
© The author(s) 2021. This is the author’s version of the work. It is posted here for your personal use. Not for redistribution. The
definitive version was published in Middleware/WoSC 2021, https://doi.org/10.1145/3493651.3493669.

Beyond @CloudFunction: Powerful Code Annotations to Capture
Serverless Runtime Pa�erns

Ra�ael Klingler
Zurich University of Applied Sciences

Winterthur, Switzerland

Nemanja Trifunovic
Zurich University of Applied Sciences

Winterthur, Switzerland

Josef Spillner
Zurich University of Applied Sciences

Winterthur, Switzerland

ABSTRACT

Simplicity in elastically scalable application development is a key

concern addressed by the serverless computing paradigm, in par-

ticular the code-level Function-as-a-Service (FaaS). Various FaaSi-

�cation frameworks demonstrated that marking code methods to

streamline their o�oading as cloud functions o�ers a simple bridge

to software engineering habits. As application complexity increases,

more complex runtime patterns with background activities, such

as keeping containerised cloud functions warm to ensure the ab-

sence of cold starts, usually require giving up on simplicity and

instead investing e�orts into orchestrating infrastructure. By bring-

ing infrastructure-as-code concepts into the function source via

powerful code annotations, typical orchestration patterns can be

simpli�ed again. We evaluate this idea and demonstrate its practical

feasibility with FaaS Fusion, an annotations library and transpiler

framework for JavaScript.

CCS CONCEPTS

• Software and its engineering→ Source code generation; •

Computing methodologies → Distributed computing methodolo-

gies; • Computer systems organization → Cloud computing.

KEYWORDS

serverless computing, cloudware, software engineering, deploy-

ment

ACM Reference Format:

Ra�ael Klingler, Nemanja Trifunovic, and Josef Spillner. 2021. Beyond

@CloudFunction: Powerful Code Annotations to Capture Serverless Run-

time Patterns. In Seventh International Workshop on Serverless Computing

(WoSC7) 2021 (WoSC ’21), December 6, 2021, Virtual Event, Canada. ACM,

New York, NY, USA, 6 pages. https://doi.org/10.1145/3493651.3493669

1 SERVERLESS APPLICATION DEVELOPMENT

Function-as-a-Service (FaaS) was introduced bymajor cloud providers

starting in 2014 as archetypical serverless programming platform.

While it has since been complemented by further approaches such

as the language-agnostic event-triggered Container-as-a-Service

(CaaS), it is still immensely popular with application software en-

gineers. Its simplicity stems from the ability to create individual

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.

WoSC ’21, December 6, 2021, Virtual Event, Canada

© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9172-6/21/12. . . $15.00
https://doi.org/10.1145/3493651.3493669

short-running and stateless functions with low programming e�ort,

orchestrate them into a larger application and deliver elastically

scalable functionality according to a �ne-grained pay-per-usemodel

without worrying about maintaining anything other than the appli-

cation itself. It is therefore considered an evolutionary advancement

of the early Platform-as-a-Service (PaaS) models that, while also

focusing on code, omitted some of the compelling execution char-

acteristics. Under the hood, typically out of eyesight for application

software engineers, FaaS originally relied on Docker containers but

has since seen diversi�cation, ranging from µ-VMs in AWS Lambda

to zero-coldstart instances in Cloud�are Workers.

To support the creation of FaaS-based applications with conven-

tional software development tools, code-level and runtime-level

FaaSi�cation approaches emerged. Investigation into FaaSi�cation

approaches has recently seen a surge in popularity and has conse-

quently led to stream of FaaSi�er tools as practical output. Zappa

converts Python web applications into scalable AWS Lambda equiv-

alents [13]. It includes a keep-warm functionality to avoid unre-

sponsive websites due to cold starts. Aiming at data analytics and

parallel job execution, PyWren was introduced to let non-experts

harness the power of cloud computing [12]. It has since been picked

up by IBM and evolved �rst into IBM PyWren and eventually into

the Lithops framework [16]. Further approaches from the academic

community include Termite and Nimbus for Java [3, 7], Lambada for

Python [17], as well as Node2FaaS and DAF for JavaScript [6, 15].

In both Lambada and Termite, annotations (or decorators in Python

terms) of the simple form @CloudFunction or the more instructive

form @CloudFunction(memory, duration, region) control the

code transpilation process to some degree. They cause the anno-

tated methods, along with dependencies, to be packaged as cloud

functions, and to be deployed and invoked on demand in a FaaS

context. In DAF, annotations are available to indicate JavaScript

(Node.js) package dependencies.

