Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: https://doi.org/10.21256/zhaw-22253
Publikationstyp: Beitrag in wissenschaftlicher Zeitschrift
Art der Begutachtung: Peer review (Publikation)
Titel: Cycle behaviour of hydrogen bromine redox flow battery cells with bromine complexing agents
Autor/-in: Küttinger, Michael
Brunetaud, Ruben
Włodarczyk, Jakub K.
Fischer, Peter
Tübke, Jens
et. al: No
DOI: 10.1016/j.jpowsour.2021.229820
10.21256/zhaw-22253
Erschienen in: Journal of Power Sources
Band(Heft): 495
Heft: 229820
Erscheinungsdatum: 2021
Verlag / Hrsg. Institution: Elsevier
ISSN: 0378-7753
1873-2755
Sprache: Englisch
Schlagwörter: Stationary energy storage; Redox flow battery; Bromine; Safety; Bromine complexation; Cell performance
Fachgebiet (DDC): 621.3: Elektro-, Kommunikations-, Steuerungs- und Regelungstechnik
Zusammenfassung: Bromine complexing agents (BCA) are used to improve the safety of aqueous bromine electrolytes versus bromine outgassing in bromine electrolytes. In this work, cycling performance of hydrogen-bromine redox flow battery cells with 1-ethylpyridin-1-ium bromide ([C2Py]Br) as BCA in a bromine electrolyte with a theoretical capacity of 179.6 A h L−1 is investigated for the first time. The BCA leads to increased ohmic overvoltages. One cause of the ohmic drop can be attributed to [C2Py]+ cation interaction with the perfluorosulfonic acid (PFSA) membrane, which results in a drop of its conductivity. The BCA also interacts with bromine in the cell, by forming a non-aqueous fused salt second phase which exhibits a ten times lower conductivity compared to the aqueous electrolyte. A steep rise in cell voltage at the beginning of the charge curve followed by a regeneration of the cell voltage is attributed to this effect. Electrolyte crossover leads to an accumulation of [C2Py]+ in the electrolyte solution and intensifies both adverse processes. Under this condition only 30% of the theoretical electrolyte capacity of 179.6 A h L−1 is available under long term cycle conditions. However, electrolyte capacity is high enough to compete with other flow battery technologies.
URI: https://digitalcollection.zhaw.ch/handle/11475/22253
Volltext Version: Publizierte Version
Lizenz (gemäss Verlagsvertrag): CC BY 4.0: Namensnennung 4.0 International
Departement: School of Engineering
Organisationseinheit: Institute of Computational Physics (ICP)
Enthalten in den Sammlungen:Publikationen School of Engineering

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
2021_Kuettinger-etal_Cylce-behaviour-hydrogen-bromine-redox-flow-battery-cells.pdf9.99 MBAdobe PDFMiniaturbild
Öffnen/Anzeigen
Zur Langanzeige
Küttinger, M., Brunetaud, R., Włodarczyk, J. K., Fischer, P., & Tübke, J. (2021). Cycle behaviour of hydrogen bromine redox flow battery cells with bromine complexing agents. Journal of Power Sources, 495(229820). https://doi.org/10.1016/j.jpowsour.2021.229820
Küttinger, M. et al. (2021) ‘Cycle behaviour of hydrogen bromine redox flow battery cells with bromine complexing agents’, Journal of Power Sources, 495(229820). Available at: https://doi.org/10.1016/j.jpowsour.2021.229820.
M. Küttinger, R. Brunetaud, J. K. Włodarczyk, P. Fischer, and J. Tübke, “Cycle behaviour of hydrogen bromine redox flow battery cells with bromine complexing agents,” Journal of Power Sources, vol. 495, no. 229820, 2021, doi: 10.1016/j.jpowsour.2021.229820.
KÜTTINGER, Michael, Ruben BRUNETAUD, Jakub K. WŁODARCZYK, Peter FISCHER und Jens TÜBKE, 2021. Cycle behaviour of hydrogen bromine redox flow battery cells with bromine complexing agents. Journal of Power Sources. 2021. Bd. 495, Nr. 229820. DOI 10.1016/j.jpowsour.2021.229820
Küttinger, Michael, Ruben Brunetaud, Jakub K. Włodarczyk, Peter Fischer, and Jens Tübke. 2021. “Cycle Behaviour of Hydrogen Bromine Redox Flow Battery Cells with Bromine Complexing Agents.” Journal of Power Sources 495 (229820). https://doi.org/10.1016/j.jpowsour.2021.229820.
Küttinger, Michael, et al. “Cycle Behaviour of Hydrogen Bromine Redox Flow Battery Cells with Bromine Complexing Agents.” Journal of Power Sources, vol. 495, no. 229820, 2021, https://doi.org/10.1016/j.jpowsour.2021.229820.


Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt, soweit nicht anderweitig angezeigt.