
SoftwareX 27 (2024) 101748

2

6
I

o
t
l

h
R

Contents lists available at ScienceDirect

SoftwareX

journal homepage: www.elsevier.com/locate/softx

Original software publication

Identifying safety–critical concerns in unmanned aerial vehicle software
platforms with SALIENT
Sajad Khatiri a,b, Andrea Di Sorbo c, Fiorella Zampetti c, Corrado A. Visaggio c,
Massimiliano Di Penta c, Sebastiano Panichella b,∗
a Università della Svizzera italiana, Lugano, Switzerland
b Zurich University of Applied Sciences, Zurich, Switzerland
c University of Sannio, Benevento, Italy

A R T I C L E I N F O

Dataset link: https://doi.org/10.5281/zenodo.
207783, https://github.com/spanichella/SAL
ENT-TOOL

Keywords:
Unmanned aerial vehicles
Issue management
Safety issues
Machine learning
Empirical study

A B S T R A C T

Safety-related concerns may emerge during the operation of unmanned aerial vehicles (UAVs), reported
by users and developers in the form of issue reports and pull requests. To help UAV developers identify
safety-related concerns, we propose SALIENT, a machine learning (ML)-enabled tool that analyzes individual
sentences composing the issue reports and automatically recognizes those describing a safety-related concern.
The assessment of the classification performance of the tool on the issues of popular open-source UAV-related
projects demonstrates that SALIENT represents a viable solution to assist developers in timely identifying and
triaging safety–critical UAV issues, outperforming baselines based on ChatGPT and Google’s Bard.

Code metadata

Current code version V1.0
Permanent link to code/repository used for this code version https://github.com/ElsevierSoftwareX/SOFTX-D-24-00004
Permanent link to Reproducible Capsule https://github.com/spanichella/SALIENT-TOOL/releases/tag/V.1.0
Legal Code License Pre-approved GNU GPL-3.0 license as reported in

https://github.com/spanichella/SALIENT-TOOL.
Code versioning system used Git
Software code languages, tools, and services used Python 3.9+ (97.0%) and Dockerfile (3.0%)
Compilation requirements, operating environments & dependencies Tested within Mac OS and Linux (Ubuntu)
If available Link to developer documentation/manual https://github.com/spanichella/SALIENT-TOOL/blob/main/README.md
Support email for questions spanichella@gmail.com

1. Motivation and significance

Unmanned aerial vehicles (UAVs), also known as drones, are au-
tonomous or teleoperated aircrafts adopted in a wide variety of appli-
cation fields, including agriculture, disaster management, and surveil-
lance [1]. Since UAVs leverage sensors-based analysis to continuously
sense the changes in the physical environment [2,3] in which they are
perating and take physical actions to react to the sensed changes [4],
hey are part of safety–critical cyber–physical systems (CPSs), enabling
ong-range operations at relatively low costs [5]. However, due to the

∗ Corresponding author.
E-mail address: spanichella@gmail.com (S. Panichella).

cyber–physical nature of UAV systems, ensuring that the system always
operates as expected is hard, especially in continuously varying scenar-
ios [6]. Specifically, autonomous systems can enter unexpected states
leading to unexpected behaviors potentially harmful to humans [2,3,7].
One of the main reasons behind this is represented by the Reality
Gap problem characterizing safety–critical CPSs [8–11], arising from
disparities between the testing and real-world environments, leading
to inaccuracies in testing results and unsafe behaviors in real world.
Linked to this is the challenge of replicating and identifying bugs [2,3,
7] of safety–critical CPSs early in the development process [8,9,12].
352-7110/© 2024 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

ttps://doi.org/10.1016/j.softx.2024.101748
eceived 2 January 2024; Received in revised form 27 March 2024; Accepted 19 April 2024

