Publikationstyp: Beitrag in wissenschaftlicher Zeitschrift
Art der Begutachtung: Peer review (Publikation)
Titel: Microstructure-property relationships in a gas diffusion layer (GDL) for polymer electrolyte fuel cells, Part II : pressure-induced water injection and liquid permeability
Autor/-in: Holzer, Lorenz
Pecho, Omar
Schumacher, Jürgen
Marmet, Philip
Büchi, F.N.
Lamibrac, A.
Münch, B.
DOI: 10.1016/j.electacta.2017.04.141
Erschienen in: Electrochimica Acta
Band(Heft): 241
Seite(n): 414
Seiten bis: 432
Erscheinungsdatum: 1-Jul-2017
Verlag / Hrsg. Institution: Elsevier
ISSN: 0013-4686
1873-3859
Sprache: Englisch
Schlagwörter: Map
Fachgebiet (DDC): 621.3: Elektro-, Kommunikations-, Steuerungs- und Regelungstechnik
Zusammenfassung: The performance of polymer electrolyte fuel cells (PEFC) strongly depends on a controlled water management within the porous layers. For this purpose we investigate liquid water transport in a commercial gas diffusion layer (SGL 25BA) on the pore scale. X-ray tomography experiments combined with pressure-induced water injection provide 3D images of the liquid water distribution inside the GDL at incremental pressure steps between 0 and 100 mbar. The breakthrough behavior of the liquid phase is highly anisotropic. In through-plane (tp) direction first bubble points appear at the outlet plane already at 5 mbar and the ‘breakthrough' then evolves continuously over an extended pressure range up to > 30 mbar. For in-plane (ip) direction the breakthrough is discontinuous and takes place at 27 mbar. Simulations of the intrusion process reveal that the different breakthrough behaviors are mainly triggered by different ip- and tp-transport distances. Short tp-transport distances through the thin gas diffusion layer (ca. 100 μm) are responsible for the characteristic continuous tp-breakthrough behavior, which is thus attributed to a so-called short-range effect. Dedicated methods for 3D-image analysis adapted to fibrous GDL microstructures were presented in part I. With these methods we quantify all microstructure characteristics that are relevant for liquid permeability. These characteristics of pore and liquid phases include size distributions of bulges and bottlenecks, connectivity, effective volume fractions, geodesic tortuosity, constrictivity and hydraulic radius. Quantitative relationships are established between these microstructure characteristics and the liquid permeability, which provide a better understanding of the underlying microstructure limitations for injection and liquid transport. For the in-plane direction the liquid permeability is limited to roughly a similar extent by tortuosity, constrictivity and effective volume fraction. In contrast, for through-plane direction relatively low volume fractions of the liquid phase put stronger limitations to the liquid permeability than tortuosity, constrictivity and hydraulic radius. The curves for relative permeability vs. saturation (and vs. capillary pressure, respectively) achieved from 3D-analysis reveal complex but characteristic (reproducible) shapes with concave, linear and convex segments. The shape of these segments can be attributed to distinct microstructure effects. In contrast, the conventional macroscopic descriptions from literature cannot capture these complex shapes and the underlying microstructure effects. Future investigations with different GDL materials are necessary in order to understand whether these complex shapes for the relative permeability represent a general feature of gas diffusion layers or if they are specific to the investigated SGL material.
URI: https://digitalcollection.zhaw.ch/handle/11475/11592
Volltext Version: Publizierte Version
Lizenz (gemäss Verlagsvertrag): Lizenz gemäss Verlagsvertrag
Departement: School of Engineering
Organisationseinheit: Institute of Computational Physics (ICP)
Enthalten in den Sammlungen:Publikationen School of Engineering

Dateien zu dieser Ressource:
Es gibt keine Dateien zu dieser Ressource.
Zur Langanzeige
Holzer, L., Pecho, O., Schumacher, J., Marmet, P., Büchi, F. N., Lamibrac, A., & Münch, B. (2017). Microstructure-property relationships in a gas diffusion layer (GDL) for polymer electrolyte fuel cells, Part II : pressure-induced water injection and liquid permeability. Electrochimica Acta, 241, 414–432. https://doi.org/10.1016/j.electacta.2017.04.141
Holzer, L. et al. (2017) ‘Microstructure-property relationships in a gas diffusion layer (GDL) for polymer electrolyte fuel cells, Part II : pressure-induced water injection and liquid permeability’, Electrochimica Acta, 241, pp. 414–432. Available at: https://doi.org/10.1016/j.electacta.2017.04.141.
L. Holzer et al., “Microstructure-property relationships in a gas diffusion layer (GDL) for polymer electrolyte fuel cells, Part II : pressure-induced water injection and liquid permeability,” Electrochimica Acta, vol. 241, pp. 414–432, Jul. 2017, doi: 10.1016/j.electacta.2017.04.141.
HOLZER, Lorenz, Omar PECHO, Jürgen SCHUMACHER, Philip MARMET, F.N. BÜCHI, A. LAMIBRAC und B. MÜNCH, 2017. Microstructure-property relationships in a gas diffusion layer (GDL) for polymer electrolyte fuel cells, Part II : pressure-induced water injection and liquid permeability. Electrochimica Acta. 1 Juli 2017. Bd. 241, S. 414–432. DOI 10.1016/j.electacta.2017.04.141
Holzer, Lorenz, Omar Pecho, Jürgen Schumacher, Philip Marmet, F.N. Büchi, A. Lamibrac, and B. Münch. 2017. “Microstructure-Property Relationships in a Gas Diffusion Layer (GDL) for Polymer Electrolyte Fuel Cells, Part II : Pressure-Induced Water Injection and Liquid Permeability.” Electrochimica Acta 241 (July): 414–32. https://doi.org/10.1016/j.electacta.2017.04.141.
Holzer, Lorenz, et al. “Microstructure-Property Relationships in a Gas Diffusion Layer (GDL) for Polymer Electrolyte Fuel Cells, Part II : Pressure-Induced Water Injection and Liquid Permeability.” Electrochimica Acta, vol. 241, July 2017, pp. 414–32, https://doi.org/10.1016/j.electacta.2017.04.141.


Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt, soweit nicht anderweitig angezeigt.