
A pseudo-analytic
generalization of the
memoryless property for
continuous random variables
and its use in pricing
contingent claims
Peter Carr1,† and Pasquale Cirillo2

1Finance and Risk Engineering Department, New York University, New York, NY, USA
2ZHAW School of Management and Law, Institute of Business Information Technology,
Winterthur, Switzerland

 PC, 0009-0007-5789-4331

We explore an extension of the memoryless property for
continuous random variables by using the concept of
pseudo-sum. Subsequently, we demonstrate the practicality
of this approach through two financial applications in
which pseudo-sums characterize the values of arbitrage-
free contingent claims. Moreover, we are able to establish
new interesting connections between different probability
distributions.

1. Introduction
Aczél characterizes all strictly increasing associative binary
operations in abstract algebra, by relating them to the asso-
ciativity functional equation [1,2]. In probability theory, one
can characterize all memoryless continuous random variables,
by relating their probability laws to the Cauchy exponential
functional equation [3,4].

This article connects these two functional equations to each
other. We relate Aczél’s characterization [1] of all associative and
strictly increasing binary operations, as isomorphic to ordinary
addition, to the well-known characterization of all continuous
memoryless random variables as exponentially distributed. As
a result, we obtain a generalization of the memoryless prop-
erty in the continuous setting, which proves useful in financial
applications and distribution theory. In particular, we discuss
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the case of two arbitrage-free contingent-claim values and the emerging relationships among some
extreme value distributions.

Our work can be seen as a further application of the non-Newtonian approach developed by
Grossman & Katz [5], and more recently extended by Pap [6] and co-authors. As we shall observe, our
findings also share the rationale of some pioneering research by Kolmogorov [7] and de Finetti [8],
among others.

This article is organized as follows. In §2, we define the generalized memoryless property (GMP).
In §3, we present our view on how to characterize the GMP for a continuous random variable. In
§4, we illustrate our findings with two examples, leading towards the financial applications of §5. In
§6, exploiting the GMP, we provide new connections among notable distributions of the financial and
actuarial literature, as well as of extreme value theory. Finally, §7 summarizes this article and suggests
interesting future research. In the appendices, we collect the longer proofs and extra results, including
some incidental findings that could be useful in the study of economic inequality.

2. A generalized memoryless property
A continuous random variable X  shows the memoryless property [9] if, for all x1,x2 ∈ ℝ, one has:

(2.1)ℙ{X ≥ x1 + x2 |X ≥ x1} = ℙ{X ≥ x2} .

This problem can be easily converted into a search for a strictly decreasing continuous solutionS:ℝ ↦ (0, 1), to the following Cauchy exponential functional equation [4]:

(2.2)S(a1 + a2) = S(a1) × S(a2), a1, a2 ∈ ℝ .

It is well-known that the only strictly decreasing continuous solution to equation (2.2) with S(0) = 1 is

(2.3)S(a) = e−λa, a ≥ 0,

for some positive constant λ [1].
In other words, the only continuous law satisfying the memoryless property of equation (2.1) is the

exponential distribution, whose survival function (SF) is actually given in equation (2.3).
However, the Cauchy exponential functional equation in equation (2.2) can also be expressed in a

different manner. Let p = S(a), where the function S:ℝ ↦ (0, 1) is still strictly decreasing and continu-
ous. Then, there exists a strictly decreasing and continuous inverse function S−1: (0, 1) ↦ ℝ, such thata = S−1(p). By substituting a1 = S−1(p1) and a2 = S−1(p2) into equation (2.2), one gets

(2.4)S S−1(p1) + S−1(p2) = p1 × p2, p1,p2 ∈ (0, 1] .

Hence, addition + between non-negative reals ai ∈ [0,∞), with i = 1, 2, is isomorphic to multiplication ×
between probabilities pi ∈ (0, 1].

The strictly decreasing continuous function S, generating the multiplication monoid (0, 1]: × , 1
from the addition monoid ([0,∞): + , 0), is the strictly decreasing exponential function given in equation
(2.3). This function S is called the generator of the multiplication monoid [10].

The generator of a monoid surely needs to be strictly monotonic, but it does not necessarily need
to be exponential. By changing the generator S, one can, in fact, change the binary operation that is
isomorphic to ordinary addition. Our GMP simply replaces the ordinary sum x1 + x2 on the left-hand
side of equation (2.1) with the so-called pseudo-sum x1 ⊕ x2.

Following the pioneering work of Grossman & Katz [5], further elaborated by Pap [6], a pseudo-sum
is the result of applying the binary operation ⊕ in a monoid (A: ⊕ , e), where A is now a connected
subset [ℓ,u] of the extended real line [ − ∞,∞]. As a result, we have the following properties:

(i) closure: for x1,x2 ∈ A, then x1 ⊕ x2 ∈ A;
(ii) existence of an identity element: there exists e ∈ A, such that x⊕ e = e⊕ x = x, for all x ∈ A; and

(iii) associativity: for x1,x2,x3 ∈ A, one has that (x1 ⊕ x2) ⊕ x3 = x1 ⊕ (x2 ⊕ x3).

In the general setting of [5] and [6], the monoid (A: ⊕ , e) is not required to be commutative, or
cancellative, or to have an inverse element in the set.
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In this article, the set A = [ℓ,ℎ] over which the monoid of interest is defined will be the support of
the law of a continuous1 random variable X.

When the associativity requirement of a monoid is dropped, the resulting algebraic structure is

called an unital magma [10]. Let us thus consider an unital magma (S: ⊕̂G , e) where A = [ℓ,ℎ] is a
connected subset of the extended real line [ − ∞,∞], possibly [ − ∞,∞] itself, and whose binary operation⊕̂G is strictly increasing but not necessarily associative. It turns out that, in this context, additionally

demanding the associativity of the binary operation ⊕̂G puts a severe constraint on its form.
Let ⊕G denote the binary operation in the unital magma (A: ⊕G , e), when it is required to be both

strictly increasing and associative. Then, (A: ⊕G , e) is also a monoid, and there must exist a strictly
monotonic function G:ℝ ↦ A such that [2]:

(2.5)x1 ⊕G x2 = G(G−1(x1) + G−1(x2)),

where G−1:A ↦ ℝ denotes the inverse of the generator G.

