Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: https://doi.org/10.21256/zhaw-2791
Publikationstyp: Konferenz: Poster
Art der Begutachtung: Editorial review
Titel: An enhanced 1-D model of a hydrogen-bromine flow battery
Autor/-in: Wlodarczyk, Jakub
Cantu, Brenda
Fischer, Peter
Küttinger, Michael
Schumacher, Jürgen
DOI: 10.21256/zhaw-2791
Tagungsband: 16th symposium on modeling and experimental validation of electrochemical energy technologies (ModVal 2019) : book of abstracts
Herausgeber/-in des übergeordneten Werkes: Krewer, Ulrike
Laue, Vincent
Redeker, Andreas
Angaben zur Konferenz: ModVal 2019, Braunschweig, Germany, 12-13 March 2019
Erscheinungsdatum: 2019
Verlag / Hrsg. Institution: Technische Universität Braunschweig
Sprache: Englisch
Schlagwörter: Hydrogen-bromine redox flow battery; Modeling and simulation
Fachgebiet (DDC): 621.3: Elektro-, Kommunikations-, Steuerungs- und Regelungstechnik
Zusammenfassung: One of the flow battery systems which utilizes abundantly available chemicals for electrolytes, characterized by high power density, is the hydrogen-bromine flow battery. First proposed in 1969 [1], it has recently received new attention and has been undergoing development, in which numerical simulations play an important role. To date, a few papers devoted to modeling and simulation of this particular new-generation flow battery chemistry were published. In the present work, a one-dimensional (1D), steady-state, macrohomogeneous, mathematical model of a single-cell hydrogen-bromine flow battery (HBFB) is developed, described and solved. It comprises of the most relevant transport through-plane processes and electrochemical phenomena for the operation of the HBFB, namely: charge transport, water, gaseous hydrogen, proton, bromine and (tri)bromide mass transport. Furthermore, the model is enhanced with supplementary phenomena to better approximate the physics described in the simulation such as: bromine-tribromide ionic equilibria, Nernstian losses due to reactant local surface concentration variations, Donnan potential on the HBr/Br2 solution-membrane interface, and gas adsorption in the ionomer on the gaseous hydrogen side according to Henry’s law. The model description emphasizes the importance of electrochemical and flux sign conventions, and the meaning of appropriate boundary conditions, which was seldom the case in the published modeling approaches. A complete set of plots of each dependent variable and the associated fluxes are provided. A system of nonlinear second-order partial differential equations describing the problem is solved using COMSOL Multiphysics software with the General PDE Form module for a better control over the actual governing equations (conservation laws) as well as auxiliary algebraic field equations. The 1D approach allows for solving the problem within seconds on a laptop-class computer and permits running multiple case studies within short time. Moreover, a parametric study is performed (Fig. 1) to examine the impact of selected parameters on the overall performance of a single cell. The validity of the model is verified based on results from a set of experiments carried out at Fraunhofer ICT (internal, multidisciplinary cooperation within the Flowcamp* project) using an isothermal single test cell.
Weitere Angaben: Acknowledgements: This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Grant Agreement no. 765289. *Project website: www.flowcamp-project.eu
URI: https://digitalcollection.zhaw.ch/handle/11475/16161
Volltext Version: Akzeptierte Version
Lizenz (gemäss Verlagsvertrag): Keine Angabe
Departement: School of Engineering
Organisationseinheit: Institute of Computational Physics (ICP)
Publiziert im Rahmen des ZHAW-Projekts: Redox Flow Battery Campus
Enthalten in den Sammlungen:Publikationen School of Engineering

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
Wlodarczyk-Poster-Final-Modval2019.pdf8.57 MBAdobe PDFMiniaturbild
Öffnen/Anzeigen
Zur Langanzeige
Wlodarczyk, J., Cantu, B., Fischer, P., Küttinger, M., & Schumacher, J. (2019). An enhanced 1-D model of a hydrogen-bromine flow battery [Conference poster]. In U. Krewer, V. Laue, & A. Redeker (Eds.), 16th symposium on modeling and experimental validation of electrochemical energy technologies (ModVal 2019) : book of abstracts. Technische Universität Braunschweig. https://doi.org/10.21256/zhaw-2791
Wlodarczyk, J. et al. (2019) ‘An enhanced 1-D model of a hydrogen-bromine flow battery’, in U. Krewer, V. Laue, and A. Redeker (eds) 16th symposium on modeling and experimental validation of electrochemical energy technologies (ModVal 2019) : book of abstracts. Technische Universität Braunschweig. Available at: https://doi.org/10.21256/zhaw-2791.
J. Wlodarczyk, B. Cantu, P. Fischer, M. Küttinger, and J. Schumacher, “An enhanced 1-D model of a hydrogen-bromine flow battery,” in 16th symposium on modeling and experimental validation of electrochemical energy technologies (ModVal 2019) : book of abstracts, 2019. doi: 10.21256/zhaw-2791.
WLODARCZYK, Jakub, Brenda CANTU, Peter FISCHER, Michael KÜTTINGER und Jürgen SCHUMACHER, 2019. An enhanced 1-D model of a hydrogen-bromine flow battery. In: Ulrike KREWER, Vincent LAUE und Andreas REDEKER (Hrsg.), 16th symposium on modeling and experimental validation of electrochemical energy technologies (ModVal 2019) : book of abstracts. Conference poster. Technische Universität Braunschweig. 2019
Wlodarczyk, Jakub, Brenda Cantu, Peter Fischer, Michael Küttinger, and Jürgen Schumacher. 2019. “An Enhanced 1-D Model of a Hydrogen-Bromine Flow Battery.” Conference poster. In 16th Symposium on Modeling and Experimental Validation of Electrochemical Energy Technologies (ModVal 2019) : Book of Abstracts, edited by Ulrike Krewer, Vincent Laue, and Andreas Redeker. Technische Universität Braunschweig. https://doi.org/10.21256/zhaw-2791.
Wlodarczyk, Jakub, et al. “An Enhanced 1-D Model of a Hydrogen-Bromine Flow Battery.” 16th Symposium on Modeling and Experimental Validation of Electrochemical Energy Technologies (ModVal 2019) : Book of Abstracts, edited by Ulrike Krewer et al., Technische Universität Braunschweig, 2019, https://doi.org/10.21256/zhaw-2791.


Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt, soweit nicht anderweitig angezeigt.