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Abstract—Many video applications require to capture images 
in a dynamic environment. Embedded cameras can be configured 
to adapt to these environments. However, the algorithm that 
controls these settings is often left up to the user. Additionally, no 
tools for preprocessing and calibration are provided as the 
implementation of these tools is time-consuming, especially in an 
FPGA environment. In this paper, an Image Signal Processor 
(ISP) for Xilinx FPGAs is discussed. The goal was to create a 
versatile toolset to improve image quality regarding the needs of 
typical video applications. Thus, the following features were 
implemented. First, automatic white balancing and automatic gain 
control were added to ensure that the color tone and the exposure 
of the captured video adapt to the environment in which the 
camera is used. Additionally, non-linearities and offsets of each 
color channel caused by the image sensor can be corrected by 
lookup tables. Moreover, classic image processing algorithms, 
such as blurring or edge detection, can be applied using the 
specifically designed configurable convolution filter. Furthermore, 
the perceived sharpness of the video stream can be increased by 
the sharpening feature. Finally, for grayscale videos, a histogram 
equalization can be used to increase the overall contrast, which is 
interesting for machine learning or medical applications. A glass-
to-glass demonstration was built to test the ISP implementation. 
The demonstration consists of a CSI (Camera Serial Interface) 
camera connected to a video capturing card featuring a Xilinx 
Ultracale+ MPSoC FPGA on which the ISP was implemented. The 
capture card is connected to the PCIe port of a host PC, which 
displays the video. For the data transfer between the FPGA and 
the host computer, a frame-based DMA was developed. This DMA 
has the capability to transfer the data directly into the memory 
that is accessible from the GPU. The tests revealed that all 
developed features perform as intended, verifying the proper 
implementation. The various tools provided by the ISP are a solid 
basis for any video application. In addition, the modular design of 
the video pipeline and the used Xilinx AXI-Stream video interface 
allows adding future features with minimal effort. 

I. CONCEPT 

A. General Concept 
The ISP should be capable to process an incoming video 

stream in real-time. Each element of the ISP must therefore have 
a constant delay and a throughput that matches the data rate of 
the input video stream. To fulfill the real-time requirement, the 
data stream through the ISP never leaves the FPGA fabric until 
it is completely processed.  

The ISP is divided into two parts. One part is the video 
pipeline in the FPGA fabric which is responsible for the actual 
video processing. The other part controls the pipeline by 
applying the current user settings and calculates the algorithmic 
tasks needed by some of the pipeline elements. Because of this 
division, each element of the SoC is used regarding its strength. 
Furthermore, offloading some of the algorithms to the processor 
allows to quickly improve them or adapt to different situations. 

A camera application not always needs the complete feature 
set of the ISP. Additionally, available resources are often 
limited. That’s why, the ISP has a modular design that allows to 
exclude unused features. The reduced number of elements in the 
pipeline additionally comes with a reduced latency. The 
modularity is achieved by packing the features in blocks which 
are connected using the industry standard AXI-Stream interface 
[1]. Using this interface further allows to use other IPs that are 
for example developed by Xilinx itself. 

An ISP is never the end consumer of a video pipeline. That’s 
why it must be easy to include in a new or existing design. The 
most time-consuming part of including an IP into a design is to 
understand how it works and how it must be configured. 
Features, such as the automatic white balancing or automatic 
gain control further need an algorithm that updates camera 
setting according to statistics that were extracted from the video 
stream. It can be seen, that as a consumer it is unpractical and 
unnecessary to control each register of the pipeline. For that 
reason, an abstraction layer is provided to reduce the amount of 
interaction between the consumer and the ISP. 



 

 

II. FEATURES 
There are many features that could have been included into 

the ISP. The following ones were selected for implementation, 
as they are most used and provide a significant benefit. 
However, due to the modularity, further features could be later 
added. 

A. Convolution Filter 
The convolutional filter is often used in classical video 

processing. It allows to manipulate the pixels while also taking 
their surrounding pixels into account. The application of such a 
filter could be blurring the image or detecting edges.  

B. Sharpening 
Sharpening is used to enhance brightness transitions in a 

video or image. This technique can be found in TVs, cameras, 
or image manipulation software such as Photoshop. As every 
classic image processing tool, it cannot create details that were 
not present in the original image. However, existing details are 
enhanced in a way that results in a sharper image. 