While the information attached to these annotations su�ces

to generate the cloud function con�guration and packaging for

the respective provider, the application software engineer is only

seemingly detached from the infrastructure. As soon as the use of

cloud functions exceeds trivial use cases, the engineer will have to

interface with the FaaS control plane or even further cloud services

in the stateful backend and infrastructure (BaaS, IaaS). This primar-

ily applies to runtime patterns that have emerged over time as best

practices [9]. For instance, containerised cloud functions are known

to su�er from cold starts characterised by latency spikes [4]. In the

absence of provider interfaces to specify latency requirements, a

well-known orchestration pattern is to keep the function instance

warm by regularly pinging it. This requires deploying an auxiliary

function, connecting it to the main function, and setting up a timer

trigger. The additional e�ort reduces the simplicity in serverless ap-

plication development. Similar workaround patterns emerge when

https://orcid.org/0000-0002-5312-5996
https://doi.org/10.1145/3493651.3493669
https://doi.org/10.1145/3493651.3493669

WoSC ’21, December 6, 2021, Virtual Event, Canada Ra�ael Klingler, Nemanja Trifunovic, and Josef Spillner

aiming at function instrumentation to facilitate debugging, when

pro�ling the function memory consumption to properly size the

instances, and when caching or persisting data. Moreover, several

researchers have pointed out the rather un-simplistic e�ort to build

FaaS-based applications with thousands of concurrent processes [8].

Instead of being an edge case, massive messaging needs from citi-

zens and sensors in the ongoing digital transformation of societies

will increase the demand for such applications whose setup com-

plexity on the infrastructural level could be well wrapped within

more powerful source code annotations. Hence, digital transfor-

mation can be shaped by a broader base of software engineers

who focus on innovative applications instead of dealing with all

syntactic details of cloud infrastructure orchestration.

We claim that our FaaS Fusion approach is the �rst to make such

infrastructural patterns accessible on the code level as function

annotations. Moreover, we postulate that next-generation cloud

software engineering tools need to provide such pattern support to

increase developer attractiveness and productivity. Patterns con-

tribute to increasing the reuse potential in alignment with modular

and service-oriented architectures due to the ability to hide the

implementation [9]. In other words, engineers can focus on what

should be achieved, less on how it should be achieved, and they

can compare their work to best practices on an explicit and unam-

biguous level [5].

In the next section, we present the approach to capture patterns

in annotations that are �tted into a code transpilation pipeline. Af-

terwards, we demonstrate a working implementation for JavaScript

called FaaS Fusion. The implementation can be considered a meta-

FaaSi�er in that it o�ers an annotations library and corresponding

transpiler framework based on the cross-platform Serverless Frame-

work that can be further integrated into next-generation FaaSi�ers.

The remaining sections cover experimental evaluation results and

the conclusion.

2 ANNOTATION TRANSPILATION APPROACH

2.1 Serverless Annotations and Patterns

Our work primarily targets the mechanics to wrap infrastructural

concerns and function execution patterns in annotations. The space

of patterns is rather large, unexplored and not formalised. We there-

fore investigated twelve exemplary patterns that have emerged

from various serverless applications designs. We assume our ap-

proach can capture further patterns as long as the pattern scope

can be determined to apply to a single variable or attribute (V),

single function or method (F), helper functions or methods within

an exposed function (H), or composite code unit (i.e., �le or class)

with set of functions or methods (U).

Table 1 gives an overview about the studied patterns, each of

which is captured by a speci�c function annotation. Where ref-

erences are given, the pattern itself is described in the existing

literature along with a possible runtime mechanisms to implement

the pattern in a cloud environment. However, annotations are in-

tended to be reusable and therefore may lead to di�erent pattern im-

plementations. For instance, @Autotune could perform a one-time

adjustment or continuous adjustment of the amount of memory

allocated to a function under the control of the application, either

within a �xed corridor or following the actual consumption, or it

could entirely switch to cloud-managed services such as AWS Com-

pute Optimizer, as long as the key goal – freeing the application

engineer from having to specify a concrete amount of memory – is

maintained [2, 18].

Table 1: Annotations, scopes and infrastructural patterns

Annotation Scope Pattern

@CloudFunction F O�oad method invocation to cloud

function in FaaS.

@SecureFunction F O�oad method invocation to trusted

execution environment.

@LiquidFunction F O�oad method invocation dynami-

cally to edge-cloud continuum.

@Warmup [19] F Minimise risk of function invocation

with coldstart.

@Autotune [2] F Adjust function memory con�gura-

tion to actual consumption.

