Publikationstyp: Beitrag in wissenschaftlicher Zeitschrift
Art der Begutachtung: Peer review (Publikation)
Titel: Stochastic 3D modeling of three-phase microstructures for predicting transport properties: a case study
Autor/-in: Neumann, Matthias
Abdallah, Bassam
Holzer, Lorenz
Willot, François
Schmidt, Volker
et. al: No
DOI: 10.1007/s11242-019-01240-y
Erschienen in: Transport in Porous Media
Band(Heft): 128
Heft: 1
Seite(n): 179
Seiten bis: 200
Erscheinungsdatum: 2019
Verlag / Hrsg. Institution: Springer
ISSN: 0169-3913
1573-1634
Sprache: Englisch
Fachgebiet (DDC): 621.3: Elektro-, Kommunikations-, Steuerungs- und Regelungstechnik
Zusammenfassung: We compare two conceptually different stochastic microstructure models, i.e., a graph-based model and a pluri-Gaussian model, that have been introduced to model the transport properties of three-phase microstructures occurring, e.g., in solid oxide fuel cell electrodes. Besides comparing both models, we present new results regarding the relationship between model parameters and certain microstructure characteristics. In particular, an analytical expression is obtained for the expected length of triple phase boundary per unit volume in the pluri-Gaussian model. As a case study, we consider 3D image data which show a representative cutout of a solid oxide fuel cell anode obtained by FIB-SEM tomography. The two models are fitted to image data and compared in terms of morphological characteristics (like mean geodesic tortuosity and constrictivity) as well as in terms of effective transport properties. The Stokes flow in the pore phase and effective conductivities in the solid phases are computed numerically for realizations of the two models as well as for the 3D image data using Fourier methods. The local and effective physical responses of the model realizations are compared to those obtained from 3D image data. Finally, we assess the accuracy of the two methods to predict permeability as well as electronic and ionic conductivities of the anode.
URI: https://hal.science/hal-02103129/
https://digitalcollection.zhaw.ch/handle/11475/19418
Volltext Version: Publizierte Version
Lizenz (gemäss Verlagsvertrag): Lizenz gemäss Verlagsvertrag
Departement: School of Engineering
Enthalten in den Sammlungen:Publikationen School of Engineering

Dateien zu dieser Ressource:
Es gibt keine Dateien zu dieser Ressource.
Zur Langanzeige
Neumann, M., Abdallah, B., Holzer, L., Willot, F., & Schmidt, V. (2019). Stochastic 3D modeling of three-phase microstructures for predicting transport properties: a case study. Transport in Porous Media, 128(1), 179–200. https://doi.org/10.1007/s11242-019-01240-y
Neumann, M. et al. (2019) ‘Stochastic 3D modeling of three-phase microstructures for predicting transport properties: a case study’, Transport in Porous Media, 128(1), pp. 179–200. Available at: https://doi.org/10.1007/s11242-019-01240-y.
M. Neumann, B. Abdallah, L. Holzer, F. Willot, and V. Schmidt, “Stochastic 3D modeling of three-phase microstructures for predicting transport properties: a case study,” Transport in Porous Media, vol. 128, no. 1, pp. 179–200, 2019, doi: 10.1007/s11242-019-01240-y.
NEUMANN, Matthias, Bassam ABDALLAH, Lorenz HOLZER, François WILLOT und Volker SCHMIDT, 2019. Stochastic 3D modeling of three-phase microstructures for predicting transport properties: a case study. Transport in Porous Media [online]. 2019. Bd. 128, Nr. 1, S. 179–200. DOI 10.1007/s11242-019-01240-y. Verfügbar unter: https://hal.science/hal-02103129/
Neumann, Matthias, Bassam Abdallah, Lorenz Holzer, François Willot, and Volker Schmidt. 2019. “Stochastic 3D Modeling of Three-Phase Microstructures for Predicting Transport Properties: A Case Study.” Transport in Porous Media 128 (1): 179–200. https://doi.org/10.1007/s11242-019-01240-y.
Neumann, Matthias, et al. “Stochastic 3D Modeling of Three-Phase Microstructures for Predicting Transport Properties: A Case Study.” Transport in Porous Media, vol. 128, no. 1, 2019, pp. 179–200, https://doi.org/10.1007/s11242-019-01240-y.


Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt, soweit nicht anderweitig angezeigt.