Please use this identifier to cite or link to this item: https://doi.org/10.21256/zhaw-29323
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSeidel, Stefan-
dc.contributor.authorMozaffari, Fruhar-
dc.contributor.authorMaschke, Rüdiger W.-
dc.contributor.authorKraume, Matthias-
dc.contributor.authorEibl-Schindler, Regine-
dc.contributor.authorEibl, Dieter-
dc.date.accessioned2023-12-08T11:45:12Z-
dc.date.available2023-12-08T11:45:12Z-
dc.date.issued2023-09-
dc.identifier.issn2227-9717de_CH
dc.identifier.urihttps://digitalcollection.zhaw.ch/handle/11475/29323-
dc.description.abstractScaling bioprocesses remains a major challenge. Since it is physically impossible to increase all process parameters equally, a suitable scale-up strategy must be selected for a successful bioprocess. One of the most widely used criteria when scaling up bioprocesses is the specific power input. However, this represents only an average value. This study aims to determine the Kolmogorov length scale distribution by means of computational fluid dynamics (CFD) and to use it as an alternative scale-up criterion for geometrically non-similar bioreactors for the first time. In order to obtain a comparable Kolmogorov length scale distribution, an automated geometry and process parameter optimization was carried out using the open-source tools OpenFOAM and DAKOTA. The Kolmogorov–Smirnov test statistic was used for optimization. A HEK293-F cell expansion (batch mode) from benchtop (Infors Minifors 2 with 4 L working volume) to pilot scale (D-DCU from Sartorius with 30 L working volume) was carried out. As a reference cultivation, the classical scale-up approach with constant specific power input (233 W m−3) was used, where a maximum viable cell density (VCDmaxmax) of 5.02·1065.02·106 cells mL−1 was achieved (VCDmaxmax at laboratory scale 5.77·1065.77·106 cells mL−1). Through the automated optimization of the stirrer geometry (three parameters), position and speed, comparable cultivation results were achieved as in the small scale with a maximum VCD of 5.60·1065.60·106 cells mL−1. In addition, even on the pilot scale, cell aggregate size distribution was seen to strictly follow a geometric distribution and can be predicted with the help of CFD with the previously published correlation.de_CH
dc.language.isoende_CH
dc.publisherMDPIde_CH
dc.relation.ispartofProcessesde_CH
dc.rightshttp://creativecommons.org/licenses/by/4.0/de_CH
dc.subjectBiochemical engineeringde_CH
dc.subjectScale-upde_CH
dc.subjectOptimizationde_CH
dc.subjectOpen-sourcede_CH
dc.subjectKolmogorov length scalede_CH
dc.subjectHydrodynamic stressde_CH
dc.subjectEnergy dissipation ratede_CH
dc.subjectHEK293de_CH
dc.subjectComputational fluid dynamics (CFD)de_CH
dc.subject.ddc660: Technische Chemiede_CH
dc.titleAutomated shape and process parameter optimization for scaling up geometrically non-similar bioreactorsde_CH
dc.typeBeitrag in wissenschaftlicher Zeitschriftde_CH
dcterms.typeTextde_CH
zhaw.departementLife Sciences und Facility Managementde_CH
zhaw.organisationalunitInstitut für Chemie und Biotechnologie (ICBT)de_CH
dc.identifier.doi10.3390/pr11092703de_CH
dc.identifier.doi10.21256/zhaw-29323-
zhaw.funding.euNode_CH
zhaw.issue9de_CH
zhaw.originated.zhawYesde_CH
zhaw.pages.start2703de_CH
zhaw.publication.statuspublishedVersionde_CH
zhaw.volume11de_CH
zhaw.publication.reviewPeer review (Publikation)de_CH
zhaw.author.additionalNode_CH
zhaw.display.portraitYesde_CH
zhaw.monitoring.costperiod2023de_CH
zhaw.relation.referenceshttps://github.com/seideste/Automated-shape-and-process-parameter-optimizationde_CH
Appears in collections:Publikationen Life Sciences und Facility Management

Files in This Item:
File Description SizeFormat 
2023_Seidl-etal_Automated-parameter-optimization-for-bioreactorsprocesses_MDPI.pdf13.07 MBAdobe PDFThumbnail
View/Open
Show simple item record
Seidel, S., Mozaffari, F., Maschke, R. W., Kraume, M., Eibl-Schindler, R., & Eibl, D. (2023). Automated shape and process parameter optimization for scaling up geometrically non-similar bioreactors. Processes, 11(9), 2703. https://doi.org/10.3390/pr11092703
Seidel, S. et al. (2023) ‘Automated shape and process parameter optimization for scaling up geometrically non-similar bioreactors’, Processes, 11(9), p. 2703. Available at: https://doi.org/10.3390/pr11092703.
S. Seidel, F. Mozaffari, R. W. Maschke, M. Kraume, R. Eibl-Schindler, and D. Eibl, “Automated shape and process parameter optimization for scaling up geometrically non-similar bioreactors,” Processes, vol. 11, no. 9, p. 2703, Sep. 2023, doi: 10.3390/pr11092703.
SEIDEL, Stefan, Fruhar MOZAFFARI, Rüdiger W. MASCHKE, Matthias KRAUME, Regine EIBL-SCHINDLER und Dieter EIBL, 2023. Automated shape and process parameter optimization for scaling up geometrically non-similar bioreactors. Processes. September 2023. Bd. 11, Nr. 9, S. 2703. DOI 10.3390/pr11092703
Seidel, Stefan, Fruhar Mozaffari, Rüdiger W. Maschke, Matthias Kraume, Regine Eibl-Schindler, and Dieter Eibl. 2023. “Automated Shape and Process Parameter Optimization for Scaling up Geometrically Non-Similar Bioreactors.” Processes 11 (9): 2703. https://doi.org/10.3390/pr11092703.
Seidel, Stefan, et al. “Automated Shape and Process Parameter Optimization for Scaling up Geometrically Non-Similar Bioreactors.” Processes, vol. 11, no. 9, Sept. 2023, p. 2703, https://doi.org/10.3390/pr11092703.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.