https://www.elsevier.com/locate/softx
https://www.elsevier.com/locate/softx
https://doi.org/10.5281/zenodo.6207783
https://doi.org/10.5281/zenodo.6207783
https://doi.org/10.5281/zenodo.6207783
https://doi.org/10.5281/zenodo.6207783
https://doi.org/10.5281/zenodo.6207783
https://doi.org/10.5281/zenodo.6207783
https://doi.org/10.5281/zenodo.6207783
https://doi.org/10.5281/zenodo.6207783
https://doi.org/10.5281/zenodo.6207783
https://doi.org/10.5281/zenodo.6207783
https://doi.org/10.5281/zenodo.6207783
https://doi.org/10.5281/zenodo.6207783
https://doi.org/10.5281/zenodo.6207783
https://doi.org/10.5281/zenodo.6207783
https://doi.org/10.5281/zenodo.6207783
https://doi.org/10.5281/zenodo.6207783
https://doi.org/10.5281/zenodo.6207783
https://doi.org/10.5281/zenodo.6207783
https://doi.org/10.5281/zenodo.6207783
https://doi.org/10.5281/zenodo.6207783
https://doi.org/10.5281/zenodo.6207783
https://doi.org/10.5281/zenodo.6207783
https://doi.org/10.5281/zenodo.6207783
https://doi.org/10.5281/zenodo.6207783
https://doi.org/10.5281/zenodo.6207783
https://doi.org/10.5281/zenodo.6207783
https://doi.org/10.5281/zenodo.6207783
https://doi.org/10.5281/zenodo.6207783
https://doi.org/10.5281/zenodo.6207783
https://doi.org/10.5281/zenodo.6207783
https://doi.org/10.5281/zenodo.6207783
https://doi.org/10.5281/zenodo.6207783
https://doi.org/10.5281/zenodo.6207783
https://doi.org/10.5281/zenodo.6207783
https://doi.org/10.5281/zenodo.6207783
https://doi.org/10.5281/zenodo.6207783
https://doi.org/10.5281/zenodo.6207783
https://doi.org/10.5281/zenodo.6207783
https://github.com/spanichella/SALIENT-TOOL
https://github.com/spanichella/SALIENT-TOOL
https://github.com/spanichella/SALIENT-TOOL
https://github.com/spanichella/SALIENT-TOOL
https://github.com/spanichella/SALIENT-TOOL
https://github.com/spanichella/SALIENT-TOOL
https://github.com/spanichella/SALIENT-TOOL
https://github.com/spanichella/SALIENT-TOOL
https://github.com/spanichella/SALIENT-TOOL
https://github.com/spanichella/SALIENT-TOOL
https://github.com/spanichella/SALIENT-TOOL
https://github.com/spanichella/SALIENT-TOOL
https://github.com/spanichella/SALIENT-TOOL
https://github.com/spanichella/SALIENT-TOOL
https://github.com/spanichella/SALIENT-TOOL
https://github.com/spanichella/SALIENT-TOOL
https://github.com/spanichella/SALIENT-TOOL
https://github.com/spanichella/SALIENT-TOOL
https://github.com/spanichella/SALIENT-TOOL
https://github.com/spanichella/SALIENT-TOOL
https://github.com/spanichella/SALIENT-TOOL
https://github.com/spanichella/SALIENT-TOOL
https://github.com/spanichella/SALIENT-TOOL
https://github.com/spanichella/SALIENT-TOOL
https://github.com/spanichella/SALIENT-TOOL
https://github.com/spanichella/SALIENT-TOOL
https://github.com/spanichella/SALIENT-TOOL
https://github.com/spanichella/SALIENT-TOOL
https://github.com/spanichella/SALIENT-TOOL
https://github.com/spanichella/SALIENT-TOOL
https://github.com/spanichella/SALIENT-TOOL
https://github.com/spanichella/SALIENT-TOOL
https://github.com/spanichella/SALIENT-TOOL
https://github.com/spanichella/SALIENT-TOOL
https://github.com/spanichella/SALIENT-TOOL
https://github.com/spanichella/SALIENT-TOOL
https://github.com/spanichella/SALIENT-TOOL
https://github.com/spanichella/SALIENT-TOOL
https://github.com/spanichella/SALIENT-TOOL
https://github.com/spanichella/SALIENT-TOOL
https://github.com/spanichella/SALIENT-TOOL
https://github.com/spanichella/SALIENT-TOOL
https://github.com/spanichella/SALIENT-TOOL
https://github.com/ElsevierSoftwareX/SOFTX-D-24-00004
https://github.com/spanichella/SALIENT-TOOL/releases/tag/V.1.0
https://github.com/spanichella/SALIENT-TOOL
https://github.com/spanichella/SALIENT-TOOL/blob/main/README.md
mailto:spanichella@gmail.com
mailto:spanichella@gmail.com
https://doi.org/10.1016/j.softx.2024.101748
https://doi.org/10.1016/j.softx.2024.101748
http://crossmark.crossref.org/dialog/?doi=10.1016/j.softx.2024.101748&domain=pdf
http://creativecommons.org/licenses/by/4.0/


SoftwareX 27 (2024) 101748Sajad Khatiri et al.

p
a
s

e
o
t
t
r
o
s
f

p
i
d
i
c
p
d
b
c
b
r
G
t
i
b

[
p
t
t
c
t
B
I

2

c
t

Fig. 1. SALIENT’s architecture overview.

We argue that it is essential for UAVs that ‘‘the possibility of harm to
ersons or of property damage is reduced to, and maintained at or below, an
cceptable level through a continuous process of hazard identification and
afety risk management’’ [13,14]. To this aim, the aeronautical industry
and the software engineering community [2,3] is constantly concerned
with enhancing the efficiency, safety, and automation of such vehicles.
Since the types of possible safety-related concerns that might happen
are not all a priori known, the identification of safety requirements can
be performed iteratively [15], expecting that safety-related concerns
merge during the operation phase of UAV systems provided by users
r developers in the form of issue reports and pull requests [16]. On
he one hand, popular projects receive thousands of reports of varying
ypes and quality [17,18] (e.g., in the last 12 months, Ardupilot [19]
eceived more than 3000 among issue reports and pull requests). On the
ther hand, given the criticality of safety-related issues, UAV developers
hould pay special attention to them and promptly identify safety issues
or fast triage and resolution.
To help developers analyze user-reported issues occurring in UAV

latforms, in this paper, we present SALIENT (SAfety-criticaL Issue
dENTifier), a tool that automatically detects safety-related concerns
isclosed in issue reports. The tool implements an approach proposed
n previous work [20], which analyzes issue reports to recognize safety–
ritical sentences contained in them and provides developers with
roper support during the issue triaging and resolution phase. When
ealing with cyber–physical systems, safety-related concerns might
e highly critical. Therefore, SALIENT aims to help developers early
apture if an issue or pull request contains safety-related implications
y automatically analyzing it. We focus on both issue reports and pull
equests, as beyond users that can directly report issues and problems,
itHub supports pull-based development, where developers contribute
o a repository by submitting pull requests rather than directly modify-
ng the source code [21]. After careful revision, such pull requests can
e either merged into the master branch or rejected.
Although researchers devised tools able to automatically analyze

22], classify [17,23], or summarize [24,25] user-reported issues, the
urpose and classification granularity of SALIENT are different, aiming
o analyze individual sentences composing the issues and recognize
hose describing a safety-related concern. We showcase that SALIENT
an achieve promising results to effectively aid developers in this
ask, outperforming baseline strategies based on ChatGPT and Google’s
ard (see Section 3). SALIENT is available either in a Graphical User
nterface (GUI) version or as a Command-Line Interface (CLI).

