Publikationstyp: Beitrag in wissenschaftlicher Zeitschrift
Art der Begutachtung: Peer review (Publikation)
Titel: Computational design of catalytic dyads and oxyanion holes for ester hydrolysis
Autor/-in: Richter, Florian
Blomberg, Rebecca
Khare, Sagar D.
Kiss, Gert
Kuzin, Alexandre P.
Smith, Adam J. T.
Gallaher, Jasmine
Pianowski, Zbigniew
Helgeson, Roger C.
Grjasnow, Alexej
Xiao, Rong
Seetharaman, Jayaraman
Su, Min
Vorobiev, Sergey
Lew, Scott
Forouhar, Farhad
Kornhaber, Gregory J.
Hunt, John F.
Montelione, Gaetano T.
Tong, Liang
Houk, K. N.
Hilvert, Donald
Baker, David
DOI: 10.1021/ja3037367
Erschienen in: Journal of the American Chemical Society
Band(Heft): 134
Heft: 39
Seite(n): 16197
Seiten bis: 16206
Erscheinungsdatum: 2012
Verlag / Hrsg. Institution: American Chemical Society
ISSN: 0002-7863
1520-5126
Sprache: Englisch
Schlagwörter: Catalytic domain; Esterases; Esters; Hydrogen bonding; Hydrolysis; Kinetics; Biocatalysis; Drug design; Molecular models
Fachgebiet (DDC): 540: Chemie
Zusammenfassung: Nucleophilic catalysis is a general strategy for accelerating ester and amide hydrolysis. In natural active sites, nucleophilic elements such as catalytic dyads and triads are usually paired with oxyanion holes for substrate activation, but it is difficult to parse out the independent contributions of these elements or to understand how they emerged in the course of evolution. Here we explore the minimal requirements for esterase activity by computationally designing artificial catalysts using catalytic dyads and oxyanion holes. We found much higher success rates using designed oxyanion holes formed by backbone NH groups rather than by side chains or bridging water molecules and obtained four active designs in different scaffolds by combining this motif with a Cys-His dyad. Following active site optimization, the most active of the variants exhibited a catalytic efficiency (k(cat)/K(M)) of 400 M(-1) s(-1) for the cleavage of a p-nitrophenyl ester. Kinetic experiments indicate that the active site cysteines are rapidly acylated as programmed by design, but the subsequent slow hydrolysis of the acyl-enzyme intermediate limits overall catalytic efficiency. Moreover, the Cys-His dyads are not properly formed in crystal structures of the designed enzymes. These results highlight the challenges that computational design must overcome to achieve high levels of activity.
URI: https://digitalcollection.zhaw.ch/handle/11475/9665
Volltext Version: Publizierte Version
Lizenz (gemäss Verlagsvertrag): Lizenz gemäss Verlagsvertrag
Departement: Life Sciences und Facility Management
Enthalten in den Sammlungen:Publikationen Life Sciences und Facility Management

Dateien zu dieser Ressource:
Es gibt keine Dateien zu dieser Ressource.
Zur Langanzeige
Richter, F., Blomberg, R., Khare, S. D., Kiss, G., Kuzin, A. P., Smith, A. J. T., Gallaher, J., Pianowski, Z., Helgeson, R. C., Grjasnow, A., Xiao, R., Seetharaman, J., Su, M., Vorobiev, S., Lew, S., Forouhar, F., Kornhaber, G. J., Hunt, J. F., Montelione, G. T., et al. (2012). Computational design of catalytic dyads and oxyanion holes for ester hydrolysis. Journal of the American Chemical Society, 134(39), 16197–16206. https://doi.org/10.1021/ja3037367
Richter, F. et al. (2012) ‘Computational design of catalytic dyads and oxyanion holes for ester hydrolysis’, Journal of the American Chemical Society, 134(39), pp. 16197–16206. Available at: https://doi.org/10.1021/ja3037367.
F. Richter et al., “Computational design of catalytic dyads and oxyanion holes for ester hydrolysis,” Journal of the American Chemical Society, vol. 134, no. 39, pp. 16197–16206, 2012, doi: 10.1021/ja3037367.
RICHTER, Florian, Rebecca BLOMBERG, Sagar D. KHARE, Gert KISS, Alexandre P. KUZIN, Adam J. T. SMITH, Jasmine GALLAHER, Zbigniew PIANOWSKI, Roger C. HELGESON, Alexej GRJASNOW, Rong XIAO, Jayaraman SEETHARAMAN, Min SU, Sergey VOROBIEV, Scott LEW, Farhad FOROUHAR, Gregory J. KORNHABER, John F. HUNT, Gaetano T. MONTELIONE, Liang TONG, K. N. HOUK, Donald HILVERT und David BAKER, 2012. Computational design of catalytic dyads and oxyanion holes for ester hydrolysis. Journal of the American Chemical Society. 2012. Bd. 134, Nr. 39, S. 16197–16206. DOI 10.1021/ja3037367
Richter, Florian, Rebecca Blomberg, Sagar D. Khare, Gert Kiss, Alexandre P. Kuzin, Adam J. T. Smith, Jasmine Gallaher, et al. 2012. “Computational Design of Catalytic Dyads and Oxyanion Holes for Ester Hydrolysis.” Journal of the American Chemical Society 134 (39): 16197–206. https://doi.org/10.1021/ja3037367.
Richter, Florian, et al. “Computational Design of Catalytic Dyads and Oxyanion Holes for Ester Hydrolysis.” Journal of the American Chemical Society, vol. 134, no. 39, 2012, pp. 16197–206, https://doi.org/10.1021/ja3037367.


Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt, soweit nicht anderweitig angezeigt.