@Schedule F Invoke function periodically based

on time trigger.

@HttpApi [1] F Integrate function into web through

exposed endpoint.

@DeepTrace F Activate tracing and input depen-

dency detection.

@Freshen [10] H Install pre-execution and other life-

cycle hooks.

@Cache V Ensure global data lifetime across in-

vocations.

@Persist V BaaS (object store, database) data

storage and retrieval.

@CloudObject

[17]

U O�oad all methods and persist all

attributes of class.

The annotations can have inter-dependencies with one implicitly

requiring another. They can also be compositional, an important

characteristic to raise the level of abstraction. The @CloudObject

annotation would for instance instruct the FaaSi�cation process to

turn all methods of the annotated class de�nition into cloud func-

tions (as if annotated with @CloudFunction) and turn all class

attributes into persisted records in a BaaS store such as Redis,

Memcached or S3 (as if annotated with @Persist). Finally, anno-

tations are subject to either obligatory or optional parameterisa-

tion. For instance, the @HttpApi annotation requires HTTP method

and relative URL path speci�cations, as in @HttpApi(method=GET,

path=/).

2.2 Annotations Syntax

While we refer to annotations on an abstract level, their addition

to function code is subject to language-speci�c notations and con-

straints despite similar appearance in the @-notation. In Java, na-

tive annotations have been available since JDK 1.5/1.6. In Python,

the term annotations refers to type hints in method declarations,

whereas annotations as described above have also been available in

native syntax since Python 2.4, via the addition of classes, under the

name decorators. In JavaScript, there is no native support, although

extensible compiler frameworks exist that lead to conventions of

Beyond @CloudFunction WoSC ’21, December 6, 2021, Virtual Event, Canada

including annotations as comments on the targets to be annotated.

In general, their syntax can be described by the following rule:

[<COMMENT-SIGN>] @ANNOTATION-NAME [(PARAMKEY=

PARAMVALUE, ...)] [... COMMENT]

2.3 Transpilation Mechanics

The goal of the approach is to remain in line with the prevalent

serverless mindset, shielding developers as much as possible from in-

frastructural concerns, while permitting to exploit common patterns

involving functions on the FaaS level and backend functionality

on the BaaS level. We therefore introduce the concept of annota-

tion bundles, a library of annotations, each of which is associated

with a desired runtime characteristic of an individual function and

the corresponding modi�cations necessary to achieve those. They

encompass runtime code modi�cations at the beginning of or in

parallel to the function execution, function con�guration changes,

as well as additional deployments of backend services in the vicinity

of a function.

Code transpilation takes higher-level code with annotations as

references to annotation bundles and transforms it into a represen-

tation targeting a concrete environment.While there are techniques

to rewrite code at runtime (dynamic optimisation [11] or monkey

patching), our approach assumes the continued use of unaltered

deployment and runtime tools to increase developer acceptance.

It thus relies on static code transpilation that is injected into the

build and deployment process of an application. Based on the Ab-

stract Syntax Tree (AST) representation, annotations on all scopes

(variable declarations, function de�nitions, classes) are extracted,

matched against registered annotation bundles, and used to con-

trol the generation of a rewritten AST that furthermore adheres to

the function invocation syntax of the respective language-provider

combination. Fig. 1 summarises the underlying transpilation pro-

cess.

Original AST Output Source CodeTransformed ASTInput Source Code

Parsing Traversal Generation

Figure 1: AST traversal based code transpilation

3 IMPLEMENTATION

We have implemented a meta-FaaSi�er called FaaS Fusion to eval-

uate the feasibility and characteristics of code transpilation based

on annotation bundles. As a proof of concept meta-tool, it is not

meant to be used by software developers directly, but rather by

researchers and developers who aim at creating the next genera-

tion of cloud application development tools including support for

advanced FaaSi�cation.

FaaS Fusion limits the previously introduced broad concepts in

multiple ways to focus on an in-depth evaluation. First, it is imple-

mented in JavaScript and only supports JavaScript code. Second, in

its current version only AWS Lambda is supported as FaaS target

environment, with few selected backend services on the infras-

tructure level. They encompass the AWS services API Gateway,

CloudWatch, ElastiCache (Redis, Memcached) and S3. Third, only

selected annotations are fully implemented - apart from the ba-

sic @CloudFunction, these are @Warmup and @Autotune, as well as

@HttpApi. We allege that this subset is su�cient to validate the

concept of annotations representing infrastructural patterns and

provide the FaaS Fusion implementation as open source frame-

work so that further annotations and infrastructural patterns can

be investigated.

