Publikationstyp: Buchbeitrag
Art der Begutachtung: Editorial review
Titel: Methodology : large (non)spherical particle modeling in the context of fluid filtration applications
Autor/-in: Boiger, Gernot Kurt
et. al: No
DOI: 10.1016/B978-0-12-818345-8.00006-8
Erschienen in: Multiphysics Modelling of Fluid-Particulate Systems
Herausgeber/-in des übergeordneten Werkes: Khawaja, Hassan
Moatamedi, Mojtaba
Seite(n): 115
Seiten bis: 248
Erscheinungsdatum: 2020
Reihe: Multiphysics: Advances and Applications
Verlag / Hrsg. Institution: Elsevier
ISBN: 978-0-12-818345-8
Sprache: Englisch
Schlagwörter: Simulation; CFD; OpenFoam; Non-spherical particle; Filtration; Particle laden flow
Fachgebiet (DDC): 530: Physik
Zusammenfassung: Chapter 6 describes the applied methodology, where sub-chapter 6.1 presents some fundamentals behind the work. Initially the prevailing physical conditions as well as resulting model simplifications are discussed. In a next step a fluid structure interaction (FSI) tool and a digital fibre reconstruction (DFR) utility are laid out in short. Furthermore sub-chapter 6.1 presents three important reasons as to why the consideration of particle shape effects in filtration simulation is imperative: • The particle-inertia-to-fluid force ratio, represented by the particle relaxation time, is strongly shape dependent. • Particles with small, angular particle relaxation times experience the non-spherical particle slip effect. • Particles with large, angular particle relaxation times experience the non-spherical particle bulk effect. Three basic concepts, which form the roots of the presented particle model, are discussed in sub-chapter 6.2: the Lagrangian simulation approach, the force-to-motion concept and the large particle model. Sub-chapter 6.3 is the core part of this book-chapter and is about the intrinsics of the (non-) spherical dirt particle and deposition solvers. Basic, non-spherical modelling concepts, as well as force-interaction implementations and drag-to-lift force calculation schemes are discussed. Benchmark examples of solver functionality are given as well. The decisive problem of numerical instability due to Explicit Euler temporal particle movement discretization is addressed and amended in sub-chapter 6.4. A possible solution, based on the development of an adaptive time stepping scheme is given. Sub-chapter 6.5 provides insight into the workflow behind the code and into the C++ software design pattern of the relevant particle solver classes as well as into their embedding within the OpenFOAM® program structure. A complete description of all particle-solver specific, user-definable input parameters, is given too.
URI: https://books.google.ch/books?id=xazWDwAAQBAJ&pg=PA115&lpg=PA115&dq=10.1016/B978-0-12-818345-8.00006-8&source=bl&ots=aozVEjox5M&sig=ACfU3U274MJJWxAvqI85tYYDUxOJRtbImg&hl=de&sa=X&ved=2ahUKEwiTtZ_M4abrAhUKThUIHam1AAoQ6AEwAHoECAEQAQ#v=onepage&q=10.1016%2FB978-0-12-818345-8.00006-8&f=false
https://digitalcollection.zhaw.ch/handle/11475/20378
Volltext Version: Publizierte Version
Lizenz (gemäss Verlagsvertrag): Lizenz gemäss Verlagsvertrag
Departement: School of Engineering
Organisationseinheit: Institute of Computational Physics (ICP)
Enthalten in den Sammlungen:Publikationen School of Engineering

Dateien zu dieser Ressource:
Es gibt keine Dateien zu dieser Ressource.
Zur Langanzeige
Boiger, G. K. (2020). Methodology : large (non)spherical particle modeling in the context of fluid filtration applications. In H. Khawaja & M. Moatamedi (Eds.), Multiphysics Modelling of Fluid-Particulate Systems (pp. 115–248). Elsevier. https://doi.org/10.1016/B978-0-12-818345-8.00006-8
Boiger, G.K. (2020) ‘Methodology : large (non)spherical particle modeling in the context of fluid filtration applications’, in H. Khawaja and M. Moatamedi (eds) Multiphysics Modelling of Fluid-Particulate Systems. Elsevier, pp. 115–248. Available at: https://doi.org/10.1016/B978-0-12-818345-8.00006-8.
G. K. Boiger, “Methodology : large (non)spherical particle modeling in the context of fluid filtration applications,” in Multiphysics Modelling of Fluid-Particulate Systems, H. Khawaja and M. Moatamedi, Eds. Elsevier, 2020, pp. 115–248. doi: 10.1016/B978-0-12-818345-8.00006-8.
BOIGER, Gernot Kurt, 2020. Methodology : large (non)spherical particle modeling in the context of fluid filtration applications. In: Hassan KHAWAJA und Mojtaba MOATAMEDI (Hrsg.), Multiphysics Modelling of Fluid-Particulate Systems [online]. Elsevier. S. 115–248. ISBN 978-0-12-818345-8. Verfügbar unter: https://books.google.ch/books?id=xazWDwAAQBAJ&pg=PA115&lpg=PA115&dq=10.1016/B978-0-12-818345-8.00006-8&source=bl&ots=aozVEjox5M&sig=ACfU3U274MJJWxAvqI85tYYDUxOJRtbImg&hl=de&sa=X&ved=2ahUKEwiTtZ_M4abrAhUKThUIHam1AAoQ6AEwAHoECAEQAQ#v=onepage&q=10.1016%2FB978-0-12-818345-8.00006-8&f=false
Boiger, Gernot Kurt. 2020. “Methodology : Large (Non)spherical Particle Modeling in the Context of Fluid Filtration Applications.” In Multiphysics Modelling of Fluid-Particulate Systems, edited by Hassan Khawaja and Mojtaba Moatamedi, 115–248. Elsevier. https://doi.org/10.1016/B978-0-12-818345-8.00006-8.
Boiger, Gernot Kurt. “Methodology : Large (Non)spherical Particle Modeling in the Context of Fluid Filtration Applications.” Multiphysics Modelling of Fluid-Particulate Systems, edited by Hassan Khawaja and Mojtaba Moatamedi, Elsevier, 2020, pp. 115–248, https://doi.org/10.1016/B978-0-12-818345-8.00006-8.


Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt, soweit nicht anderweitig angezeigt.