCU.  

 

Fig. 3 Generation of an ECC public/private key pair on a secure element 

followed by an exchange of public keys between the leaf node and a cloud  

Fig. 3 shows the key generation on a secure element 

followed by an exchange of public keys between a leaf node 

and a cloud server. A key point is, that the private key always 

remains on the secure element whereas the public key is sent to 

the cloud server. The cloud stores the public key of the leaf node 

and in exchange sends its public key to the leaf node, where the 

MCU forwards the public key to the secure element for storage.  

Fig. 4 shows how the leaf node may use the previously 

exchanged keys, to en- / decrypt messages. As an example, the 

MCU first collects data from a sensor and generates the 

message. The message is then handed to the secure element, 

which encrypts the message using the previously stored public 

key of the cloud server. The encrypted message is then sent to 

the cloud. The cloud processes the message and sends an 

encrypted response to the leaf node. The MCU forwards this 

response to the secure element which uses its internally 

generated private key to decrypt it. The response is transferred 

to the MCU, which acts accordingly. 

 

Fig. 4 Encrypted exchange of messages between leaf node and cloud  

C. Example 3: DTLS session with secure elements 

New IoT networks, such as Thread, provide IPv6 all the way 

down to the resource constrained device. The new IP 

connectivity on the leaf node offers the opportunity to establish 

secure end-to-end channels between a leaf node and a server, 

shown in Fig. 5. 

 

Fig. 5 Thread network with native IPv6 connectivity on the leaf node 

A standard way to establish an authentic secure channel is 

by using the (D)TLS protocol. To establish a (D)TLS session a 

handshake needs to be executed first. During this process, the 

leaf node and the server present their respective public-key 

certificates to authenticate themselves and then use asymmetric 

keys to derive a shared secret. This shared secret is used as a 

symmetric key to en- / decrypt messages between the leaf node 

and the server. To authenticate the server to the leaf node, the 

leaf node requires the public-key certificate of the server’s 

certificate authority (CA). This previously obtained and stored 

certificate allows to verify the server certificate presented 

during the handshake. The CA public-key certificate is the root 

of trust and therefore must be protected against manipulation. 

Accordingly, the public-key certificate should be stored in the 

secured memory of the secure element. Furthermore, the secure 

element can accelerate the handshake execution and therefore 

reduce energy consumption.  

For both of the before discussed usage examples, secure 

boot and secure messaging, it does not matter whether a 

supporting or a standalone secure element is used. This changes 

for a (D)TLS handshake. Supporting secure elements only 

support the cryptographic software, in executing the handshake 

by executing cryptographic operations and providing trusted 
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memory storage. On the other hand, standalone secure elements 

are able to autonomously handle the handshake messages with 

no further support of the MCU.  

 

Fig. 6 DTLS handshake using a supporting secure element 

Fig. 6 shows a DTLS handshake executed with the support 

of a supporting secure element. The MCU uses the supporting 

secure element to outsource specific cryptographic operations, 

e.g. ECDSA sign and verify ECDH calculation of the shared 

secret or en- / decryption with AES. This allows for faster 

execution of the handshake and increases the overall security 

since sensitive material such as the shared secret and the derived 

keys remain on the secure storage of the secure element. After 

the handshake is successfully executed, the messaging process 

is the same as in the secure messaging example. The difference 

is that with a (D)TLS session in place, the communication is not 

just encrypted but also authentic. This means, the leaf node 

knows to whom it is talking, whereas in the key exchange 

example it has not been able to verify that the cloud server is 

indeed who it claims to be.  

Fig. 7 shows a DTLS handshake with a standalone secure 

element. These secure elements are able to autonomously 

handle the handshake process. The MCU only sends the 

messages from the secure element to the cloud and forwards the 

received messages to the secure element. By executing the 

DTLS handshake on the secure element it-self, all sensitive data 

is stored on the secure element alone. In addition, the secure 

element accelerates the execution of the handshake.  

When selecting a secure element for a specific application 

that involves (D)TLS sessions, some important considerations 

regarding secure elements have to be made. First, standalone 

secure elements typically only support a single specific cipher 

suite. Cipher suites are defined in Internet Engineering Task 

Force (IETF) [15]  standards and are used to determine the used 

algorithms for the key exchange, signature, verification and 

encryption.  

 

Fig. 7 DTLS handshake using a standalone secure element 

For example, the cipher suite 

TLS_ECDHE_ECDSA_WITH_AES128_CCM_8 [16] defines 

that ECDH ephemeral key exchange is used as well as ECDSA 

for signing and verification. Finally, en- / decryption is done 

using AES128 in the Counter CBC-MAC modus. Another 

important aspect is the number of parallel sessions that need to 

be established and maintained. There are secure elements, 

which support up to four parallel sessions. 

IV. EVALUATION OF SECURE ELEMENTS 

As part of a project at the Institute of Embedded System a 

detailed evaluation of four secure elements from four different 

vendors has been performed. The evaluation features detailed 

power measurements for two self-designed test cases with all 

four secure elements. The measurements serve to uncover the 

properties and familiarize with the handling of the individual 

secure elements. As a final report of the evaluation a paper has 

been planned. Unfortunately, one vendor is currently 

preventing the publication based on the NDA that protects the 

information about his secure element gained during the 

evaluation. Therefore, the measurement results of the 

evaluation are discussed only in general in this paper. As soon 

as the legal issues will be resolved, a paper will follow, 

discussing the measurement results in detail.  