Fig. 2 refers to the FaaS Fusion work�ow. A software engineer

creates JavaScript projects with annotations added to code �les.

Next, the engineer runs the build/deploy instructions. FaaS Fusion

is implemented as a transpilation plugin to the extensible JavaScript

Babel compiler [14] that is invoked with reference to just the source

and target directories. By running as part of Babel, FaaS Fusion is

thus performing the code transpilation, as well as the generation

of con�guration serving as input to the Serverless Framework for

deploying the functions into FaaS environments.

Source Package

JavaScript Source
Code with

Fusion Annotations
Build

fusion.config.json

Deployment
Package

Transformed
JavaScript

Source Code

serverless.yml

Deploy

+
FaaS

Fusion
Plugin

$> serverless deploy$> babel src --out-dir out

 FaaS Provider
(e.g. AWS,

GCP, Azure)

Developer with IDE

Develop

Figure 2: FaaS Fusion approach embedded into software en-

gineering work�ow

As additional bene�t, Babel is able to backport modern JavaScript

syntax into older language versions, thus increasing compatibility

with FaaS providers that otherwise limit software developers to

speci�c, and often slightly outdated, versions. For instance, in mid-

2021, AWS Lambda supports Node.js 10, 12 and 14 (LTS), based

on the V8 JavaScript engine in version 8, while 16.3 is the up to

date version, based on V8 in version 9 with improved support for

JavaScript (ECMAScript) language features such as match indices in

regular expressions. Thus, many JavaScript application engineers

are already used to running Babel as part of their work�ows and

will transparently gain support for FaaS annotations.

The complete annotations processing work�ow is shown in

greater detail in Fig. 3. Extracted variable and function annota-

tions are matched against annotation bundles that are in turn pa-

rameterised with input from provider-speci�c con�guration. The

annotation bundles register a number of visitor methods that en-

sure all transpilation steps within a method at the code level, as

well as necessary pre- and post-invocation methods, are occurring

in the correct order. Eventually, the rewritten JavaScript code out-

put, matching the language runtime of the chosen FaaS provider, is

generated along with the YAML con�guration �le for the Server-

less Framework. Hence, a sequence of running babel followed by

serverless deploy results in ready-to-use Lambda functions with

the desired characteristics as expressed in the annotations.

For each annotation, the abstract work�ow is instantiated in con-

crete form by loading and running the respective visitor methods

over the AST. Fig. 4 shows the instantiation for the @Warmup annota-

tion that leads to the deployment of scheduled CloudWatch events,

�ring every 5 minutes with an event marked as warmup event. The

WoSC ’21, December 6, 2021, Virtual Event, Canada Ra�ael Klingler, Nemanja Trifunovic, and Josef Spillner

Source Package Deployment Package

 Annotation-Specific Visitor Methods

1. Parse annotations
2. Validate parsed annotations

1. Filter
2. Check dependencies

3. Call handler functions
Perform code transformations
Generate serverless config
Register post-functions

Original AST Output Source CodeTransformed ASTInput Source Code

Parsing Traversal Generation

// @FunctionAnnotation
function f() {
 ...
 // @VariableAnnotation
 var v;
 ...
}

serverless.yml

service: example
provider:
 name: aws
 runtime: nodejs12.x
 stage: dev
 region: us-east-1
functions: ...
resources: ...

 Pre Function

1. Initialize post-functions object

 Post Function

1. Call registered post-functions
2. Convert serverless config to YAML
3. Save serverless.yml to filesystem

// @FunctionAnnotation
function f_transformed() {
 ...
 // @VariableAnnotation
 var v_transformed;
 ...
}

fusion.config.json

{
 "service": "example",
 "provider": "aws",
 "runtime": "nodejs12.x",
 "stage": "dev",
 "region": "us-east-1"
}

 Generic Visitor Methods

1. Call handler functions
Perform code transformations
Generate serverless config
Register post-functions

Figure 3: Internal annotations processing work�ow based on AST traversal and provider-speci�c annotations bundles

function itself is rewritten to contain a conditional warmup event

processing and early termination at the beginning.