Therefore,2 requiring that the strictly increasing binary operation ⊕̂G in the magma (A: ⊕̂G , e) also
be associative forces the resulting binary operation ⊕G to be isomorphic to ordinary addition + over
the reals, where the isomorphism is given by equation (2.5). The strictly monotonic function G:ℝ ↦ A
in equation (2.5) is called the generator of the strictly increasing binary operation ⊕G in the monoid
(A: ⊕G , e). It turns out that this monoid must be commutative, cancellative, and that, for the identity
element, e = G(0).

Definition 2.1 (GMP). The law of a continuous random variable X , with support A = [ℓ,ℎ], is said to
enjoy the GMP if, for all x1,x2 ∈ A, the probability measure ℙ satisfies either

(2.6)ℙ{X ≥ x1 ⊕G x2 |X ≥ x1} = ℙ{X ≥ x2},

or

(2.7)ℙ{X ≤ x1 ⊕G x2 |X ≤ x1} = ℙ{X ≤ x2},

where ⊕G indicates a pseudo-sum, which is strictly increasing in both x1 ∈ A and x2 ∈ A.
From now on, we restrict the domain of the strictly monotonic generator G to the non-negative real

line [0,∞). Moreover, we demand that the strictly monotonic generator G maps all of [0,∞) onto the
support A = [ℓ,u] of the continuous random variable X . Since the generator G is a strictly monotonic
map from all of [0,∞) onto A, its inverse map G−1 must also be a strictly monotonic map from all of A
onto [0,∞).

As a consequence, we have that:

(i) if G is strictly increasing, then so is G−1, and the continuous random variable X  with supportA = [ℓ,u] enjoys the GMP as per equation (2.6); and
(ii) if G is strictly decreasing, then so is G−1, and the continuous random variable X  with supportA = [ℓ,u] enjoys the GMP as per equation (2.7).

All in all, the law of a continuous random variable X  supported on A = [ℓ,ℎ] enjoys the GMP, with +
replaced by the strictly increasing associative binary operation ⊕G, if and only if the strictly monotonic
generator G of ⊕G maps all of [0,∞) onto the support A = [ℓ,ℎ] of X . Hence, G is a bijection between A
and [0,∞).

This restriction on the type of monotonicity of G, the domain of G and the image of G is one of
the contributions of this article. Together with the probabilistic and financial interpretations of the
pseudo-sums involved in the GMP, it distinguishes our work from similar intuitions in references
[3,11].

The reader might have noticed that the GMP naturally connects to other useful concepts of
probability and statistics, like, for example, the generalized means of Kolmogorov, Nagumo, de Finetti

1Naturally, since the random variable X is continuous, our notation for the support of its law also captures sets of the form
ℓ,ℎ , ℓ,ℎ , and ℓ,ℎ , where ` can be −∞ and h can be +∞.

2To interpret the implications of the restriction in equation (2.5), we first observe that if the generator G is strictly monotonic, then
so is its inverse G−1. Furthermore, in our context, demanding associativity of a strictly increasing binary operation converts a strictly

increasing map from A × A to A—namely, PS(x1, x2) ≡ x1⊕̂ Gx2, with x1, x2 ϵ A—into a strictly monotonic map from A to ℝ, namely,G−1 x ,x ϵ A.
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& Chisini [7,8,12]. As observed in [5], thanks to different appropriate choices of the generator G,
the operation ⊕G can define ‘alternative universes’, in which addition is, for instance, replaced by
multiplication, the natural integral is the geometric integral, and the familiar arithmetic mean is
somehow replaced by the geometric one. In such a multiplicative universe, the random variable
showing the memoryless property would not be the exponential but rather the Pareto (see §4), and
the random variable playing the role of the normal in many useful convergence results could be the
lognormal (see §7 for an intuition). A universe like that would therefore be a natural place to study
phenomena of growth, contagion, cascading failures and so on [5]. Moving across all these ‘universes’
thus often provides ways to simplify or extend known facts, discovering interesting relations and
applications, as we try to do in the next sections.

3. Bijections between [0,∞) and A that allow for the generalized
memoryless property

Again, let X  be a continuous random variable supported on a connected interval A = [ℓ,u], which is a
subset of the extended real line [−∞,∞]. We allow ℓ = −∞ and/or u = ∞.

The SF of X  is a strictly decreasing map SX(x) from A to the unit interval, [0, 1]. We require thatSX(ℓ) = 1 and that SX(u) = 0.
Let I be a strictly increasing function I : [ℓ,u] ↦ [0,∞) with I(ℓ) = 0 and I(u) = ∞. We call the functionI(x) the Laplace exponent in the Laplace representation of SX(x) if

(3.1)SX(x) = e−λI(x), x ∈ [ℓ,u],

where λ > 0 is a positive constant called the Laplace parameter [2].
The cumulative distribution function (CDF) of X , denoted by FX(x), is defined by

(3.2)FX(x) ≡ 1 − SX(x), x ∈ [ℓ,u] .

Obviously, the CDF of X  is a strictly increasing map from the support A of X  to the unit interval [0, 1],
with FX(ℓ) = 0 and FX(u) = 1.

Let D(x) be a strictly decreasing function D: [ℓ,u] ↦ [0,∞) with D(ℓ) = ∞ and D(u) = 0. We call the
function D(x) the Laplace exponent in the Laplace representation of FX(x) if

(3.3)FX(x) = e−λD(x), x ∈ [ℓ,u],

where again λ > 0 is a positive constant.
Since I( ⋅ ) is a strictly increasing map of all of A onto [0,∞), its inverse I−1( ⋅ ) is a strictly increasing

map of all of [0,∞) onto A. Likewise, since D( ⋅ ) is a strictly decreasing map of all of A onto [0,∞), its
inverse D−1( ⋅ ) is a strictly decreasing map of all of [0,∞) onto A.