A. Performed measurements 

The evaluation involved four secure elements, two from the 

category of the supporting secure elements and two standalone 

secure elements. The supporting secure elements are the 

ATECC608A [17] from Microchip and the A71CH [18] from 

NXP. The standalone secure elements are the TO136 [19] from 

Trusted Objects and the OPTIGATM Trust X [20] from Infineon. 

To provide a comparable environment for the measurements a 

https://www.dict.cc/englisch-deutsch/familiarize.html


printed circuit board (PCB) with all four secure elements on it 

has been designed, shown in Fig. 8.  

 

Fig. 8 Leaf node with four different secure elements 

As host MCU, a NRF52840 [21] from Nordic 

Semiconductors is used. For the evaluation, two test cases have 

been defined. The first one focuses on the execution of five 

standard cryptographic operations allowing for a comparison 

between the different secure elements. The following five 

operations are executed:   

 Generation of a random number 

 Generation of an elliptic curve key pair 

 Calculation of a SHA256 hash 

 Calculation of an ECDSA signature 

 Verification of the signature 

The second test case focuses on a real-world application 

case. In this test case, the leaf node executes a DTLS handshake 

with a server and makes a CoAPs [22] GET request to the 

server. The secure elements support the MCU in the execution 

of the handshake, as described in the chapter III.C.  

As a reference measurement, the test case has been executed 

with the cryptographic software mbedTLS. Fig. 9 shows the 

result of this reference measurement. The DTLS handshake 

executed only in software needs about 4 s and 67’209 nWh. The 

measurement results of the test case with the support of secure 

elements show that both execution time and energy 

consumption can be significantly reduced.  

 

Fig. 9 Power measurement of a DTLS handshake executed with mbedTLS (no 

secure element) 

B. Measurement results 

The measurements results show that there are significant 

differences between the secure elements. The comparisons 

between the secure elements in the first test case have revealed 

that there are secure elements, which execute an ECDSA 

operation in about 60 ms while others need up to 1 s. Even 

though, the fast secure elements tend to have higher current 

consumption, due to the fast execution the overall energy 

consumption is significantly smaller than with the slow secure 

elements. The same can be applied for the real-world 

application test case, where the fast secure elements were able 

to not only halve the execution time of the handshake but also 

reduce the required energy by a factor 5 compared to the 

reference measurement with mbedTLS (using no secure 

element). As a result, using a secure element the DTLS 

handshake could be executed in about 2 s and only required 

about 15’000 nWh. Furthermore, the measurements show that 

secure elements have reasonably small average currents, in a 

range from 3 – 10 mA. Also, the sleep currents are low, 

typically about 50 µA or even 0 µA for one specific secure 

element.  

V. KEY FINDINGS 

Working with secure elements has shown their great 

potential for resource constrained IoT devices. With the 

dedicated hardware acceleration, cryptographic operations can 

be executed faster and may save the leaf node energy and 

therefore extend the battery lifetime. The tamper proof memory 

combined with the access authentication provides a trustworthy 

storage opportunity where sensitive data can be stored. This 

allows the leaf node to become an authentic and trusted entity 

of a network. The performed evaluation has revealed major 

differences regarding execution time and energy consumption 

between the four selected secure elements. This variety offers 

the opportunity to use secure elements for many different 
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applications. However, the evaluation has also shown that a lot 

of effort has to be invested to integrate secure elements into an 

application. This required effort poses a major obstacle to use 

secure elements on IoT devices. Furthermore, the requirement 

for an NDA before any detailed information is exchanged 

between the costumer and the vendor raises the bar to use secure 

elements. However, first impulses into a more open information 

exchange have already been observed. 

VI. CONCLUSION 

This paper introduces the concept of secure elements and 

provides a general description of their features on a basic level. 

Furthermore, the paper defines two categories for secure 

elements. The presented usage examples illustrate how secure 

elements can be used in real-world applications. Although, for 

legal reasons the made evaluation of four selected secure 

elements is not yet ready to be published, this paper presents 

first key learnings from the evaluation. This paper may be seen 

as the introduction to a following paper describing the 

performed evaluation and the selected secure elements in detail.  

VII. APPENDIX  

The following table lists a set of common secure elements 

features and gives a short description.   

TABLE 1 SET OF COMMON SECURE ELEMENT FEATURES 

Feature Description 

RNG 

Certified random number generator, certifications include   

AIS-31 [23], Common Criteria (CC) [24] or cryptographic 

algorithm validation program (CAVP) [25]  

ECDH Elliptic curve Diffie-Hellmann key exchange  

ECDSA Elliptic curve digital signature algorithm 

HMAC Key-Hash Message Authentication Code [26] 

Key Gen ECC key pair generated within the secure element 

Elliptic 

Curve 
Curves include NIST p-256, p-384 

SHA Secure hash algorithm [27] 

AES Hardware accelerated advanced encryption standard 

(D)TLS 

(Datagram) Transport layer security, supported cipher suites 

are:  

TLS_ECDH/E_ECDSA_WITH_AES128_CBC_SHA256 [28] 

TLS_ECDHE_ECDSA_WITH_AES128_CCM_8  

Memory Tamper proof memory, resistant against physical attacks 

Cert. 

handling  
Handling and storage of x509 certificates  

I2C Communication interface with speeds up to 1 Mbit/s 

I2C 

encrypt. 

Possibility to encrypt the I2C interface either with symmetric or 

asymmetric secrets 

Avg. 

Current 
The average current consumption lies between 3 – 10 mA. 

Sleep 

Current 
Sleep currents lie between 0 – 150 µA 
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