AWS
Source Package

Build
(Babel)

// @CloudFunction
// @Warmup(Rate = 5)
function f(event) { ... }

{
 "service": "example",
 "provider": "aws",
 "runtime": "nodejs12x",
 "stage": "dev",
 "region": "us-east-1"
}

Deploy
(Server-

less
Frame-
work)

src/index.js

fusion.config.js

Deployment Package

// @CloudFunction
// @Warmup(Rate = 5)
exports.f = async event=> {
 if (event.warmup) {
 return "Warming up.";
 }
 ... }

out/index.js

serverless.yml

service: example
provider:
 name: aws
 runtime: nodejs12x
 stage: dev
 region: us-east-1
 lambdaHashingVersion: '.'
functions:
 f:
 events:
 - schedule:
 rate: rate(5 min.)
 input:
 warmup: true
 handler: out/index.f
resources:
 Resources: {}

calls every 5 minutes with
event = { warmup: true }

Lambda Function
example-dev-f

CloudWatch Events
Rule Schedule

Figure 4: @Warmup annotation projected onto AWS Lambda

and CloudWatch services

It should be noted that since 2019, Lambda has supported pro-

visioned function concurrency that may on �rst sight reduce the

need for @Warmup entirely. However, that comes at additional con-

�guration e�ort and runtime cost. Such evolving implementation

details are best shielded from the engineer through annotations,

and @Warmup could be reused to address the evolution by another

transpilation run that will switch to another implementation if

deemed necessary.

The existing annotation implementations that target AWSLambda

perform cost-e�ective CloudWatch-scheduled function pinging

(@Warmup), adjustment of function memory within a valid corridor

according to the algorithm by Akhtar et al. (@Autotune), and auto-

mated registration of the function behind an API Gateway to make

it accessible for RESTful invocation (@HttpApi).

4 EVALUATION RESULTS

4.1 Overview

In the following, we validate the feasibility of encapsulating in-

frastructural concerns in FaaS annotations. First, we evaluate the

development process with FaaS Fusion, in particular its transpila-

tion performance. Second, we observe the runtime behaviour of the

resulting FaaS-deployed applications to assess whether the anno-

tations have the right expressivity to yield noticeable advantages

compared to omitting the annotations. The @HttpApi call is only

validated qualitatively – does it work correctly or not – as there are

no measurable metrics associated to its use other than measuring

the registration time in the API Gateway itself, the slowness of

which is already covered by the literature.

4.2 Development Process

While simplicity is a goal for application software engineers and

raised code abstractions through powerful annotations are a means

to accomplish that, it should not be traded o� with unnecessary

slowdown in the development cycle and especially the automated

build process. We measured the transpilation performance with

a representative engineer test system, a workstation with Intel

i7-9700K octocore CPU clocked at 3.6 GHz and 16 GB RAM.

Fig. 5 shows the in�uence of including FaaS Fusion and the

hosting Babel compiler into the build process depending on the

size of a JavaScript �le, measured over synthetically generated

�les with typical structures and complexity. One third of functions,

each averaging 10 SLOC, is annotated with @Warmup, another third

with Autotune. All functions are implicitly or explicitly marked as

@CloudFunction.

The respective left bars establish the baseline by observing a pure

Babel transpilation. For an otherwise interpreted or just-in-time

compiled language such as JavaScript, this introduces noticeable

overhead, but as previously described that is factored into the work-

�ow of many application engineers already. The respective middle

Beyond @CloudFunction WoSC ’21, December 6, 2021, Virtual Event, Canada

bars show the combination of Babel and an annotation-less use of

FaaS Fusion. They imply an almost constant build time addition

amounting to around 30 ms on the test system, and thus a decreas-

ing percentage of added build time of between 13% and 5% for the

chosen �le sizes. The respective right bars represent the inclusion

and processing of annotations, with an increase of around 37% to

84% for larger �les.

The result suggests that while modestly sized projects can bene�t

from the approachwithout noticeable overhead beyond the baseline,

additional AST traversal optimisations such as AST caches are due

to enable widespread use in complex code with many annotations.

10 100 1000 10000
0

200

400

600

800

1000

1200

1400

185.8 203.2

316.7

663

210.4 226.2

338.4

693.1

213.6
256.6

432.5

1220.4

FaaSi昀椀ed Applica琀椀on Build Times

Without plugin Fusion plugin without annota琀椀ons Fusion plugin with annota琀椀ons

Signi昀椀cant lines of program code

B
u

ild
 琀椀

m
e

(m
s)

Figure 5: In�uence of transpilation and FaaSi�cation on the

serverless application build time

4.3 Runtime Behaviour

Next, the behaviour of the @Autotune annotation for memory au-

totuning is evaluated.