Let a denote an arbitrary element in the additive monoid ([0,∞): + , 0). Suppose that a monotonic
generator G(a) produces an isomorphic monoid (A: ⊕ , e), where A is as usual a connected open subset
of ℝ, ⊕ is the monoid’s binary operation and e is the monoid’s identity element. If the generator G(a) is
strictly monotonic, then we denote the binary operation by ⊕G and the identity element by G(0). From
equation (2.5), the binary operation ⊕G in the isomorphic monoid (A: ⊕G ,G(0)) is strictly increasing.

We henceforth focus our attention on the strict subset of the class of all strictly monotonic generators
which enforce a bijective map between [0,∞) and A, which is the support of the random variable X . We
call such generators feasible for X .

If the X −feasible generator G is strictly increasing, then we set G(a) = I−1(a), so that I(x) = G−1(x)
is a strictly increasing map of all of [ℓ,u] onto [0,∞). If the X −feasible generator G is instead strictly
decreasing, then we set G(x) = D−1(x) so that D(x) = G−1(x) is a strictly decreasing map of all of [ℓ,u]
onto [0,∞).

When we obtain the Laplace exponent I(x) (or D(x)) by inverting an X −feasible generator G, then
the SF (or the CDF) defined by equation (3.1) (or equation (3.3)) is guaranteed to strictly decrease from
1 to 0 (or to strictly increase from 0 to 1) as required.

If the X −feasible generator G(a) is strictly increasing, then the SF generated by equation (3.1)
satisfies the functional equation
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(3.4)SX(x1 ⊕G x2) = SX(x1) × SX(x2),

which leads to the GMP in equation (2.6), that is, once again,

(3.5)ℙ{X ≥ x1 ⊕G x2 |X ≥ x1} = ℙ{X ≥ x2},

where x1, x2 and x1 ⊕G x2 are all in the support A = [ℓ,u] of X .
If the X −feasible generator G(a) is instead strictly decreasing, then the CDF generated by equation

(3.3) satisfies the functional equation

(3.6)FX(x1 ⊕G x2) = FX(x1) × FX(x2),

which leads to the GMP in equation (2.7), restated here as

(3.7)ℙ{X ≤ x1 ⊕G x2 |X ≤ x1} = ℙ{X ≤ x2},

where again x1, x2 and x1 ⊕G x2 are all in the support A = [ℓ,u] of X .
To illustrate these results, let us first consider the identity map for the generator G, that is, G(a) = a

for a ≥ 0.
Since this generator is a strictly increasing map from all of [0,∞) to [0,∞), it follows that G(a) = a

is feasible for a continuous random variable X  supported on [0,∞). The inverse of G is clearly an
increasing map, so we set I(x) = x in equation (3.1) for the SF of X . The continuous random variable X
is thereby identified as being exponentially distributed with parameter λ > 0.

Trivially, when G(a) = a, one gets that ⊕G = +, and the GMP reduces to the standard memoryless
property of the exponential random variable [9], as per equation (2.1).

4. Examples of bijective generators
Let us now take into consideration some examples of random variables manifesting the GMP. Of
two of them, we will discuss the financial implications in §5, to show their applicability in financial
engineering.

4.1. The generator G is an increasing power function
A first basic example of a strictly increasing generator is the power function

(4.1)G(a) = ab, a ≥ 0, b > 0.

Since this generator maps all of [0,∞) onto [0,∞), it is feasible for a continuous random variable X
supported on [0,∞).
Letting x ≡ ab ≥ 0, the inverse of the generator G defined in equation (4.1) is

(4.2)G−1(x) = x1b ≡ I(x), x ≥ 0, b > 0.

This inverse is also strictly increasing.

Setting I(x) = x1b  in equation (3.1), the resulting SF is that of a Weibull [13], that is:

(4.3)SX(x; λ, b) = e−λx1b , x ∈ [0,∞), λ > 0, b > 0.

Setting G−1(x) = I(x) = x1b  in equation (2.5), the corresponding binary operation ⊕b is an ℓp norm of the
vector [x1,x2], with p = 1/b:

(4.4)x1 ⊕b x2 ≡ x1

1b + x2

1b b
, x1 ∈ [0,∞),x2 ∈ [0,∞), b > 0.

For x1,x2 ∈ [0,∞), and b > 0, the following GMP holds for the Weibull-distributed random variableX ≥ 0, whose SF is in equation (4.3):
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(4.5)ℙ{X ≥ x1 ⊕b x2 |X ≥ x1} = ℙ{X ≥ x2} .

It is worth noticing that equation (4.5) recalls the functional equation that Wang [14] provides to
characterize Weibull-distributed random variables.

4.2. The generator G is a negated logarithm
Suppose now that the generator is the following negated (natural) logarithm:

(4.6)G(a) = − blog a, a > 0, b > 0.

The right-hand side of equation (4.6) can be written as the negative of a logarithm whose base is e1b . As
a result, we treat the parameter b > 0 in equation (4.6) as the base controller.

Note that the generator defined by equation (4.6) is strictly decreasing.
Since this G maps all of [0,∞) to (−∞,∞], the generator G defined in equation (4.6) is feasible for a

continuous random variable X  supported on (−∞,∞].
Letting x ≡ −blog a, for a ≥ 0, b > 0, we observe that x ∈ (−∞,∞]. As a result, the inverse of the

generator G defined in equation (4.6) is

(4.7)G−1(x) = e− xb ≡ D(x), x ∈ ( − ∞,∞], b > 0.

This inverse is also strictly decreasing.

