Full metadata record
DC FieldValueLanguage
dc.contributor.authorHofmann, Alexander J.L.-
dc.contributor.authorZüfle, Simon-
dc.contributor.authorShimizu, Kohei-
dc.contributor.authorSchmid, Markus-
dc.contributor.authorWessels, Vivien-
dc.contributor.authorJäger, Lars-
dc.contributor.authorAltazin, Stéphane-
dc.contributor.authorIkegami, Keitaro-
dc.contributor.authorKhan, Motiur Rahman-
dc.contributor.authorNeher, Dieter-
dc.contributor.authorIshii, Hisao-
dc.contributor.authorRuhstaller, Beat-
dc.contributor.authorBrütting, Wolfgang-
dc.date.accessioned2020-03-05T12:42:35Z-
dc.date.available2020-03-05T12:42:35Z-
dc.date.issued2019-12-
dc.identifier.issn2331-7019de_CH
dc.identifier.urihttps://nbn-resolving.org/urn:nbn:de:bvb:384-opus4-685217de_CH
dc.identifier.urihttps://digitalcollection.zhaw.ch/handle/11475/19630-
dc.description.abstractIf not oriented perfectly isotropically, the strong dipole moment of polar organic semiconductor materials such as tris-(8-hydroxyquinolate)aluminum (Alq3) will lead to the buildup of a giant surface potential (GSP) and thus to a macroscopic dielectric polarization of the organic film. Despite this having been a known fact for years, the implications of such high potentials within an organic layer stack have only been studied recently. In this work, the influence of the GSP on hole injection into organic layers is investigated. Therefore, we apply a concept called dipolar doping to devices consisting of the prototypical organic materials N,N′-Di(1-naphthyl)-N,N′-diphenyl-(1,1′-biphenyl)-4,4′-diamine (NPB) as nonpolar host and Alq3 as dipolar dopant with different mixing ratios to tune the GSP. The mixtures are investigated in single-layer monopolar devices as well as bilayer metal/insulator/semiconductor structures. Characterization is done electrically using current-voltage (I-V) characteristics, impedance spectroscopy, and charge extraction by linearly increasing voltage and time of flight, as well as with ultraviolet photoelectron spectroscopy. We find a maximum in device performance for moderate to low doping concentrations of the polar species in the host. The observed behavior can be described on the basis of the Schottky effect for image-force barrier lowering, if the changes in the interface dipole, the carrier mobility, and the GSP induced by dipolar doping are taken into account.de_CH
dc.language.isoende_CH
dc.publisherAmerican Physical Societyde_CH
dc.relation.ispartofPhysical Review Appliedde_CH
dc.rightsLicence according to publishing contractde_CH
dc.subject.ddc530: Physikde_CH
dc.titleDipolar doping of organic semiconductors to enhance carrier injectionde_CH
dc.typeBeitrag in wissenschaftlicher Zeitschriftde_CH
dcterms.typeTextde_CH
zhaw.departementSchool of Engineeringde_CH
zhaw.organisationalunitInstitute of Computational Physics (ICP)de_CH
dc.identifier.doi10.1103/PhysRevApplied.12.064052de_CH
zhaw.funding.euNode_CH
zhaw.issue6de_CH
zhaw.originated.zhawYesde_CH
zhaw.pages.start064052de_CH
zhaw.publication.statuspublishedVersionde_CH
zhaw.volume12de_CH
zhaw.publication.reviewPeer review (Publikation)de_CH
zhaw.funding.snf151563de_CH
zhaw.webfeedPhotonicsde_CH
zhaw.author.additionalNode_CH
Appears in collections:Publikationen School of Engineering

Files in This Item:
There are no files associated with this item.
Show simple item record
Hofmann, A. J. L., Züfle, S., Shimizu, K., Schmid, M., Wessels, V., Jäger, L., Altazin, S., Ikegami, K., Khan, M. R., Neher, D., Ishii, H., Ruhstaller, B., & Brütting, W. (2019). Dipolar doping of organic semiconductors to enhance carrier injection. Physical Review Applied, 12(6), 64052. https://doi.org/10.1103/PhysRevApplied.12.064052
Hofmann, A.J.L. et al. (2019) ‘Dipolar doping of organic semiconductors to enhance carrier injection’, Physical Review Applied, 12(6), p. 064052. Available at: https://doi.org/10.1103/PhysRevApplied.12.064052.
A. J. L. Hofmann et al., “Dipolar doping of organic semiconductors to enhance carrier injection,” Physical Review Applied, vol. 12, no. 6, p. 064052, Dec. 2019, doi: 10.1103/PhysRevApplied.12.064052.
HOFMANN, Alexander J.L., Simon ZÜFLE, Kohei SHIMIZU, Markus SCHMID, Vivien WESSELS, Lars JÄGER, Stéphane ALTAZIN, Keitaro IKEGAMI, Motiur Rahman KHAN, Dieter NEHER, Hisao ISHII, Beat RUHSTALLER und Wolfgang BRÜTTING, 2019. Dipolar doping of organic semiconductors to enhance carrier injection. Physical Review Applied [online]. Dezember 2019. Bd. 12, Nr. 6, S. 064052. DOI 10.1103/PhysRevApplied.12.064052. Verfügbar unter: https://nbn-resolving.org/urn:nbn:de:bvb:384-opus4-685217
Hofmann, Alexander J.L., Simon Züfle, Kohei Shimizu, Markus Schmid, Vivien Wessels, Lars Jäger, Stéphane Altazin, et al. 2019. “Dipolar Doping of Organic Semiconductors to Enhance Carrier Injection.” Physical Review Applied 12 (6): 64052. https://doi.org/10.1103/PhysRevApplied.12.064052.
Hofmann, Alexander J. L., et al. “Dipolar Doping of Organic Semiconductors to Enhance Carrier Injection.” Physical Review Applied, vol. 12, no. 6, Dec. 2019, p. 64052, https://doi.org/10.1103/PhysRevApplied.12.064052.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.