Fig. 6 shows a 24-hour window over which the memory require-

ments of an exemplary function �uctuates, represented by bars. The

statically assigned hull curve then shows the corresponding mem-

ory con�guration of the function, including evidence of adhering to

the con�gured minimum con�guration around 03:17, 13:00 and at

other times the actual consumption is much lower. A savings com-

parison is non-trivial due to the slowdowns inevitably caused by

the reduced memory footprint. Assuming a function that includes

wait times, the theoretic maximum saving is calculated based on

the cost di�erences between the instance types that is proportional

to the memory assignment Hence, for the scenario in Fig. 6 relative

to a full 2048 MB function instance the theoretic maximum savings

over one day, in�uenced by the choice of allocation corridor, is 60%.

Next, the behaviour of the @Warmup annotation for keeping func-

tions warm is evaluated.

Fig. 7 �rst shows the function behaviour without regular warmup

over a 72-hour window. The lower portions of the bar represent the

function runtime, whereas the upper portions convey the overhead

required for their initialisation that on average accounts for 59%

and occasionally even exceeds the runtime (>100%). Reducing this

overhead is the optimisation objective.

In contrast, Fig. 8 summarises the behaviour with warmup en-

abled over another 72-hour window. Warmup pings are sent in �ve

minute intervals to 1 GB Lambdas executing in the AWS us-east

0
:0

0
0

:1
7

0
:4

8
1

:2
0

1
:5

1
2

:2
2

2
:5

5
3

:2
7

3
:5

8
4

:2
9

5
:0

2
5

:3
4

6
:0

5
6

:3
8

7
:0

9
7

:4
0

8
:1

1
8

:4
3

9
:1

4
9

:4
6

1
0

:1
7

1
0

:4
8

1
1

:1
9

1
1

:5
1

1
2

:2
2

1
2

:5
3

1
3

:2
4

1
3

:5
5

1
4

:2
7

1
4

:5
8

1
5

:2
9

1
6

:0
1

1
6

:3
3

1
7

:0
4

1
7

:3
5

1
8

:0
5

1
8

:3
7

1
9

:0
8

1
9

:4
0

2
0

:1
2

2
0

:4
4

2
1

:1
5

2
1

:4
6

2
2

:1
7

2
2

:4
8

2
3

:1
9

2
3

:5
0

32

64

128

256

512

1024

2048

Maximum memory consump琀椀on and con昀椀gured memory limits

Maximum memory consump琀椀on Con昀椀gured memory limits

Wall 琀椀me

M
em

o
ry

 (
M

B
)

Figure 6: E�ect of the @Autotune annotation on function

memory allocation over time

1st day 2nd day 3rd day

0.1

1

10

100

1000

10000

Run琀椀mes and ini琀椀alisa琀椀on 琀椀mes without warmup annota琀椀ons

Run琀椀me Ini琀椀alisa琀椀on 琀椀me

Date/Time

T
im

e
 (

m
s)

Figure 7: Initialisation and execution times, without @Warmup

and thus with many coldstart situations

region. Their e�ective runtime is 1.28 ms, rounded up to 2 ms by

Lambda’s invoicing, resulting in e�ective warmup overhead of US$

0.0000672 per day, or 0.002016 per month.

The initialisation overhead is reduced to only 2%, with a few

occurrences of unexpected coldstart still happening due to the

provider-enforced recycling of the function’s underlying container.

The savings exceed the additional cost as sum of the warmup calls

and the overhead by far due to their short and constant runtime.

The additional cost amount is so small that the AWS Calculator will

budget it as US$ 0.00. Complementary, CloudWatch events cost US$

1.00 per million events, a negligible factor for the expected 8640

pings per function instance per month adding less than US$ 0.01 to

the invoice. Hence, adding warmup annotations according to our

proposal represent a trivial and economic way to avoid coldstarts

for functions that need it.

The evaluation has only covered single instances of functions.

The e�ects on highly concurrent function invocation, along with

opportunities to introduce additional annotations, remains an open

research question.

5 CONCLUSIONS

Code annotations are a powerful means to simplify infrastructural

concerns and patterns for developers of FaaS-based applications.We

WoSC ’21, December 6, 2021, Virtual Event, Canada Ra�ael Klingler, Nemanja Trifunovic, and Josef Spillner

1st day 2nd day 3rd day

0.1

1

10

100

1000

10000

Run琀椀mes and ini琀椀alisa琀椀on 琀椀mes with warmup annota琀椀ons

Run琀椀me Ini琀椀alisa琀椀on 琀椀me

Date/Time

T
im

e
 (

m
s)

Figure 8:With @Warmup, almost no occurrence of initialisation

time in addition to execution time

have proposed and investigated twelve annotations, partly based

on mechanisms described by prior research.