Setting D(x) = e− xb , with x ∈ (−∞,∞] and b > 0, in (3.3), the resulting CDF is Gumbel [13], that is:

(4.8)FX(x; λ, b) = e−λe−xb , x ∈ ( − ∞,∞], λ > 0, b > 0.

Setting G−1(x) = D(x) = e− xb  in equation (2.5), the corresponding binary operation, ⊕−b, is the following
log-sum-exponential:

(4.9)x1 ⊕−b x2 = − blog e− x1b + e− x2b b
, x1 ∈ ( − ∞,∞],x2 ∈ ( − ∞,∞], b > 0.

Note that this pseudo-sum is itself increasing in x1,x2 ∈ (−∞,∞].
For b > 0, the following GMP holds for the Gumbel-distributed random variable X ∈ (−∞,∞], whose

CDF is given in equation (4.8):

(4.10)ℙ{X ≤ x1 ⊕−b x2 |X ≤ x1} = ℙ{X ≤ x2} .

4.3. Other possibilities

Many examples of the GMP emerge if one chooses different generators. For example, when G(a) = ea,a ≥ 0, one has x1 ⊕G x2 = x1 × x2, and the random variable showing the GMP is a standard Pareto.
Interestingly, as observed by Chisini [12] and de Finetti [8], when speaking about means, this is also the
situation in which the arithmetic mean we are all familiar with is naturally replaced by the geometric
mean as the reference mean. This comes from the fact that + is replaced by ×, thanks to G.

Simple generalizations can be obtained by adding, for instance, a constant c > 0, so thatG(a) = exp(a + c). These generalizations all lead to different Paretian random variables, like type II and
type III [13].

Alternatively, choosing G(a) = log ea − 1, with a > 0, generates the pseudo-sumx1 ⊕G x2 = log ex1 + x2 + ex1 + ex2 , and the GMP belongs to a standard logistic random variable. Interest-

ingly, in this case, G−1(x) = log ex + 1, which is nothing more than the integrated CDF of the same
logistic random variable [13], linked to the well-known softplus activation function in machine
learning [15,16].

Many other examples can naturally be thought of, but our goal here is not to provide a complete
taxonomy of all possible cases of GMP, as it would be unrealistic. We rather prefer to show the
usefulness of this alternative way of approaching memorylessness via pseudo-sum, when considering
some financial and probabilistic applications. For this reason, in the rest of this article, we focus our
attention on the two generators of §4.1 and §4.2.
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5. Financial interpretations of ⊕b and ⊕−b
The pseudo-sums x1 ⊕b x2 and x1 ⊕−b x2, as defined in equations (4.4) and (4.9) of §4, can be both
interpreted as the arbitrage-free values of particular contingent claims. This strengthens the idea of the
usefulness of non-Newtonian calculus in finance, as already observed in [17,18].

As a matter of fact, pseudo-sums seem to emerge naturally in many relevant aspects of financial
mathematics. For instance, one could already notice that, in the basic Black–Scholes–Merton setting
(BSM) [19], when prices follow a geometric Brownian motion, the change in measure between ℙ
(market or physical measure) and ℚ (risk-neutral measure), controlled by the so-called Wang transform
[20] is just example of a pseudo-sum.

Let S(t) ≥ 0 be the price of a given asset at time t ∈ [0,T] under the physical measure ℙ. Let K > 0 be
a strike price. Fix a value S(0) ≥ 0 and assume that

S(t) = S(0)exp μ − σ2
2 t + σB(t) ,

where μ ∈ ℝ, σ > 0 and B(t) is a standard Brownian motion under ℙ.
Hence, we have that, in T, under ℙ:

log S(T) ∼ Φ log S(0) + μ − 1
2σ2 T,σ T ,

where Φ( ⋅ ) is the CDF of a standard normal.
If we introduce ℚ as the risk-neutral measure equivalent to ℙ, we also know [19] that, underℚ,

log S(T) ∼ Φ log S(0) + r − 1
2σ2 T,σ T ,

where r ≥ 0 is the so-called risk-free rate.
The connection between ℙ and ℚ in the basic BSM framework has been studied explicitly in [20],

showing that

(5.1)ℚ(ST) = ℚ(log ST > logK) = Φ Φ−1(ℙ(log ST > logK)p ) − (μ − r) Tσ ,

where (μ − r)σ  is clearly the Sharpe ratio [19], and Φ−1( ⋅ ) is the quantile function associated with Φ( ⋅ ).
Equation (5.1) thus shows that ℚ is a distortion of ℙ, obtained via a quantile shift, which induces a
re-weighting of the probabilities.

Simple manipulations also bring to

(5.2)ℙ(ST > K) = ℙ(log ST > logK) = Φ Φ−1(ℚ(log ST > logK)) + (μ − r) Tσ .

Equation (5.1) is an example of application of the function

(5.3)Φ Φ−1(p) − c ,

known as Wang transform [20], which represents a useful distortion function in the actuarial literature.
Such a function is convex for c > 0 and concave for c < 0. When c = 0, no distortion clearly takes place.

Now, it is not difficult to observe that the Wang transform is just a special case of pseudo-sum—or,
if one prefers, of pseudo-difference—in fact

(5.4)Φ Φ−1(p) − c = Φ Φ−1(p) −Φ−1 Φ c .

This is just the first simple example. In fact, one could also play with models for which the Wang
transform is substituted by the more general

(5.5)F F−1(p) − F−1 F c = F F−1(p) − c ,

where F is the CDF of a given unimodal random variable linked to the log returns of an asset of
interest. Incidentally, both equations (5.3) and (5.5) also represent two proper Lorenz functions of the
socioeconomic inequality literature [13,21], whose application in risk management has been investiga-
ted in [22], among others.
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Further examples could be given, for example, by introducing new derivatives like Stoptions [17].
However, let us now come back to our pseudo-sums ⊕b and ⊕−b and to their financial interpretations,
in line with the price generator views of [23].

