-1 Programmed Ribosomal Frameshifting affects translational efficiency hypothesis (TEH)

Background
- 1 Programmed Ribosomal Frameshifting (-1 PRF) is used for protein expression regulation
- Translation Efficiency Hypothesis: codon usage adapted to tRNA abundance to match increased protein expression demand
- Codon usage bias (CUB) associated with protein expression

Our Vision:
- Understand how -1 PRF affects codon usage bias (CUB)
- Is there a cost to -1 PRF that affects CUB composition?
- Do CUB indices appropriately reflect the translational efficiency of mRNA?
- How can we correct for the translational mismatch?
- Does the TEH hold after correction?

Evidence for a cost to -1 PRF maintenance

Independent effects arising from a -1 PRF cost;
- If protein expression demand increases, we expect that evolution will
 - remove slippery site
 - shorten frame-shifted frame length

Hypothesis testing:

Retesting the translational efficiency hypothesis (TEH) under new codon usage bias index

A -1 PRF corrected codon usage bias index
- \(L(x) = \left(1 + 1 + \lambda + \frac{p - 1}{p - 1}
ight)^{-1} L(x) \) or \(L(x) = (1 - p)L(x) + pL'(x) \)
- \(L(x) \) is any codon usage bias index. It is the cost of translation interruption. Else, as in left fig.

Translational efficiency hypothesis (TEH) is supported by data
- We tested whether TEH holds when using correction

Conclusion
- The translational efficiency hypothesis is strengthened
- The cost of -1 PRF is likely to affect codon usage bias in different ways
- -1 PRF can be used as "natural experiment" to study codon usage bias.
 - Perhaps can be used to differentiate between selection for accuracy and efficiency in certain contexts

References

Acknowledgments
- The project is supported by SystemsX.ch and evaluated by the Swiss National Science Foundation (SNSF).