. The SALIENT tool

In this section, we overview SALIENT’s architecture and its main
omponents (see Fig. 1); and we discuss in detail the approach, and

2.1. SALIENT architecture overview

As shown in Fig. 1, SALIENT supports two main usage modes
thanks to its CLI and its GUI. The GUI is designed for general users
(not necessarily developers), while the CLI is useful for UAV devel-
opers interested in automating the issue management process toward
safety-related issues. Both the CLI and GUI are designed to allow
developers/users to select issues as well as write and edit issues. Then,
CLI commands and specific GUI events support the developers/users
in the automated identification (or classification) of sentences in issues
concerning safety-related aspects of UAVs.

The CLI and the GUI of SALIENT enable the aforementioned steps by
leveraging (or interacting with) two components: the GitHub Issue
Parser and the ML Component. The users/developers (i) interact
with the GitHub Issue Parser via the CLI or the GUI, with the
component able to preprocess issues downloaded from Github in dif-
ferent formats (explained in later sections) and preprocess them (e.g.,
splitting the issue text logically in sentences) for the next analysis. Once
the data are pre-processed, (ii) the users/developers interact with the
ML Component via the CLI (or the GUI) of SALIENT, which allows
them to identify sentences with safety-related implications. Specifically,
in this process, the data pre-processed by the GitHub Issue Parser
are then provided as input to the SALIENT’s ML Component which
identifies (or classifies) the individual sentences that are safety-related.
To support developers/users during the issue management process, the
ML Component uses a model we trained using a manually curated
dataset as described in our previous work [20] to classify safety-related
sentences in newly reported UAV issues in GitHub. The training, tuning,
and accuracy of the ML model employed by SALIENT are summarized
in Section 3 and detailed in previous work [20].

2.2. Tool approach and technology overview

SALIENT is developed to classify sentences contained in GitHub
issues of UAVs that are critical from a safety point of view. For this
we need a reference taxonomy or set of safety concerns to consider
for automating the classification process. In the context of our study,
we considered safety–critical issues from recent work [20]. Specifically,
Table 1 describes some of the safety issues developers of UAVs need
to address (a complete list can be found in our recent work [20]),
which are the target of the SALIENT identification process. As described
in [20], these categories emerged from a systematic manual analysis of
sentences occurring in 304 safety-related closed issues and pull requests
of three popular UAV-related GitHub projects (further details on the
data collection and labeling steps are provided in Section 3).

As shown in Fig. 1, the GitHub Issue Parser is responsible to
2

he technologies behind SALIENT. prepare the text for the analysis (i.e., text cleaning, sentence splitting,



SoftwareX 27 (2024) 101748Sajad Khatiri et al.

t
m
t
d
A
S
t
a
l
(
(
o
a

i
a
s
t
F
c
c
o
g
r
f
u
I
p
o
s
o
F

’s
Table 1
Reference Safety-related issue categories of UAVs [20].
Category Description

Undesired behavior on failsafe or error condition/configuration Unexpected behavior of the system in the
scenarios where failsafe operations or error
conditions occur, e.g., low default speed allowed
when radio contact is lost, undesired throttle
behavior in case of GPS lock.

Inadequate checks Parameters, input data from sensors, actions
and/or events not checked before activating a
specific flight mode or before enabling a specific
action, e.g., battery status not checked before
takeoff.

Improper parameter setting/initialization/configuration System-level parameters, e.g., min-throttle, not or
wrongly initialized, configured and set, e.g.,
improper calibration or incorrect conversions.

Undesired hardware behavior Unexpected behavior, e.g., failures, of the hardware
components affecting the overall behavior of the
system, e.g., throttle unclamped when disarmed.

Timing/timeout/ synchronization issue Inappropriate handling of synchronization across
different functionalities and timing issues when
various components, both hardware and software,
must communicate.

etc.). Our GitHub Issue Parser exploits the functionalities pro-
vided by the nltk library to analyze the natural text of issues given as
input and apply a sentence-splitting strategy. In particular, for sentence
splitting, the GitHub Issue Parser leverages the nltk sentence
okenizer. To identify sentence boundaries, it relies on punctuation
arks and regular expressions, including a list of common abbrevia-
ions (e.g., Dr. or Mr.) to avoid incorrectly splitting sentences. Issue
ata can be provided as input via the CLI or the GUI of SALIENT.
s demonstrated in the video and detailed in our repository, the
ALIENT ’s GUI allows to upload a text file (or CSV file) containing
he text of the UAV issue, or the users/developers can directly copy
nd paste the text of the issue in the GUI’s form. Via the command
ine tool, it is possible to specify, providing as input a JSON config file
with arguments as summarized in Table 2), the location of the file
containing the text of the issue) the developers/users are interested in
r, alternatively, they can directly copy and paste (or type) the text of
n existing (or new) issue directly in the JSON file.
Once the UAV issue text is provided as input and its text is divided