5.1. The pseudo-sum ⊕b and a zero-coupon default-free convertible bond

When the induced binary operation is ⊕b, then for x1,x2 ∈ [0,∞), and b ∈ (0, 1), one can observe that

(5.6)x1 ⊕b x2 ≡ x1

1b + x2

1b b
= E(x1 ∨ x2Db),

where Db is a mean-one conjugate power Dagum (CPD) distributed random variable (see appendix A
for more details) with CDF:

(5.7)ℙ{Db ≤ d} = 1 + d− 1b b − 1
, d > 0.

The right-hand side of equation (5.6) is nothing but the arbitrage-free value of a zero-coupon default-
free convertible bond with face value x1 ≥ 0 and conversion value x2 ≥ 0. The positive random variableDb > 0 is the gross return on the convertible bond’s underlying stock. Incidentally, notice that Db also
defines a Radon–Nikodym derivative [19], and this further justifies the use of CPD random variables,
as, for instance, in [24].

To prove that equation (5.6) holds, notice that its right-hand side can be written as

(5.8)

E[x1 ∨ (x2Db)] = E{x2Db + [(x1 − x2Db) ∨ 0]}
= x2E[Db] + E[(x1 − x2Db) ∨ 0]

= x2 + x2E x1x2
− Db ∨ 0

,

since x2 > 0, and E[Db] = 1, as per appendix A.

Now observe that the multiplier of x2 is the value of a put written on Db and struck at x1x2
. This put

value is the integral of the distribution function of the mean-one CPD random variable, that is:

(5.9)

E[x1 ∨ (x2Db)] = x2 + x2∫  0
x1x2FDb(d)dgd

= x2 + x2∫  0
x1x2 1 + d− 1b b − 1

dd
= x2 + x2 1 + d1b b

d = 0

d =
x1x2

= x2 + x2 1 + x1x2

1b b
− 1

= x2 + x2

1b + x1

1b b
− x2

= x1

1b + x2

1b b

.

This proves that equation (5.6) holds.

5.2. The pseudo-sum ⊕−b and a zero-coupon defaultable bond

When the induced binary operation is ⊕−b, then for x1,x2 ∈ (−∞,∞], and b > 0, one can notice that

(5.10)x1 ⊕−b x2 = − blog e− x1b + e− x2b b
= E[x1 ∧ (x2 + bZ)],
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where Z is a standard logistic random variable with a distribution function [13]:

(5.11)ℙ{Z ≤ z} = 1 + e−z −1, z ∈ ℝ .

The right-hand side of equation (5.10) is now the arbitrage-free value of a zero-coupon defaultable
bond with face value x1 ∈ (−∞,∞] and whose underlying security has initial value x2 ∈ (−∞,∞]. The
real-valued random variable bZ is the change in the value of the operations of the firm.

To prove that equation (5.10) holds, notice that its right-hand side can be written as

(5.12)

E[x1 ∧ (x2 + bZ)] = x1 + E[0 ∧ (x2 − x1 + bZ)]
= x1 − { − E[0 ∧ (x2 − x1 + bZ)]}
= x1 − E[0 ∨ (x1 − x2 − bZ)]

= x1 − bE 0 ∨ x1 − x2b − Z
.

The multiplier of b is the value of a put written on Z and struck at x1 − x2b . This put value is the integral
of the standard logistic distribution function, that is:

(5.13)

E[x1 ∧ (x2 + bZ)] = x1 − b∫
−∞

x1 − x2b FZ(z)dz
= x1 − b∫

−∞

x1 − x2b 1 + e−z −1dz
= x1 − blog 1 + ez z = − ∞

z =
x1 − x2b

= − blog e− x1b − blog 1 + ex1 − x2b
= − blog e− x1b × 1 + ex1 − x2b
= − blog e− x1b + e−x2b

.

This proves that equation (5.10) holds.

6. New connections between notable distributions
Exploiting the pseudo-sums of §4 and the relative GMP, we now offer new ways of connecting random
variables largely used in the financial, actuarial and economic inequality literature [13]. These new
links may open to better characterizations, as well as to more reliable modelling of important economic
quantities. Interestingly, the random variables under scrutiny are all recurrent objects in extreme value
theory [25], suggesting the existence of some non-trivial research paths for the future, as we sketch in
§7.

In appendices B and C, the interested reader can find proofs and additional results.

6.1. New relationship between Weibull and Dagum distributions

Suppose that a positive random variable X > 0 is exponentially distributed with SF e−λx, x > 0, whereλ > 0 is a positive intensity parameter. For p > 0, let

(6.1)W = X 1p
be a positive power of this exponential random variable. It is well-known that the distribution of W  is

Weibull with SF e−(θw)p, w > 0, where θ = λ 1p  is the rate parameter [13,14].
Now let K = 1W . Then, the distribution of K is called inverse Weibull with CDF equal to

(6.2)FK(k; θ,p) = e− θk p
, k > 0, θ > 0,p > 0.
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The parameter θ is now a scale parameter. Let us randomize this scale parameter using an independent
positive random variable.

Suppose that an independent positive random variable Y > 0 is gamma-distributed with scale

parameter σ > 0 and shape parameter α > 0. The CDF of Y  is FY(y;σ,α) = Γ yσ ;α , where

(6.3)Γ u;α ≡ ∫  0
utα − 1e−tdt, u > 0,α > 0,

is the incomplete gamma function. For p > 0, let Θ = Y 1p  be a positive power of this gamma-distributed

random variable. Note that we are using the same power 1p > 0 that was used in equation (6.1)

to transform the exponentially distributed random variable X  into the Weibull-distributed random
variable W .

The random variable Θ = Y 1p  is said to be a power-transformed gamma (PTG) with CDF:

(6.4)FΘ(θ; S,α,p) = Γ θS p;α ,

where S ≡ σ 1p  is the scale parameter. Note that the PTG distribution has three positive parameters that
we call: scale S > 0, power p > 0 and shape α > 0.

