Full metadata record
DC FieldValueLanguage
dc.contributor.authorKim, Deokjoong-
dc.contributor.authorKim, Won Tae-
dc.contributor.authorHan, Jae‐Hyun-
dc.contributor.authorLee, Ji‐Ah-
dc.contributor.authorLee, Seung‐Heon-
dc.contributor.authorKang, Bong Joo-
dc.contributor.authorJazbinsek, Mojca-
dc.contributor.authorYoon, Woojin-
dc.contributor.authorYun, Hoseop-
dc.contributor.authorKim, Dongwook-
dc.contributor.authorBezouw, Stein-
dc.contributor.authorCampo, Jochen-
dc.contributor.authorWenseleers, Wim-
dc.contributor.authorRotermund, Fabian-
dc.contributor.authorKwon, O‐Pil-
dc.date.accessioned2021-03-04T10:01:53Z-
dc.date.available2021-03-04T10:01:53Z-
dc.date.issued2020-03-16-
dc.identifier.issn2195-1071de_CH
dc.identifier.urihttps://zenodo.org/record/4129720/de_CH
dc.identifier.urihttps://digitalcollection.zhaw.ch/handle/11475/21908-
dc.description.abstractEnhanced terahertz (THz) wave generation is demonstrated in nonlinear organic crystals through refractive index engineering, which improves phase matching characteristics substantially. Unlike conventional low‐bandgap nonlinear organic crystals, the newly designed benzimidazolium‐based HMI (2‐(4‐hydroxy‐3‐methoxystyryl)‐1,3‐dimethyl‐1H‐benzoimidazol‐3‐ium) chromophore possesses a relatively wide bandgap. This reduces the optical group index in the near‐infrared, allowing better phase matching with the generated THz waves, and leads to high optical‐to‐THz conversion. A unique feature of the HMI‐based crystals, compared to conventional wide‐bandgap aniline‐based crystals, is their remarkably larger macroscopic optical nonlinearity, a one order of magnitude higher diagonal component in macroscopic nonlinear susceptibility than NPP ((1‐(4‐nitrophenyl)pyrrolidin‐2‐yl)methanol) crystals. The HMI‐based crystals also exhibit much higher thermal stability, with a melting temperature Tm above 250 °C, versus aniline‐based crystals (116 °C for NPP). With pumping at the technologically important wavelength of 800 nm, the proposed HMI‐based crystals boost high optical‐to‐THz conversion efficiency, comparable to benchmark low‐bandgap quinolinium crystals with state‐of‐the‐art macroscopic nonlinearity. This performance is due to the excellent phase matching enabled by decreasing optical group indices in the near‐infrared through wide‐bandgap chromophores. The proposed wide‐bandgap design is a promising way to control the refractive index of various nonlinear organic materials for enhanced frequency conversion processes.de_CH
dc.language.isoende_CH
dc.publisherWileyde_CH
dc.relation.ispartofAdvanced Optical Materialsde_CH
dc.rightsLicence according to publishing contractde_CH
dc.subjectTHz Photonicsde_CH
dc.subject.ddc621.3: Elektro-, Kommunikations-, Steuerungs- und Regelungstechnikde_CH
dc.titleWide‐bandgap organic crystals : enhanced optical‐to‐terahertz nonlinear frequency conversion at near‐infrared pumpingde_CH
dc.typeBeitrag in wissenschaftlicher Zeitschriftde_CH
dcterms.typeTextde_CH
zhaw.departementSchool of Engineeringde_CH
zhaw.organisationalunitInstitute of Computational Physics (ICP)de_CH
dc.identifier.doi10.1002/adom.201902099de_CH
zhaw.funding.euNode_CH
zhaw.issue10de_CH
zhaw.originated.zhawYesde_CH
zhaw.pages.start1902099de_CH
zhaw.publication.statuspublishedVersionde_CH
zhaw.volume8de_CH
zhaw.publication.reviewPeer review (Publikation)de_CH
zhaw.funding.snf188194de_CH
zhaw.webfeedPhotonicsde_CH
zhaw.author.additionalNode_CH
zhaw.display.portraitYesde_CH
Appears in collections:Publikationen School of Engineering

Files in This Item:
There are no files associated with this item.
Show simple item record
Kim, D., Kim, W. T., Han, J.-H., Lee, J.-A., Lee, S.-H., Kang, B. J., Jazbinsek, M., Yoon, W., Yun, H., Kim, D., Bezouw, S., Campo, J., Wenseleers, W., Rotermund, F., & Kwon, O.-P. (2020). Wide‐bandgap organic crystals : enhanced optical‐to‐terahertz nonlinear frequency conversion at near‐infrared pumping. Advanced Optical Materials, 8(10), 1902099. https://doi.org/10.1002/adom.201902099
Kim, D. et al. (2020) ‘Wide‐bandgap organic crystals : enhanced optical‐to‐terahertz nonlinear frequency conversion at near‐infrared pumping’, Advanced Optical Materials, 8(10), p. 1902099. Available at: https://doi.org/10.1002/adom.201902099.
D. Kim et al., “Wide‐bandgap organic crystals : enhanced optical‐to‐terahertz nonlinear frequency conversion at near‐infrared pumping,” Advanced Optical Materials, vol. 8, no. 10, p. 1902099, Mar. 2020, doi: 10.1002/adom.201902099.
KIM, Deokjoong, Won Tae KIM, Jae‐Hyun HAN, Ji‐Ah LEE, Seung‐Heon LEE, Bong Joo KANG, Mojca JAZBINSEK, Woojin YOON, Hoseop YUN, Dongwook KIM, Stein BEZOUW, Jochen CAMPO, Wim WENSELEERS, Fabian ROTERMUND und O‐Pil KWON, 2020. Wide‐bandgap organic crystals : enhanced optical‐to‐terahertz nonlinear frequency conversion at near‐infrared pumping. Advanced Optical Materials [online]. 16 März 2020. Bd. 8, Nr. 10, S. 1902099. DOI 10.1002/adom.201902099. Verfügbar unter: https://zenodo.org/record/4129720/
Kim, Deokjoong, Won Tae Kim, Jae‐Hyun Han, Ji‐Ah Lee, Seung‐Heon Lee, Bong Joo Kang, Mojca Jazbinsek, et al. 2020. “Wide‐Bandgap Organic Crystals : Enhanced Optical‐to‐Terahertz Nonlinear Frequency Conversion at near‐Infrared Pumping.” Advanced Optical Materials 8 (10): 1902099. https://doi.org/10.1002/adom.201902099.
Kim, Deokjoong, et al. “Wide‐Bandgap Organic Crystals : Enhanced Optical‐to‐Terahertz Nonlinear Frequency Conversion at near‐Infrared Pumping.” Advanced Optical Materials, vol. 8, no. 10, Mar. 2020, p. 1902099, https://doi.org/10.1002/adom.201902099.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.