nto sentences, SALIENT enacts for each sentence its classification
pproach: the ML Component leverages FastText [26] to classify each
entence as safety- or non-safety-related with the aim of supporting
he UAV issue management process. FastText is a library created by
acebook’s AI Research lab that leverages word embeddings for text
lassification. By default, FastText uses a set of hyperparameters that
an be further customized.1 FastText is an extension of Word2Vec, and
perates at a more granular level by breaking words into several n-
rams (sub-words) [26]. This approach allows for better representing
are and out-of-vocabulary words, thereby improving classification per-
ormance. We decided to use FastText since it has been successfully
sed for identifying the correct labels to assign to GitHub issues [17].
ndeed, recent research has shown that FastText is one of the best-
erforming classifiers in issue type prediction tasks [27]. Compared to
ther ML models, FastText also achieves the best results when clas-
ifying UAV safety-related concerns [20]. SALIENT’s ML Component
btains sub-word embeddings for each input sentence by leveraging
astText. Based on such a representation, the ML Component (i) pre-
dicts the likelihood that sentences in a new UAV issue concern safety-
or non-safety-related aspects, (ii) assigns the class (i.e., safety or non-
safety) with the highest probability to each sentence, and (iii) visualizes
such information via the GUI (or the CLI). Hence, developers/users
have the possibility to save the recommended concerns in local files,

1 For more information, refer to https://fasttext.cc/docs/en/options.html.

to prioritize the issues that are more critical to address from a safety
perspective.

2.3. Using SALIENT

This section discusses the main SALIENT commands to use it and
clarifies in an abstract level what the software can do or can enable
(for this also refer to Sections 3 and 4).

To analyze UAV issues and identify UAV safety concerns, SALIENT
can be used as a Python command-line utility, which needs proper
setup and configurations for execution.2 To simplify this process, we
have included a Dockerfile that sets up all the requirements, runs the
container, and opens the bash to interact with the tools, with the
following commands:

1 docker build . -t salient_tool
2 docker run -it salient_tool bash

Analyzing UAV issues requires to invoke SALIENT within the con-
tainer, with the configuration file config.json, a command is pro-
vided:

1 python Fasttext-Model-prediction -on-safety-
unseen-data.py --infile config.json

As demonstrated in the video and detailed in our repository, SALIENT
config.json file contains different arguments (see Table 2), that
allow specifying the issue data to be processed and classified, with
results stored in the specified output file (path specified with the file
config.json). It is important to note that, if multiple Input types
(see Table 2) are provided as input with the config.json file, all
of them are analyzed/classified and stored in the specified output file.
SALIENT can also be used via its GUI interface (it requires installing
required packages/libraries, as detailed in our repository):

1 cd salient_src
2 python salient_gui_tkinter.py #it opens the GUI

With the SALIENT’s GUI it is possible to classify text of issues concern-
ing safety aspects automatically, with relevant sentences highlighted
in the specified color (the default color is orange). The GUI also allows
storing the results locally.

To allow UAV developers or testers pririotizing issues, SALIENT
provides different options to output the results with its GUI and its CLI.

2 (Video) Demo URL: https://www.youtube.com/watch?v=cvlDJRW5Oj8.
3

https://fasttext.cc/docs/en/options.html
https://www.youtube.com/watch?v=cvlDJRW5Oj8


SoftwareX 27 (2024) 101748Sajad Khatiri et al.

1

2

3

s
(
r
c
(
t
a

3

f
i
p
i

d
a
c
r
a
i
n
r

Table 2
SALIENT CLI/GUI arguments to be provided in the config.json file.
Argument Type Description

path_model String The SALIENT’s pre-trained model
(trained_model.bin) required for the
classification.

path_test_set String (Input type 1) Path of the CSV file (in our
demonstration test-set.csv) containing the
sentences of the issue(s) to be classified.

path_text_issue String (Input type 2) Path of the txt file (in our
demonstration text_issue.txt) containing the
text of the issue to be classified .

text_as_input String (Input type 3) String (in our demonstration
‘‘AP_Arming: pre-arm check if ... to disable the first
one") of the issue to be classified.

path_results String The path of the File (in our demonstration
‘‘fasttext_predicted_labels_test_
dataset.txt") where the results of SALIENT’s
classification step are stored.

Table 3
Dataset characteristics (detailed sampling and labeling process is reported even further
in [20]).
Project # Issues # Safety # Pull Requests # Safety

Closed Issues Closed Pull Requests

Ardupilot 4,529 153 11,815 78
dRonin 691 25 1,452 37
PX4-Autopilot 5,623 3 11,195 8

Total 10,843 181 (1.67%) 24,262 123 (0.51%)

As shown below, the output of SALIENT corresponds to a structured file
(in CSV format) containing the sentence ID, the text of the sentence
classified, the label assigned to the sentence (i.e., ‘‘Yes’’ or ‘‘No’’,
depending on the fact that the sentence concerns safety aspects), and
the probability that the predicted label is actually correct.

Sentence ,Predicted_Label ,
Probability_of_Predicted_Label

0,AP_Arming: pre-arm check if compass1 is
disabled but 2 or 3 are enabled.,"(’
__label__YES ’,)" ,0.670190691947937

...

In a broader setting, the SALIENT tool can be used as fundamental
tarting point for developing (i) UAV issue prioritization strategies
this to aid UAV developers in mitigating recurring safety issues); (ii)
esearchers/developers can utilize SALIENT to pinpoint safety-related
oncerns for testing and maintenance of UAV software [2,3]; finally,
iii) SALIENT can be experimented to explore safety issue categoriza-
ion beyond UAV domains, to enabling automated hazard identification
s well as human into-the-loop analysis of identified issues [14].