Suppose that one randomizes out the scale θ > 0 of the inverse Weibull-distributed random variableK > 0 using the independent and just-introduced PTG-distributed random variable Θ > 0. Let D denote
the resulting positive random variable, whose law is determined by the three positive parameters of
the PTG distribution. Then, appendix C shows that the CDF of D is

(6.5)FD(d; S,p,α) = 1 + dS −p −α
, d > 0, S > 0,p > 0,α > 0.

This CDF is that of a Dagum-distributed random variable, often used in economics and insurance
studies, for example, to model income, wealth and actuarial losses [13].

While the positive parameter S > 0 controls the scale of D > 0, it is not the mean of D. The mean of D
is in fact infinite for p ∈ (0, 1]. To obtain a positive random variable with a finite mean, we henceforth
restrict our attention to the case p > 1.

It follows that

(6.6)b ≡ 1p
is bounded between 0 and 1. Suppose that we restrict the positive shape parameter α §gt; 0 in equation
(6.5) by forcing

(6.7)α = 1 − b .

With p > 1 and hence b ∈ (0, 1), the restriction on α in equation (6.7) keeps it positive.
Let DS, b denote the random variable resulting from D by imposing equations (6.6) and (6.7). The

two subscripts on D indicate the two positive parameters of this restricted Dagum law, with S > 0
controlling the scale of DS, b > 0, and with b ∈ (0, 1) controlling its shape.

To name this restricted Dagum random variable, notice that, if we re-parametrize the three-parame-

ter Dagum CDF in equation (6.5) by replacing α > 0 with q ≡ 1α > 0, then it becomes

(6.8)FD(d; S,p, q) ≡ 1 + dS −p − 1q
, d > 0, S > 0,p > 0, q > 0.

Under this representation, the restriction in equation (6.7) becomes α = 1q = 1 − b = 1 − 1p  from equation

(6.6). Since we have imposed the conjugate power restriction 1q + 1p = 1 on equation (6.8) to eliminate
a parameter, we refer to the resulting two-parameter law as CPD and to DS, b as a CPD-distributed
random variable. Interestingly, the CPD distributions have been recently used in [24] for compound
option pricing.

Setting p = 1b  and q = 1 − b in equation (6.8), the CDF of DS, b is
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(6.9)FDS, b(d; S, b) ≡ 1 + dS − 1b b − 1

, K > 0, S > 0, b ∈ (0, 1) .

Appendix A proves that the mean of the positive CPD-distributed random variable DS, b is just its
positive scale parameter S > 0. When the scale parameter S = 1, we refer to the mean-one positive
random variable D1, b by simply Db.
Setting S = 1 in equation (6.9) causes the CDF of Db to simplify into the one given in equation (5.7).

Always in appendix A, we also provide the Lorenz curve and the Gini index associated with the
distribution of the Db random variable, given its possible use as a statistical size distribution [13].

By connecting results from the last section with this one, we can finally introduce a new relationship
between Dagum- and Weibull-distributed random variables.

When a random variable X  is Weibull-distributed with SF given in equation (4.3), then we have
from the GMP of equation (4.5) that

(6.10)ℙ{X ≥ x1 ⊕b x2 |X ≥ x1} = ℙ{X ≥ x2} .

However, from equation (5.10), we know that for x1,x2 ∈ [0,∞) and b ∈ (0, 1), one has

(6.11)x1 ⊕b x2 = E(x1 ∨ x2Db),
with Db being a mean-one CPD-distributed random variable, whose CDF is given in equation (5.7) .

Therefore, when the parameters p and q in the Dagum CDF equation (6.8) are conjugate, that is,

(6.12)1p + 1q = 1, p > 1, q > 1,

and we define b = 1p ∈ (0, 1), then this special case of the Dagum distribution called CPD is connected
to the Weibull distribution via equations (6.10) and (6.11), rather than by randomizing the scale θ §gt; 0
of an inverse Weibull-distributed random variable K, using a PTG-distributed random variable Θ with
the same power parameter p > 0.

6.2. New relationship between logistic and Gumbel distributions
Appendix B gives an alternative proof of a well-known result in distribution theory [13]: the difference
between two independent and identically distributed (i.i.d.) standard Gumbel random variables has
the standard logistic law.

By this fact, and with the results from the last section, we introduce a new relationship between
a mean-zero logistically distributed random variable and a mean-zero Gumbel-distributed random
variable with the same scale parameter.

When a random variable X  is mean-zero Gumbel-distributed with CDF given in equation (4.8), then
we have from the GMP in equation (4.10) that

(6.13)ℙ{X ≤ x1 ⊕−b x2 |X ≤ x1} = ℙ{X ≤ x2},

where from equation (5.10), for x1,x2 ∈ (−∞,∞] and b > 0, one has

(6.14)x1 ⊕−b x2 = E[x1 ∧ (x2 + bZ)],

with Z a standard logistically distributed random variable, whose CDF is given in equation (5.11).
We are thus connecting the mean-zero logistically distributed random variable bZ to the mean-zero

Gumbel-distributed random variable X , via equations (6.13) and (6.14) rather than by taking differen-
ces of i.i.d. copies of X .

7. Conclusions and future research
We showed that, when the generator of arithmetic is a strictly monotonic map of all of [0,∞) onto
the support [ℓ,u] of a random variable X , then the law of X  satisfies a generalization of the memo-
ryless property, in which ordinary addition is replaced by the strictly increasing binary operation⊕G in the monoid ([ℓ,u]: ⊕G ,G(0)). We illustrated the result with two examples, for which the
induced pseudo-sums also have a direct probabilistic and financial interpretation as an arbitrage-free

11
royalsocietypublishing.org/journal/rsos 

R. Soc. Open Sci. 11: 231690



contingent-claim value. In both cases, we are then able to connect two distinct probability distributions
in a novel way.