To evaluate the annotations approach, we have implemented

FaaS Fusion, a JavaScript meta-FaaSi�er that currently provides

annotation bundles for AWS Lambda, and relies on the Serverless

Framework to facilitate cross-provider deployment of transpiled

FaaS code in the future. FaaS Fusion currently handles four of the

twelve annotations and is publicly available as open source tool1.

On the research roadmap, we foresee the following four next

steps. First, along with ongoing progress reported by researchers

and practitioners, more patterns should be captured and imple-

mented in FaaS Fusion as well as in existing FaaSi�cation tools.

Second, while we have implemented and validated the annotation

bundles for the combination of JavaScript and AWS Lambda, we

have not yet investigated other languages and other FaaS providers

such as Google Cloud Functions, Azure Functions, IBM Cloud Func-

tions or even di�erent FaaS isolation models like Cloud�are Work-

ers. This investigation should be conducted, for instance to study

the portability of persistent variables marked with @Persist across

providers. Third, optimised AST processing needs to be considered

for large application projects with tens of thousands of lines of code.

This can be accomplished by hooking into the caching mechanisms

of modern compilers and transpilers, similar to the AspectJ weaving

conducted by Termite. Fourth, while annotations are declarative,

their current handling is imperative. Context-dependent smartness

should be studied so that annotations that are not suitable could

be overridden by system intelligence, their implementation paths

could be chosen to yield optimal results, and similarly, annotations

could be added automatically when there is an unambiguous advan-

tage. This mechanism could also be used to balance optimisation

objectives, such as regularly pinging function instances to reduce

latency versus using provider-speci�c mechanisms like provisioned

concurrency (for @Warmup), or self-determining the memory allo-

cation needs versus using provider-speci�c mechanisms such as

Compute Optimizer (for @Autotune).

A longer-term open research problem is the balance among

multiple objectives, including green and sustainable serverless com-

puting, secure serverless computing and other �avours.

1FaaS Fusion code: https://github.com/serviceprototypinglab/faasfusion

REFERENCES
[1] Gojko Adzic. 2018. Claudia.js Web API Example Project. online:

https://github.com/claudiajs/example-projects/tree/master/web-api.
[2] Nabeel Akhtar, Ali Raza, Vatche Ishakian, and Ibrahim Matta. 2020. COSE: Con-

�guring Serverless Functions using Statistical Learning. In 39th IEEE Conference
on Computer Communications, INFOCOM 2020, Toronto, ON, Canada, July 6-9,
2020. IEEE, 129–138. https://doi.org/10.1109/INFOCOM41043.2020.9155363

[3] Thomas Allerton. 2019. Nimbus – A framework for deploying and testing Java
serverless applications. online: https://www.nimbusframework.com/.

[4] Emad Heydari Beni, Eddy Truyen, Bert Lagaisse, Wouter Joosen, and Jordy
Dieltjens. 2021. Reducing Cold Starts during Elastic Scaling of Containers in
Kubernetes. Association for Computing Machinery, New York, NY, USA, 60–68.
https://doi.org/10.1145/3412841.3441887

[5] Hayet Brabra, Achraf Mtibaa, Fábio Petrillo, Philippe Merle, Layth Sliman, Naouel
Moha, Walid Gaaloul, Yann-Gaël Guéhéneuc, Boualem Benatallah, and Faïez
Gargouri. 2019. On semantic detection of cloud API (anti)patterns. Inf. Softw.
Technol. 107 (2019), 65–82. https://doi.org/10.1016/j.infsof.2018.10.012

[6] L. Carvalho and Aleteia P. F. de Araujo. 2020. Remote Procedure Call Approach
using the Node2FaaS Framework with Terraform for Function as a Service. In
Proceedings of the 10th International Conference on Cloud Computing and Services
Science - Volume 1: CLOSER,. INSTICC, SciTePress, 312–319. https://doi.org/10.
5220/0009381503120319

[7] Serhii Dorodko and Josef Spillner. 2019. Selective Java code transformation into
AWS Lambda functions. In Proceedings of the European Symposium on Serverless
Computing and Applications (CEUR-WS, Vol. 2330). 9–17.