. Evaluation and impact

We collected a dataset containing issue reports and pull requests
rom open-source UAV software platforms hosted on GitHub by query-
ng for projects with topics drone and/or drones and filtering out any
rojects that did not have safety-related labels. This filtering resulted
n three UAV-related projects.
Table 3 provides an overview of each project included in our

ataset, showing the total number of closed issues and pull requests,
s well as, among them, how many are labeled as reporting a safety
oncern. We, therefore, considered the 304 closed issues and pull
equests labeled with safety-related labels by the original developers
nd manually classified each of the 1916 sentences appearing only
n the titles and descriptions of such 304 documents as safety- or
on-safety-related as we aim to enable early identification of safety-

Table 4
GPT-3.5 and PaLM 2: Confusion Matrices for predicted safety and non-safety issues.

GPT-3.5 PaLM 2

Predicted class Predicted class
safety non-safety safety non-safety

Actual safety 27 13 40 0

class non-safety 18 42 42 18

was followed. It included a pilot labeling task involving all coders,
independent labeling by multiple annotators for each sentence, and
resolution of disagreements with a third annotator [20]. At the end
of the procedure, the coders identified 837 (43.7%) of the sentences
as discussing safety concerns, while the remaining 1079 did not. For
more details on the methodology followed to construct the dataset,
please refer to the original work behind our tool [20] while the dataset
used for training and evaluating the ML Component is accessible on
Zenodo [28].

We are aware of the potential threats deriving from the usage
of Large Language Models (LLMs) in software engineering research
including issues with closed-source models, possible leakage between
LLM training data and research evaluation, and the reproducibility of
LLM-based findings [29]. However, we decided to explore whether
a general-purpose and pre-trained AI-enabled solution based on LLM
technologies can be used to automatically identify safety-related sen-
tences appearing in UAV issues. To this aim, we selected a smaller
sample of 17 issues from our dataset/oracle, comprising at least one
issue from each of the considered projects for a total of 100 sen-
tences, 40 of which are safety-related. We decided to experiment
with GPT-3.5 and PaLM 2 (i.e., the models behind OpenAI’s ChatGPT
and Google’s Bard) to classify each sentence in the sample, using
the prompt: Is the following sentence safety-related?
’<sentence_here>’ Response format: YES/NO. Our choice of
experimenting with GPT-3.5, and not GPT-4, is motivated by the fact
that GPT-4 is a paid resource that not everyone can have free access
to, restricting the replicability of our results.

As shown in Table 4, both pre-trained models obtained low classifi-
cation performance (i.e., a precision that is less than or equal to 60%),
motivating the need for a specialized model able to achieve better
results to be useful in practical contexts.

Since we aimed to understand if pre-trained AI-enabled solutions
could be used as they are for identifying safety-related concerns in
the UAV context, it is worth noticing that we used pre-trained gen-
erative models. We did not perform any prompt engineering or use
Retrieval-Augmented Generation (RAG) or reinforcement learning to
enhance the LLM tools for this specific application. Instead, Table 5
reports the classification performance achieved by the fastText model
4

elated concerns. To reduce subjectivity, a strict labeling protocol



SoftwareX 27 (2024) 101748Sajad Khatiri et al.

f
s
o
m
t
i
p

t

Table 5
ML classification of safety-related sentences (Pr: Precision, Rc: Recall, F1: F1-score).
Model Safety Non-Safety Avg

Pr Rc F1 Pr Rc F1 F1
fastText 0.78 0.80 0.79 0.85 0.81 0.83 0.81

(leveraged by the tool’s internal ML Component) when applying 10-
old cross-validation on the dataset of labeled issue sentences de-
cribed above. In particular, the model achieves an average F1-score
f 81%, with reasonably high recall and precision results in auto-
atically detecting safety-related sentences. These results demonstrate
hat SALIENT can represent effective support to aid developers in
dentifying safety-related issues promptly during the issue management
rocess.
Implications and Impact. Our tool opens the way to utilizing au-

omated methodologies to assist UAV developers in pinpointing safety-
related issues within problem reports. In particular, SALIENT can help
them identify, triage, and prioritize safety-related concerns that re-
quire attention, possibly reducing the time needed for implementing
the corresponding solutions. Moreover, SALIENT can be integrated
into the software development lifecycle to perform automated checks
for safety-related sentences. This can enhance the overall quality of
UAV software platforms by ensuring that safety considerations are
consistently addressed and monitored throughout the development
process.

As for researchers, our tool propels exploration into the enhanced
analysis of safety-related issues occurring in UAVs. Researchers can
use the tool to gather large volumes of data on safety issues. This
data can be invaluable for empirical studies and trend analysis aimed
at advancing research on best practices, guidelines, and standards for
enhancing safety in UAV systems. Researchers can leverage our work
and the manually labeled data provided to delve into automated meth-
ods for categorizing safety-related concerns and assist UAV developers
in mitigating recurring safety-related issues. Our data can also be
leveraged for developing approaches that aid developers in allocating
appropriate resources to various types of UAV-specific safety concerns.

4. Conclusion

Issues related to safety in UAV systems can have serious conse-
quences, emphasizing the necessity of maintaining a continuous process
for identifying hazards and managing safety risks. However, the large
volume of issue reports that a UAV software platform may receive
poses a challenge for developers in promptly identifying and address-
ing safety–critical concerns. To address this challenge, we introduce
SALIENT, a tool empowered by machine learning to automatically de-
tect sentences within issue reports that discuss safety-related issues. Our
tool offers developers tangible assistance in streamlining the prioritiza-
tion of safety–critical problems in UAV software systems, facilitating
the creation of comprehensive platforms to aid UAV developers in
mitigating recurring safety issues. Researchers can utilize SALIENT
to pinpoint safety-related concerns, thereby encouraging further in-
vestigation into the testing and maintenance of UAV software [2,3,
7].