In our view, future research should extend the use of pseudo-analytic arguments in pricing and
financial modelling, as well as in probability and statistics.

For instance, a further use of pseudo-analysis, with great potential in both financial mathematics
and probability, is linked to the observations below, following straight from insights in Aczél [1],
Castagnoli [3] and Pap [6].

Let us first give a definition.
Definition 7.1 (G-normality). Let G be a generator satisfying the requirements in §2, and G−1 its

inverse. A random variable Y  is said to be G-normal, if G−1(Y ) is normally distributed, so that its
probability density function is

(7.1)1σ 2πe− 1
2

G−1(y) − μσ 2
d

dyG−1(y) .

In other words, if Φ(x; μ,σ) indicates CDF of a normal random variable with mean μ and standard
deviation σ, then Y  is G-normal if its CDF is Φ(G−1(y); μ,σ), and the density (probability density
function, PDF) is the one given in equation (7.1).

An immediate example is represented by the lognormal random variable, which one obtains by
exponentiating a normal random variable [26]. In fact, if X  is normal, then Y = G(X) = eX is clearly
lognormal. However, this implies that G−1(y) = log(y) and that the CDF of Y  is Φ(log(y); μ,σ), with the
corresponding PDF:

1yσ 2πe− 1
2

log(y) − μσ 2
,

as expected.
Now, let X1, X2, . . . , Xn be a collection of i.i.d. random variables and define the pseudo-partial-sum:

Sn = X1 ⊕G X2 ⊕G . . . ⊕G Xn = G ∑i = 1

n G−1(Xi) .

Then, for n → ∞, the G-standardized quantity

(7.2)G G−1(Sn) − E[G−1(Sn)]σ[G−1(Sn)]
will converge to a standard G-normal random variable with CDF Φ(G−1(x); 0, 1), where σ[G−1(Yn)] is the

finite standard deviation of G−1(Sn) = ∑i = 1

n G−1(Xi).
If the i.i.d. random variables X1, X2, . . . , Xn are positive and their density function is square-integra-

ble, and we choose G(X) = eX, we can immediately recognize the so-called Gibrat’s law [27], in the
convergence of equation (7.2) to its lognormal limit.

A natural question is therefore to ask what do we get for different generators; and a very interesting
case emerges for G(X) = log(X). In fact, we immediately get that

Sn = X1 ⊕G X2 ⊕G … ⊕G Xn = log eX1 + eX2 + ⋯ + eXn ,

where log ∑i = 1

n exi  is the LogSumExp function LSE(x1, . . . ,xn) commonly used in machine learning as a

smooth approximation to the maximum function max (x1, . . . ,xn) [16].
If, again, we assume that the random variables X1, X2, . . . , Xn are positive, i.i.d., and with a

square-integrable density, then the limit law of the pseudo-partial-sum Sn strongly recalls a Gumbel
(Type I) distribution [13], suggesting a non-trivial but yet-to-be-investigated connection with funda-
mental results in extreme value theory, for example, the Fisher–Tippett–Gnedenko theorem [25].

The alleged connection strengthens, if we look back at the distributions of §6, and recognize both
the Gumbel and the Weibull as two of the three extreme value distributions, and we see that both are
linked to the GMP. Curiously, the only extreme value distribution missing in the list seems to be the
Fréchet but also here we can notice a simple fact. As we wrote in §4, the Pareto random variable is
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the variable showing the GMP when x⊕ y = x × y, and the Pareto is a fat-tailed random variable linked
to the Fréchet [25]. All in all, it seems that there are still a large amount of things to be clarified and
possibly discovered using pseudo-sums as we suggested.
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Appendix A. More on the conjugate power Dagum random variable
The CDF of a two-parameter CPD random variable DS, b is given by

(A 1)FDS, b(d; b, S) ≡ 1 + dS − 1b b − 1

, d, S > 0, b ∈ (0, 1) .

We refer to S > 0 as the scale parameter in the law of DS, b.
The PDF of DS, b is then equal to

(A 2)fDS, b(d; b, S) = 1 − bSb 1 + dS − 1b b − 2 dS − 1b − 1
, d > 0, b ∈ (0, 1), S > 0.

As a result, the mean of the two-parameter CPD random variable X  is given by

(A 3)

E[DS, b] = ∫
0

∞d1 − bSb 1 + dS − 1b b − 2 dS − 1b − 1
dd

= 1 − bb ∫
0

∞ dS − 1b 1 + dS − 1b b − 2

dd
= 1 − bb ∫

0

∞ dS − 1b
1 + dS − 1b 1 + dS − 1b b − 1

dd
,

for b ∈ (0, 1), S > 0. Let

(A 4)π =
dS − 1b

1 + dS − 1b = 1 + dS 1b −1

be a change of integrating variable. Then,

(A 5)dS 1b = 1π − 1 = 1 − ππ .

Reciprocating both sides of equation (A 5), one gets

dS − 1b = π
1 − π .

Now let us add one on both sides,
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(A 6)1 + dS − 1b = 1 + π
1 − π = 1

1 − π .

Solving equation (A 5) for d, one obtains

(A 7)d = S 1 − ππ b
.

Hence,

(A 8)dd = Sb 1 − ππ b − 1−1π2 dπ .

Under the decreasing change of variable in equation (A 4), the limits of integration change from d = 0
and d = ∞ to π = 1 and π = 0, respectively. Substituting equations (A 4), (A 6) and (A 8) in equation (A 3)
implies that, for all b ∈ (0, 1),

(A 9)

E[DS, b] = 1 − bb ∫
0

1π 1
1 − π b − 1Sb 1 − ππ b − 1 1π2 dπ

= (1 − b)S ∫
0

1π−bdπ
= Sπ1 − b π = 0

π = 1

= S
.