[8] Sadjad Fouladi, Francisco Romero, Dan Iter, Quian Li, Shuvo Chatterjee, Christos
Kozyrakis, Matei Zaharia, and Keith Winstein. 2019. From Laptop to Lambda:
Outsourcing Everyday Jobs to Thousands of Transient Functional Containers. In
2019 USENIX Annual Technical Conference (USENIX’19). USENIX, Renton, WA,
USA, 475–488. https://www.usenix.org/conference/atc19/presentation/fouladi

[9] Sanghyun Hong, Abhinav Srivastava, William Shambrook, and Tudor Dumitras.
2018. Go Serverless: Securing Cloud via Serverless Design Patterns. In 10th
USENIX Workshop on Hot Topics in Cloud Computing, HotCloud 2018, Boston, MA,
USA, July 9, 2018, Ganesh Ananthanarayanan and Indranil Gupta (Eds.). USENIX
Association. https://www.usenix.org/conference/hotcloud18/presentation/hong

[10] Erika Hunho�, Shazal Irshad, Vijay Thurimella, Ali Tariq, and Eric Rozner. 2020.
Proactive Serverless Function Resource Management. InWoSC@Middleware 2020:
Proceedings of the 2020 Sixth International Workshop on Serverless Computing,
Virtual Event / Delft, The Netherlands, December 7-11, 2020. ACM, 61–66. https:
//doi.org/10.1145/3429880.3430102

[11] Animesh Jain, Michael A. Laurenzano, Lingjia Tang, and Jason Mars. 2016. Con-
tinuous shape shifting: Enabling loop co-optimization via near-free dynamic
code rewriting. In 49th Annual IEEE/ACM International Symposium on Microarchi-
tecture, MICRO 2016, Taipei, Taiwan, October 15-19, 2016. IEEE Computer Society,
23:1–23:12. https://doi.org/10.1109/MICRO.2016.7783726

[12] Eric Jonas, Qifan Pu, Shivaram Venkataraman, Ion Stoica, and Benjamin Recht.
2017. Occupy the cloud: distributed computing for the 99%. In Proceedings of the
2017 Symposium on Cloud Computing, SoCC 2017, Santa Clara, CA, USA, September
24-27, 2017. ACM, 445–451. https://doi.org/10.1145/3127479.3128601

[13] Rich Jones. 2020. Zappa - Serverless Python. online:
https://github.com/Miserlou/Zappa.

[14] Brian Ng, Henry Zhu, Huáng Jùnliàng, Logan Smyth, Nicolò Ribaudo, and Sven
Sauleau. 2021. Babel – The compiler for next generation JavaScript. online:
https://babeljs.io/.

[15] S. Ristov, S. Pedratscher, J. Wallnoefer, and T. Fahringer. 2021. DAF: Dependency-
Aware FaaSi�er for Node.js Monolithic Applications. IEEE Software 38, 1 (2021),
48–53. https://doi.org/10.1109/MS.2020.3018334

[16] J. Sampe, P. Garcia-Lopez, M. Sanchez-Artigas, G. Vernik, P. Roca-Llaberia, and A.
Arjona. 2021. Toward Multicloud Access Transparency in Serverless Computing.
IEEE Software 38, 01 (jan 2021), 68–74. https://doi.org/10.1109/MS.2020.3029994

[17] Josef Spillner. 2017. Transformation of Python Applications into Function-as-a-
Service Deployments. arĆ iv:1705.08169.

[18] Josef Spillner. 2020. Resource Management for Cloud Functions with Memory
Tracing, Pro�ling and Autotuning. In 6th International Workshop on Serverless
Computing (WoSC) / 21st ACM/IFIP Middleware. online.

[19] Erwin van Eyk. 2018. Serverless Performance on a Budget. European Sympo-
sium on Serverless Computing and Applications (ESSCA) – http://essca2018.
servicelaboratory.ch/slides/essca18-slides-erwinvaneyk-scaled.pdf.

https://github.com/serviceprototypinglab/faasfusion
https://doi.org/10.1109/INFOCOM41043.2020.9155363
https://doi.org/10.1145/3412841.3441887
https://doi.org/10.1016/j.infsof.2018.10.012
https://doi.org/10.5220/0009381503120319
https://doi.org/10.5220/0009381503120319
https://www.usenix.org/conference/atc19/presentation/fouladi
https://www.usenix.org/conference/hotcloud18/presentation/hong
https://doi.org/10.1145/3429880.3430102
https://doi.org/10.1145/3429880.3430102
https://doi.org/10.1109/MICRO.2016.7783726
https://doi.org/10.1145/3127479.3128601
https://babeljs.io/
https://doi.org/10.1109/MS.2020.3018334
https://doi.org/10.1109/MS.2020.3029994
http://essca2018.servicelaboratory.ch/slides/essca18-slides-erwinvaneyk-scaled.pdf
http://essca2018.servicelaboratory.ch/slides/essca18-slides-erwinvaneyk-scaled.pdf