Future endeavors seek to expand upon this research by applying it
in diverse contexts, including closed-source environments, and explor-
ing safety issue categorization beyond UAV domains. The objective is
to evaluate the adaptability of models across domains and ascertain
whether retraining is necessary due to unique safety-related char-
acteristics. Furthermore, to enhance fault localization and resolution
processes, we intend to augment support for safety issue prioritization,
for instance, by enabling automated hazard identification as well as

CRediT authorship contribution statement

Sajad Khatiri: Writing – review & editing, Software. Andrea Di
Sorbo: Writing – review & editing, Writing – original draft, Validation,
Resources, Project administration, Methodology, Investigation, Data
curation, Conceptualization. Fiorella Zampetti: Writing – review &
editing, Methodology, Data curation, Conceptualization. Corrado A.
Visaggio: Writing – review & editing, Methodology, Investigation,
Conceptualization. Massimiliano Di Penta: Writing – review & edit-
ing, Methodology, Investigation. Sebastiano Panichella: Writing –
review & editing, Writing – original draft, Validation, Software, Re-
sources, Project administration, Methodology, Investigation, Funding
acquisition, Data curation, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

https://doi.org/10.5281/zenodo.6207783 and https://github.com/
spanichella/SALIENT-TOOL.

Acknowledgments

We thank the Horizon 2020 (EU Commission) support for the
project COSMOS Project No. 957254, the Innosuisse support for the
project ARIES (Project No. 45548.1), and the Hasler Foundation project
(Project No.23064) entitled ‘‘Bridging the Reality Gap in Testing Un-
manned Aerial Vehicles’’.

References

[1] Balestrieri E, Daponte P, De Vito L, Picariello F, Tudosa I. Sensors and
measurements for UAV safety: An overview. Sensors 2021;21(24):8253. http:
//dx.doi.org/10.3390/s21248253.

[2] Khatiri S, Saurabh P, Zimmermann T, Munasinghe C, Birchler C, Panichella S.
SBFT tool competition 2024 - CPS-UAV test case generation track. In: IEEE/ACM
international workshop on search-based and fuzz testing. 2024.

[3] Khatiri S, Panichella S, Tonella P. Simulation-based testing of unmanned aerial
vehicles with aerialist. In: International conference on software engineering.
2024.

[4] Zampetti F, Kapur R, Di Penta M, Panichella S. An empirical characteriza-
tion of software bugs in open-source cyber–physical systems. J Syst Softw
2022;192:111425. http://dx.doi.org/10.1016/j.jss.2022.111425, URL https://
www.sciencedirect.com/science/article/pii/S0164121222001315.

[5] Wojciechowska A, Frey J, Sass S, Shafir R, Cauchard JR. Collocated human-drone
interaction: Methodology and approach strategy. In: International conference on
human-robot interaction. IEEE; 2019, p. 172–81. http://dx.doi.org/10.1109/HRI.
2019.8673127.

[6] Lindvall M, Porter A, Magnusson G, Schulze C. Metamorphic model-based testing
of autonomous systems. In: International workshop on metamorphic testing. IEEE
Computer Society; 2017, p. 35–41. http://dx.doi.org/10.1109/MET.2017.6.

[7] Khatiri S, Panichella S, Tonella P. Simulation-based test case generation for
unmanned aerial vehicles in the neighborhood of real flights. In: IEEE conference
on software testing, verification and validation. 2023, p. 281–92. http://dx.doi.
org/10.1109/ICST57152.2023.00034.

[8] Wang D, Li S, Xiao G, Liu Y, Sui Y. An exploratory study of autopilot software
bugs in unmanned aerial vehicles. In: Proceedings of the 29th ACM joint meeting
on European software engineering conference and symposium on the foundations
of software engineering. 2021, p. 20–31.

[9] Afzal A, Katz DS, Le Goues C, Timperley CS. Simulation for robotics test automa-
tion: Developer perspectives. In: Conference on software testing, verification and
validation. IEEE; 2021, p. 263–74.

[10] Ngo A, Bauer MP, Resch M. A multi-layered approach for measuring the
simulation-to-reality gap of radar perception for autonomous driving. In: 24th
IEEE international intelligent transportation systems conference. IEEE; 2021, p.
4008–14. http://dx.doi.org/10.1109/ITSC48978.2021.9564521.

[11] Reway F, Hoffmann A, Wachtel D, Huber W, Knoll AC, Ribeiro EP. Test method
for measuring the simulation-to-reality gap of camera-based object detection
algorithms for autonomous driving. In: IEEE intelligent vehicles symposium.
IEEE; 2020, p. 1249–56. http://dx.doi.org/10.1109/IV47402.2020.9304567.
5

human into-the-loop analysis of identified issues [14].

