Please use this identifier to cite or link to this item: https://doi.org/10.21256/zhaw-25749
Full metadata record
DC FieldValueLanguage
dc.contributor.authorTophinke, Alissa H.-
dc.contributor.authorJoshi, Akshay-
dc.contributor.authorBaier, Urs-
dc.contributor.authorHufenus, Rudolf-
dc.contributor.authorMitrano, Denise M.-
dc.date.accessioned2022-10-07T16:13:41Z-
dc.date.available2022-10-07T16:13:41Z-
dc.date.issued2022-
dc.identifier.issn0269-7491de_CH
dc.identifier.issn1873-6424de_CH
dc.identifier.urihttps://digitalcollection.zhaw.ch/handle/11475/25749-
dc.description.abstractThe inconsistency of available methods and the lack of harmonization in current microplastics (MPs) analysis in soils demand approaches for extraction and quantification which can be utilized across a wide variety of soil types. To enable robust and accurate assessment of extraction workflows, PET MPs with an inorganic tracer (Indium, 0.2% wt) were spiked into individual soil subgroups and standard soils with varying compositions. Due to the selectivity of the metal tracer, MPs recovery rates could be quickly and quantitatively assessed using ICP-MS. The evaluation of different methods specifically adapted to the soil properties were assessed by isolating MPs from complex soil matrices by systematically investigating specific subgroups (sand, silt, clay, non-lignified and lignified organic matter) before applying the workflow to standard soils. Removal of recalcitrant organic matter is one of the major hurdles in isolating MPs for further size and chemical characterization, requiring novel approaches to remove lignocellulosic structures. Therefore, a new biotechnological method (3-F-Ultra) was developed which mimics natural degradation processes occurring in aerobic (Fenton) and anaerobic fungi (CAZymes). Finally, a Nile Red staining protocol was developed to evaluate the suitability of the workflow for non-metal-doped MPs, which requires a filter with minimal background residues for further chemical identification, e.g. by μFTIR spectroscopy. Image analysis was performed using a Deep Learning tool, allowing for discrimination between the number of residues in bright-field and MPs counted in fluorescence mode to calculate a Filter Clearness Index (FCI). To validate the workflow, three well-characterized standard soils were analyzed applying the final method, with recoveries of 88% for MPs fragments and 74% for MPs fibers with an average FCI of 0.75. Collectively, this workflow improves our current understanding of how to adapt extraction protocols according to the target soil composition, allowing for improved MPs analysis in environmental sampling campaigns.de_CH
dc.language.isoende_CH
dc.publisherElsevierde_CH
dc.relation.ispartofEnvironmental Pollutionde_CH
dc.rightshttp://creativecommons.org/licenses/by/4.0/de_CH
dc.subjectMicroplasticsde_CH
dc.subjectDeep learningde_CH
dc.subjectSoilde_CH
dc.subjectICP-MSde_CH
dc.subjectCAZymesde_CH
dc.subjectOrganic matterde_CH
dc.subject.ddc006: Spezielle Computerverfahrende_CH
dc.subject.ddc333.7: Landflächen, Naturerholungsgebietede_CH
dc.titleSystematic development of extraction methods for quantitative microplastics analysis in soils using metal-doped plasticsde_CH
dc.typeBeitrag in wissenschaftlicher Zeitschriftde_CH
dcterms.typeTextde_CH
zhaw.departementLife Sciences und Facility Managementde_CH
zhaw.organisationalunitInstitut für Chemie und Biotechnologie (ICBT)de_CH
dc.identifier.doi10.1016/j.envpol.2022.119933de_CH
dc.identifier.doi10.21256/zhaw-25749-
zhaw.funding.euNot specifiedde_CH
zhaw.issue119933de_CH
zhaw.originated.zhawYesde_CH
zhaw.publication.statuspublishedVersionde_CH
zhaw.volume311de_CH
zhaw.publication.reviewPeer review (Publikation)de_CH
zhaw.webfeedUmweltbiotechnologie und Bioenergiede_CH
zhaw.author.additionalNode_CH
zhaw.display.portraitYesde_CH
Appears in collections:Publikationen Life Sciences und Facility Management

Show simple item record
Tophinke, A. H., Joshi, A., Baier, U., Hufenus, R., & Mitrano, D. M. (2022). Systematic development of extraction methods for quantitative microplastics analysis in soils using metal-doped plastics. Environmental Pollution, 311(119933). https://doi.org/10.1016/j.envpol.2022.119933
Tophinke, A.H. et al. (2022) ‘Systematic development of extraction methods for quantitative microplastics analysis in soils using metal-doped plastics’, Environmental Pollution, 311(119933). Available at: https://doi.org/10.1016/j.envpol.2022.119933.
A. H. Tophinke, A. Joshi, U. Baier, R. Hufenus, and D. M. Mitrano, “Systematic development of extraction methods for quantitative microplastics analysis in soils using metal-doped plastics,” Environmental Pollution, vol. 311, no. 119933, 2022, doi: 10.1016/j.envpol.2022.119933.
TOPHINKE, Alissa H., Akshay JOSHI, Urs BAIER, Rudolf HUFENUS und Denise M. MITRANO, 2022. Systematic development of extraction methods for quantitative microplastics analysis in soils using metal-doped plastics. Environmental Pollution. 2022. Bd. 311, Nr. 119933. DOI 10.1016/j.envpol.2022.119933
Tophinke, Alissa H., Akshay Joshi, Urs Baier, Rudolf Hufenus, and Denise M. Mitrano. 2022. “Systematic Development of Extraction Methods for Quantitative Microplastics Analysis in Soils Using Metal-Doped Plastics.” Environmental Pollution 311 (119933). https://doi.org/10.1016/j.envpol.2022.119933.
Tophinke, Alissa H., et al. “Systematic Development of Extraction Methods for Quantitative Microplastics Analysis in Soils Using Metal-Doped Plastics.” Environmental Pollution, vol. 311, no. 119933, 2022, https://doi.org/10.1016/j.envpol.2022.119933.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.