C. Automatic white balancing 
White balancing is used to adapt to the current lighting. 

Various light sources do have different color temperatures. 
Human eyes are constantly adapting to the lighting such that a 
white object (completely reflect the incoming light of all 
frequencies) appears white. This adaptation can for example be 
observed while a colored ski goggle is worn. First, the white 
snow has the color of the goggle which then slowly changes into 
a perfect white. Camera sensors, however, don’t adapt to the 
lighting leading to a color shift that can look odd for somebody 
that looks at the image because the eyes are not necessarily 
adapted to the same lighting conditions. 

Compensating for the color temperature is a simple task that 
can be achieved with a separate gain for each color channel. 
However, the exact values for the gains and therefore the profile 
of the lighting must be known. An automatic white balancing 
algorithm uses the recorded frames to estimate the color 
temperature of the lighting. For an observer it is under certain 
circumstances impossible to determine the color characteristics 
of the light source. If a white wall illuminated with a certain 
color is filmed, no algorithm can tell the difference to a filmed 
wall with the said color illuminated with a white light source.  

D. Automatic gain control 
The gain of a camera determines how bright the recorded 

image gets given a specific brightness of the scene. In many 
video applications, the scene has various brightness. If the gain 
of the camera is not adapted to the current brightness of the 
scene, the captured video would be either too dark or too bright 
with clipping. The correct gain can be determined by analyzing 
the recorded frames regarding the mean brightness and the 
number of clipping pixels.  

E. Histogram equalization 
This technique is used to rearrange the brightness values in 

an image to utilize the whole available value range and increase 
the contrast. 

F. Lookup tables 
Lookup tables map an incoming value to a predefined output 

value. This allows to correct non linearities of the camera, cut 
off a black floor, performing gamma correction, or adjust the 
contrast in certain brightness ranges. 

G. Demosaicing 
The RAW data from a camera sensor has only one color 

channel per pixel. In each patch of 2x2 pixels, there are two 
green, one red and one blue pixels. Video applications, however, 
most of the time use the color formats RGB or YCbCr. 
Furthermore, image processing algorithms often need the 
complete color information for every pixel. That’s why the 
mosaic pattern has to be transformed into the RGB color format 
by interpolating the color information of the surounding pixels. 
This transformation is called demosaicing. 

III. OVERVIEW OF THE FINAL PIPELINE 
Figure 1 provides a conceptual overview of the ISP 

implemented entirely in the FPGA. The video stream busses are 
complaint with the AXI-Stream Video interface. Additionally, 
the ISP is separated into a processor part and programmable 
logic part.  

A. Controling 
The processor controls the programmable logic via the AXI-

Lite interface that the AXI Interconnect distributes to every 
block in the pipeline. The reverse information flow from the 
programmable logic to the processor occurs via interrupts.  

The Control Register Bank, located in the programmable 
logic, stores the basic configuration of the ISP. It also serves as 
an abstraction layer to the consumer of the video stream, denoted 
as External Control Unit. The control application running on the 
processor constantly polls the current status of the Control 
Register Bank. If the configuration has been updated, the control 
application reconfigures the pipeline. The control application 
stops and resets the pipeline before it reconfigures and restarts 
it, for example, when switching the video source or changing the 
video dimensions. 

The Camera Control block offers the hardware interface for 
the communication between the FPGA and the connected 
camera. An I2C interface and GPIOs are used to control the 
cameras. 

B. Hardware blocks in the pipeline 
The pipeline selects from multiple video sources due to the 

Receiver and Input Selection block at the beginning of the 
pipeline. Additionally, this block includes the CSI hardware 
receivers and the demosaicing functionality. 

After the video stream is transformed into the RGB color 
format, the Lookup Table block corrects non-linearities and 
black offsets caused by the image sensor. 

The convolution filter then convolves the video stream with 
a user-defined filter. The processor can reconfigure the specific 
coefficients of the filter. Therefore, the user can implement any 
filter that he desires. The only limitation is the size of the applied 
filter, which must be defined before compiling the hardware 
design. 
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The subsequent Color Space Converter transforms the RGB 
video stream into the YCbCr color format to be able to 
manipulate the luminance of the video stream. 

The Statistics block collects information about the video 
stream content. As soon as the block has analyzed a new frame, 
it notifies the processor via an interrupt. The algorithmic 
processes of the Automatic White Balancing, Automatic Gain 
Control, and Histogram Equalization require information 
collected with the Statistics block. 

The subsequent Histogram Equalization block enhances the 
contrast of the image if it is activated. However, histogram 
equalization should only be used for grayscale videos. 