https://doi.org/10.5281/zenodo.6207783
https://github.com/spanichella/SALIENT-TOOL
https://github.com/spanichella/SALIENT-TOOL
https://github.com/spanichella/SALIENT-TOOL
https://www.cosmos-devops.org/
https://www.cosmos-devops.org/
https://www.cosmos-devops.org/
https://www.cosmos-devops.org/
https://www.cosmos-devops.org/
https://www.cosmos-devops.org/
https://www.cosmos-devops.org/
https://www.cosmos-devops.org/
https://www.cosmos-devops.org/
https://www.cosmos-devops.org/
https://www.cosmos-devops.org/
https://www.cosmos-devops.org/
https://www.cosmos-devops.org/
http://dx.doi.org/10.3390/s21248253
http://dx.doi.org/10.3390/s21248253
http://dx.doi.org/10.3390/s21248253
http://refhub.elsevier.com/S2352-7110(24)00119-5/sb2
http://refhub.elsevier.com/S2352-7110(24)00119-5/sb2
http://refhub.elsevier.com/S2352-7110(24)00119-5/sb2
http://refhub.elsevier.com/S2352-7110(24)00119-5/sb2
http://refhub.elsevier.com/S2352-7110(24)00119-5/sb2
http://refhub.elsevier.com/S2352-7110(24)00119-5/sb3
http://refhub.elsevier.com/S2352-7110(24)00119-5/sb3
http://refhub.elsevier.com/S2352-7110(24)00119-5/sb3
http://refhub.elsevier.com/S2352-7110(24)00119-5/sb3
http://refhub.elsevier.com/S2352-7110(24)00119-5/sb3
http://dx.doi.org/10.1016/j.jss.2022.111425
https://www.sciencedirect.com/science/article/pii/S0164121222001315
https://www.sciencedirect.com/science/article/pii/S0164121222001315
https://www.sciencedirect.com/science/article/pii/S0164121222001315
http://dx.doi.org/10.1109/HRI.2019.8673127
http://dx.doi.org/10.1109/HRI.2019.8673127
http://dx.doi.org/10.1109/HRI.2019.8673127
http://dx.doi.org/10.1109/MET.2017.6
http://dx.doi.org/10.1109/ICST57152.2023.00034
http://dx.doi.org/10.1109/ICST57152.2023.00034
http://dx.doi.org/10.1109/ICST57152.2023.00034
http://refhub.elsevier.com/S2352-7110(24)00119-5/sb8
http://refhub.elsevier.com/S2352-7110(24)00119-5/sb8
http://refhub.elsevier.com/S2352-7110(24)00119-5/sb8
http://refhub.elsevier.com/S2352-7110(24)00119-5/sb8
http://refhub.elsevier.com/S2352-7110(24)00119-5/sb8
http://refhub.elsevier.com/S2352-7110(24)00119-5/sb8
http://refhub.elsevier.com/S2352-7110(24)00119-5/sb8
http://refhub.elsevier.com/S2352-7110(24)00119-5/sb9
http://refhub.elsevier.com/S2352-7110(24)00119-5/sb9
http://refhub.elsevier.com/S2352-7110(24)00119-5/sb9
http://refhub.elsevier.com/S2352-7110(24)00119-5/sb9
http://refhub.elsevier.com/S2352-7110(24)00119-5/sb9
http://dx.doi.org/10.1109/ITSC48978.2021.9564521
http://dx.doi.org/10.1109/IV47402.2020.9304567


SoftwareX 27 (2024) 101748Sajad Khatiri et al.
[12] Afzal A, Le Goues C, Hilton M, Timperley CS. A study on challenges of testing
robotic systems. In: International conference on software testing, validation and
verification. IEEE; 2020, p. 96–107.

[13] International Civil Aviation Organization (ICAO). Safety management manual;
3rd ed.; Doc 9859. Montréal, Quebec: ICAO; 2013.

[14] Birchler C, Mohammed TK, Rani P, Nechita T, Kehrer T, Panichella S. How does
simulation-based testing for self-driving cars match human perception? In: ACM
international conference on the foundations of software engineering. 2024.

[15] Cleland-Huang J, Vierhauser M. Discovering, analyzing, and managing safety
stories in agile projects. In: Requirements engineering conference. 2018, p.
262–73. http://dx.doi.org/10.1109/RE.2018.00034.

[16] Wang D, Li S, Xiao G, Liu Y, Sui Y. An exploratory study of autopilot software
bugs in unmanned aerial vehicles. In: European software engineering conference
and symposium on the foundations of software engineering. 2021, p. 20–31.
http://dx.doi.org/10.1145/3468264.3468559.

[17] Kallis R, Di Sorbo A, Canfora G, Panichella S. Predicting issue types on GitHub.
Sci Comput Program 2021;205:102598. http://dx.doi.org/10.1016/j.scico.2020.
102598.

[18] Panichella S, Canfora G, Di Sorbo A. "Won’t We Fix this Issue?" qualitative char-
acterization and automated identification of wontfix issues on GitHub. Inf Softw
Technol 2021;139:106665. http://dx.doi.org/10.1016/j.infsof.2021.106665.

[19] Ardupilotorg. Open source drone software. Versatile, trusted, open. ArduPilot.
2023, URL https://ardupilot.org/. [Accessed on May 5th, 2023].

[20] Di Sorbo A, Zampetti F, Visaggio A, Di Penta M, Panichella S. Automated
identification and qualitative characterization of safety concerns reported in
UAV software platforms. ACM Trans Softw Eng Methodol 2023;32(3). http:
//dx.doi.org/10.1145/3564821.

[21] Azeem MI, Panichella S, Di Sorbo A, Serebrenik A, Wang Q. Action-based recom-
mendation in pull-request development. In: ICSSP ’20: international conference
on software and system processes. 2020, p. 115–24. http://dx.doi.org/10.1145/
3379177.3388904.

