Please use this identifier to cite or link to this item: https://doi.org/10.21256/zhaw-27774
Full metadata record
DC FieldValueLanguage
dc.contributor.authorWan, Ho-Ying-
dc.contributor.authorChen, Jack Chun Hin-
dc.contributor.authorXiao, Qinru-
dc.contributor.authorWong, Christy Wingtung-
dc.contributor.authorYang, Boguang-
dc.contributor.authorCao, Benjamin-
dc.contributor.authorTuan, Rocky S.-
dc.contributor.authorNilsson, Susan K.-
dc.contributor.authorHo, Yi-Ping-
dc.contributor.authorRaghunath, Michael-
dc.contributor.authorKamm, Roger D.-
dc.contributor.authorBlocki, Anna-
dc.date.accessioned2023-05-05T12:26:01Z-
dc.date.available2023-05-05T12:26:01Z-
dc.date.issued2023-
dc.identifier.issn1226-4601de_CH
dc.identifier.urihttps://digitalcollection.zhaw.ch/handle/11475/27774-
dc.description.abstractBackground: There is great interest to engineer in vitro models that allow the study of complex biological processes of the microvasculature with high spatiotemporal resolution. Microfluidic systems are currently used to engineer microvasculature in vitro, which consists of perfusable microvascular networks (MVNs). These are formed through spontaneous vasculogenesis and exhibit the closest resemblance to physiological microvasculature. Unfortunately, under standard culture conditions and in the absence of co-culture with auxiliary cells as well as protease inhibitors, pure MVNs suffer from a short-lived stability. Methods: Herein, we introduce a strategy for stabilization of MVNs through macromolecular crowding (MMC) based on a previously established mixture of Ficoll macromolecules. The biophysical principle of MMC is based on macromolecules occupying space, thus increasing the effective concentration of other components and thereby accelerating various biological processes, such as extracellular matrix deposition. We thus hypothesized that MMC will promote the accumulation of vascular ECM (basement membrane) components and lead to a stabilization of MVN with improved functionality. Results: MMC promoted the enrichment of cellular junctions and basement membrane components, while reducing cellular contractility. The resulting advantageous balance of adhesive forces over cellular tension resulted in a significant stabilization of MVNs over time, as well as improved vascular barrier function, closely resembling that of in vivo microvasculature. Conclusion: Application of MMC to MVNs in microfluidic devices provides a reliable, flexible and versatile approach to stabilize engineered microvessels under simulated physiological conditions.de_CH
dc.language.isoende_CH
dc.publisherBioMed Centralde_CH
dc.relation.ispartofBiomaterials Researchde_CH
dc.rightshttp://creativecommons.org/licenses/by/4.0/de_CH
dc.subjectBasement membranede_CH
dc.subjectMacromolecular crowdingde_CH
dc.subjectMicrofluidic devicede_CH
dc.subjectMicrovascular networkde_CH
dc.subjectVascular barrier functionde_CH
dc.subjectVessel retractionde_CH
dc.subject.ddc610.28: Biomedizin, Biomedizinische Technikde_CH
dc.titleStabilization and improved functionality of three-dimensional perfusable microvascular networks in microfluidic devices under macromolecular crowdingde_CH
dc.typeBeitrag in wissenschaftlicher Zeitschriftde_CH
dcterms.typeTextde_CH
zhaw.departementLife Sciences und Facility Managementde_CH
zhaw.organisationalunitInstitut für Chemie und Biotechnologie (ICBT)de_CH
dc.identifier.doi10.1186/s40824-023-00375-wde_CH
dc.identifier.doi10.21256/zhaw-27774-
dc.identifier.pmid37076899de_CH
zhaw.funding.euNode_CH
zhaw.issue32de_CH
zhaw.originated.zhawYesde_CH
zhaw.publication.statuspublishedVersionde_CH
zhaw.volume27de_CH
zhaw.publication.reviewPeer review (Publikation)de_CH
zhaw.webfeed3D Gewebe und Biofabrikationde_CH
zhaw.webfeedMetabolic Tissue Engineeringde_CH
zhaw.author.additionalNode_CH
zhaw.display.portraitYesde_CH
Appears in collections:Publikationen Life Sciences und Facility Management

Files in This Item:
File Description SizeFormat 
2023_Wan-etal_Three-dimensional-perfusable-microvascular-networks.pdf2.87 MBAdobe PDFThumbnail
View/Open
Show simple item record
Wan, H.-Y., Chen, J. C. H., Xiao, Q., Wong, C. W., Yang, B., Cao, B., Tuan, R. S., Nilsson, S. K., Ho, Y.-P., Raghunath, M., Kamm, R. D., & Blocki, A. (2023). Stabilization and improved functionality of three-dimensional perfusable microvascular networks in microfluidic devices under macromolecular crowding. Biomaterials Research, 27(32). https://doi.org/10.1186/s40824-023-00375-w
Wan, H.-Y. et al. (2023) ‘Stabilization and improved functionality of three-dimensional perfusable microvascular networks in microfluidic devices under macromolecular crowding’, Biomaterials Research, 27(32). Available at: https://doi.org/10.1186/s40824-023-00375-w.
H.-Y. Wan et al., “Stabilization and improved functionality of three-dimensional perfusable microvascular networks in microfluidic devices under macromolecular crowding,” Biomaterials Research, vol. 27, no. 32, 2023, doi: 10.1186/s40824-023-00375-w.
WAN, Ho-Ying, Jack Chun Hin CHEN, Qinru XIAO, Christy Wingtung WONG, Boguang YANG, Benjamin CAO, Rocky S. TUAN, Susan K. NILSSON, Yi-Ping HO, Michael RAGHUNATH, Roger D. KAMM und Anna BLOCKI, 2023. Stabilization and improved functionality of three-dimensional perfusable microvascular networks in microfluidic devices under macromolecular crowding. Biomaterials Research. 2023. Bd. 27, Nr. 32. DOI 10.1186/s40824-023-00375-w
Wan, Ho-Ying, Jack Chun Hin Chen, Qinru Xiao, Christy Wingtung Wong, Boguang Yang, Benjamin Cao, Rocky S. Tuan, et al. 2023. “Stabilization and Improved Functionality of Three-Dimensional Perfusable Microvascular Networks in Microfluidic Devices under Macromolecular Crowding.” Biomaterials Research 27 (32). https://doi.org/10.1186/s40824-023-00375-w.
Wan, Ho-Ying, et al. “Stabilization and Improved Functionality of Three-Dimensional Perfusable Microvascular Networks in Microfluidic Devices under Macromolecular Crowding.” Biomaterials Research, vol. 27, no. 32, 2023, https://doi.org/10.1186/s40824-023-00375-w.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.