Therefore, when the CDF of the two-parameter CPD-distributed random variable DS, b is given by
equation (A 1), for d > 0, b ∈ (0, 1), S > 0, then the mean of DS, b is just the scale parameter S > 0.
If S = 1, we denote D1, b by Db, and the CDF simplifies to

(A 10)FDb(d; b, 1) ≡ 1 + d− 1b b − 1
, d > 0, b ∈ (0, 1) .

By equation (A 10), the mean of Db > 0 is trivially 1 for all b ∈ (0, 1).

Aa. The Lorenz curve and the Gini index of Db
It is not hard to see that a random variable X ∼ Db could represent a valid tool to model phenomena
like wealth, income or portfolio losses (when considered as positive quantities, as commonly done in
risk management). In other words, the CDF of X can be seen as a statistical size distribution, in the
definition of [13].
For this reason, we provide two useful quantities related to Db: the associated Lorenz curve and the
corresponding Gini index [21].
Let FG(g), g > 0 be the CDF of the positive random variable G. Since F is increasing, it has a well-
defined inverse called the quantile function Q(p), p ∈ [0, 1]. The Lorenz function. L(u), u ∈ [0, 1], is
defined as the integral of the quantile function Q(p) from p = 0 to p = u, divided by the mean of the
positive random variable [13]. Whenever the mean of G is 1, as for a random variable with CDF equal
to Db, we just have the numerator.
Now, given the CDF of the mean-one CPD, as per equation (A 10), the quantile function of a CPD-dis-
tributed random variable is

(A 11)QDb(p) = p 1b − 1 − 1
−b

, p ∈ (0, 1), b ∈ (0, 1) .

Hence, the related Lorenz curve is equal to
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(A 12)

LDb(u) ≡ ∫  0
uQ(p)dp

= ∫  0
u p 1b − 1 − 1

−b
dp

= u 1b − 1 − 1
−b u − u bb − 1 + u 1b − 1 − 1

b
.

The Gini index then reads

(A 13)GiniDb = Γ(1 − b)Γ(2 − b)
Γ(2 − 2b) − 1,

and it corresponds to twice the area between u and LDb(u) for u ∈ [0, 1].
For more details on the Lorenz curve and the Gini index, we refer to references [13] and [21].

Appendix B. Difference of two independent and identically distributed standard Gumbel random
variables
The standard Gumbel CDF is:

(B 1)FX(x) = e−e−x, x ∈ ℝ .

Differentiating gives the PDF of a standard Gumbel-distributed random variable, that is:

(B 2)fX(x) = e−e−xe−x = e−e−x − x, x ∈ ℝ .

The PDF of the difference of 2 i.i.d. standard Gumbel random variables is therefore

(B 3)fX − Y(z) = ∫
−∞

∞fX(z + y)fY(y)dy, z ∈ ℝ .

We are interested in the CDF of the difference, so we integrate on z from −∞ up to k and use Fubini:

(B 4)FX − Y(k) = ∫
−∞

∞∫
−∞

kfX(z + y)dzfY(y)dy, k ∈ ℝ .

Letting x = z + y be a change of the inner integrating variable z, the desired CDF can be written as

(B 5)FX − Y(k) = ∫
−∞

∞FX(k + y)fY(y)dy, k ∈ ℝ .

Substituting equations (B 1) and (B 2) in equation (B 5), one gets

(B 6)FX − Y(k) = ∫
−∞

∞e−e−k − ye−e−y − ydy = ∫
−∞

∞e−(1 + e−k)e−ye−ydy, k ∈ ℝ .

Let u = e−y be a change of integrating variable. Then, y = − logu and dy = − duu . The integral limits

become 0 and ∞, so the CDF of the difference of 2 i.i.d. standard Gumbel random variables now reads
as

(B 7)

FX − Y(k) = ∫0
∞e−(1 + e−k)uuduu

= − e−(1 + e−k)u
1 + e−k u = 0

u = ∞

= (1 + e−k)−1, k ∈ ℝ
.

which is the standard logistic CDF.
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Appendix C. Randomizing the scale of an inverse Weibull-distributed random variable using a
power-transformed gamma
From the CDF of the PTG-distributed random variable Θ > 0 in equation (6.4) , we obtain the following
PDF:

(C 1)

fΘ(θ; S,α,p) = 1
Γ(α)

θS p α − 1e− θS ppθp − 1Sp
= pθpα − 1e− θS p

SpαΓ(α)
, θ > 0, S > 0,α > 0,p > 0

.

Now, consider randomizing the scale parameter θ > 0 of an inverse Weibull-distributed random
variable K, by using an independent PTG-distributed random variable Θ > 0. Let D denote the result.
For d > 0, S > 0, α > 0, p > 0, the CDF of D is given by the integral

(C 2)

FD(d; S,p,α) = ∫  0
∞FK(d; θ)fΘ(θ; S,α,p)dθ

= ∫  0
∞e− θd ppθpα − 1e− θS p

SpαΓ(α)
dθ

= pSpαΓ(α) ∫  0
∞θpα − 1e−θp d−p + S−p dθ

.

Let g = θp d−p + S−p be a change of integrating variable. Then, θ = g 1p d−p + S−p − 1p and

dθ = g 1p − 1p d−p + S−p − 1p .

For d > 0, S > 0, α > 0, p > 0, the CDF of D becomes

(C 3)

FD(d; S,p,α) = pSpαΓ(α) ∫  0
∞

{g 1p d−p + S−p − 1p}pα − 1e−gg 1p − 1p d−p + S−p − 1pdg
= S−pα d−p + S−p −α

Γ(α) ∫  0
∞gαe−gdg

= 1 + dS −p −α
, d > 0, S > 0,p > 0,α > 0

.

This is nothing more than the CDF of a Dagum-distributed random variable [13].
We thus conclude that randomizing the scale θ > 0 of an inverse Weibull-distributed random variableK > 0, using an independent PTG-distributed random variable Θ > 0, results in a Dagum-distributed
random variable.
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