[22] Di Sorbo A, Visaggio CA, Di Penta M, Canfora G, Panichella S. An NLP-
based tool for software artifacts analysis. In: IEEE international conference on
software maintenance and evolution. 2021, p. 569–73. http://dx.doi.org/10.
1109/ICSME52107.2021.00058.

[23] Panichella S, Di Sorbo A, Guzman E, Visaggio CA, Canfora G, Gall HC. Ardoc:
app reviews development oriented classifier. In: International symposium on
foundations of software engineering. 2016, p. 1023–7. http://dx.doi.org/10.
1145/2950290.2983938.

[24] Di Sorbo A, Panichella S, Alexandru CV, Visaggio CA, Canfora G. SURF:
Summarizer of user reviews feedback. In: International conference on software
engineering, companion volume. 2017, p. 55–8. http://dx.doi.org/10.1109/ICSE-
C.2017.5.

[25] Rastkar S, Murphy GC, Murray G. Automatic summarization of bug reports.
IEEE Trans Softw Eng 2014;40(4):366–80. http://dx.doi.org/10.1109/TSE.2013.
2297712.

[26] Bojanowski P, Grave E, Joulin A, Mikolov T. Enriching word vectors with
subword information. Trans Assoc Comput Linguist 2017;5:135–46. http://dx.
doi.org/10.1162/tacl_a_00051.

[27] Herbold S, Trautsch A, Trautsch F. On the feasibility of automated prediction
of bug and non-bug issues. Empir Softw Eng 2020;25(6):5333–69. http://dx.doi.
org/10.1007/s10664-020-09885-w.

[28] Di Sorbo A, Zampetti F, Visaggio CA, Di Penta M, Panichella S. Dataset of
the paper "automated identification and qualitative characterization of safety
concerns reported in UAV software platforms". Zenodo; 2021, http://dx.doi.org/
10.5281/zenodo.6207783.

[29] Sallou J, Durieux T, Panichella A. Breaking the silence: The threats of using
LLMs in software engineering. In: ACM/IEEE 46th international conference on
software engineering - new ideas and emerging results. ACM/IEEE; 2024, URL
https://conf.researchr.org/home/icse-2024.
6

http://refhub.elsevier.com/S2352-7110(24)00119-5/sb12
http://refhub.elsevier.com/S2352-7110(24)00119-5/sb12
http://refhub.elsevier.com/S2352-7110(24)00119-5/sb12
http://refhub.elsevier.com/S2352-7110(24)00119-5/sb12
http://refhub.elsevier.com/S2352-7110(24)00119-5/sb12
http://refhub.elsevier.com/S2352-7110(24)00119-5/sb13
http://refhub.elsevier.com/S2352-7110(24)00119-5/sb13
http://refhub.elsevier.com/S2352-7110(24)00119-5/sb13
http://refhub.elsevier.com/S2352-7110(24)00119-5/sb14
http://refhub.elsevier.com/S2352-7110(24)00119-5/sb14
http://refhub.elsevier.com/S2352-7110(24)00119-5/sb14
http://refhub.elsevier.com/S2352-7110(24)00119-5/sb14
http://refhub.elsevier.com/S2352-7110(24)00119-5/sb14
http://dx.doi.org/10.1109/RE.2018.00034
http://dx.doi.org/10.1145/3468264.3468559
http://dx.doi.org/10.1016/j.scico.2020.102598
http://dx.doi.org/10.1016/j.scico.2020.102598
http://dx.doi.org/10.1016/j.scico.2020.102598
http://dx.doi.org/10.1016/j.infsof.2021.106665
https://ardupilot.org/
http://dx.doi.org/10.1145/3564821
http://dx.doi.org/10.1145/3564821
http://dx.doi.org/10.1145/3564821
http://dx.doi.org/10.1145/3379177.3388904
http://dx.doi.org/10.1145/3379177.3388904
http://dx.doi.org/10.1145/3379177.3388904
http://dx.doi.org/10.1109/ICSME52107.2021.00058
http://dx.doi.org/10.1109/ICSME52107.2021.00058
http://dx.doi.org/10.1109/ICSME52107.2021.00058
http://dx.doi.org/10.1145/2950290.2983938
http://dx.doi.org/10.1145/2950290.2983938
http://dx.doi.org/10.1145/2950290.2983938
http://dx.doi.org/10.1109/ICSE-C.2017.5
http://dx.doi.org/10.1109/ICSE-C.2017.5
http://dx.doi.org/10.1109/ICSE-C.2017.5
http://dx.doi.org/10.1109/TSE.2013.2297712
http://dx.doi.org/10.1109/TSE.2013.2297712
http://dx.doi.org/10.1109/TSE.2013.2297712
http://dx.doi.org/10.1162/tacl_a_00051
http://dx.doi.org/10.1162/tacl_a_00051
http://dx.doi.org/10.1162/tacl_a_00051
http://dx.doi.org/10.1007/s10664-020-09885-w
http://dx.doi.org/10.1007/s10664-020-09885-w
http://dx.doi.org/10.1007/s10664-020-09885-w
http://dx.doi.org/10.5281/zenodo.6207783
http://dx.doi.org/10.5281/zenodo.6207783
http://dx.doi.org/10.5281/zenodo.6207783
https://conf.researchr.org/home/icse-2024

	Identifying safety–critical concerns in unmanned aerial vehicle software platforms with SALIENT
	Motivation and significance
	The SALIENT tool 
	SALIENT architecture overview
	 Tool Approach and Technology Overview
	Using SALIENT

	Evaluation and Impact
	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	References