The following Color Space Converter transforms the YCbCr 
video back into the RGB color format. However, the video can 
also bypass the converter such that the output video format is 
YCbCr. The pipeline can, therefore, also provide a grayscale or 
YCbCr video format at the output. 

The Frame Synchronization block at the end of the pipeline 
acts as an interface between the pipeline itself and the PCIe bus. 
However, following video pipeline parts that fully support the 
AXI-Stream Video protocol do not need this synchronization 
block. 

C. Algorithms to update the pipeline 
The processor handles the algorithmic part of the Automatic 

White Balance, the Automatic Gain Control, and the Histogram 
Equalization. These algorithms do not require parallelization but 
demand complicated calculations. Therefore, the processor is 
better suited for this task. Offloading these algorithms to the 
processor increases the system’s flexibility and reduces the 
resource usage in the programmable logic. 

The functional units implemented in the processor use the 
collected data of the Statistics block and then control other parts 
of the pipeline accordingly. First, the Automatic White Balance 
algorithm uses the RGB Convolution Filter to apply the adjusted 
channel gains. Next, the Automatic Gain Control updates the 
configuration registers of the camera via the Camera Control 
block. Finally, the Histogram Equalization is applied via the 
block of the same name. 

IV. FDMA 

A. What is FDMA 
The Frame Based Direct Memory Access (FDMA) IP is 

designed by the Institue of Embedded Systems (InES) to 
autonomically transfer data between an FPGA and the GPU of a 
host PC over a PCIe interface. The IP is designed to work 
independently without any interaction with the host processor 
after the system has been initialized. Another central 
characteristic of the FDMA IP is the ability to handle the 
incoming data as frames by including a signaling interface. A 
frame in this context can but doesn't have to be an image of a 
video stream. It can be any data. The term frame is used because 
this DMA engine is designed for repetitive transfers of the same 
size. The framed data is then sent using the AXI  to PCIe Bridge 
IP from Xilinx [2]. FDMA can handle multiple buffers in each 
direction, which allows a double or tripple buffer design. 

Figure 2 gives a graphical overview of the FDMA based co-
design concept. In the GPU memory, there are multiple RX and 
TX buffers and a flag buffer. The flags are for controlling the 
access to the RX and TX buffers and mark the data as valid. The 
FDMA IP has an input and an output AXI stream interfaces to 
connect to the data source or sink. 

 

 
Figure 2, FDMA concept 

  
       

  
       

     

   

 
  

  
  

 
  

   
  

   
 

 

    

 
   

  
  

 
  

  
   

      

         
           

   

     
  

  

  
   

   
  

    
    

    

    

  

Figure 1, Conceptional overview of the ISP 



 

 

B. Configuration 
The FDMA IP has a register bank accessible through an AXI 

lite interface which is for simplicity not shown in Figure 2. 
Through this register bank, the IP can be configured and started. 
This register bank has to be available to the host for the setup 
process.  

C. FPGA to GPU transfer 
After enabling the FDMA IP, it starts polling the GPU flag 

for the first TX buffer. As soon the flags indicate that the TX 
buffer is accessible for the FPGA it starts writing the data 
through the AXI PCIe bridge and the PCIe bus directly into the 
GPU RAM. After the transfer, the FDMA IP sets the current TX 
buffer flag to indicate that the GPU can access this buffer and 
the data is valid. The FDMA IP starts immediately polling the 
flag for the next TX buffer and starts the next transfer if the 
buffer is ready. The sequence diagramm displayed in Figure 4 
depicts this mechanism.  

 
Figure 4, Sequence diagram of an FPGA to GPU transfer 

V. FINAL SETUP 
The combination of the proposed ISP and FDMA allows to 

create a camera capture card that handles all the required 
preprocessing while minimizing the workload for the host PC.  

Figure 3 shows the concept of a complete pipeline that was 
developed to demonstrate the capabilities of the combined ISP 
and FDMA. The developed capture card features 6 FPD-Link 
and 2 Camera Serial Interface (CSI [3]) ports to connect 
cameras. Cameras send video streams to the FPGA via CSI.  

In this configuration, the captured video is streamed through  
the FPGA fabric with a constant delay. The delay only varies if 
the video sink is too slow and stalls the pipeline. In this case, the 
video sink is not apropriately dimensioned for the desired 
application and there is no way to uphold a realtime pipeline. 
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Figure 3, Complete glass to glass example design 


