

www.embedded-world.eu

Real-time Image Signal Processor for SoC/FPGA

With Direct GPU Communication

Richard Weiss
Institute of Embedded Systems

Zurich University of Applied Sciences (ZHAW)
Zurich, Switzerland

wesr@zhaw.ch

Hans Gelke
Institute of Embedded Systems

Zurich University of Applied Sciences (ZHAW)
Zurich, Switzerland

gelk@zhaw.ch

Abstract—Many video applications require to capture images
in a dynamic environment. Embedded cameras can be configured
to adapt to these environments. However, the algorithm that
controls these settings is often left up to the user. Additionally, no
tools for preprocessing and calibration are provided as the
implementation of these tools is time-consuming, especially in an
FPGA environment. In this paper, an Image Signal Processor
(ISP) for Xilinx FPGAs is discussed. The goal was to create a
versatile toolset to improve image quality regarding the needs of
typical video applications. Thus, the following features were
implemented. First, automatic white balancing and automatic gain
control were added to ensure that the color tone and the exposure
of the captured video adapt to the environment in which the
camera is used. Additionally, non-linearities and offsets of each
color channel caused by the image sensor can be corrected by
lookup tables. Moreover, classic image processing algorithms,
such as blurring or edge detection, can be applied using the
specifically designed configurable convolution filter. Furthermore,
the perceived sharpness of the video stream can be increased by
the sharpening feature. Finally, for grayscale videos, a histogram
equalization can be used to increase the overall contrast, which is
interesting for machine learning or medical applications. A glass-
to-glass demonstration was built to test the ISP implementation.
The demonstration consists of a CSI (Camera Serial Interface)
camera connected to a video capturing card featuring a Xilinx
Ultracale+ MPSoC FPGA on which the ISP was implemented. The
capture card is connected to the PCIe port of a host PC, which
displays the video. For the data transfer between the FPGA and
the host computer, a frame-based DMA was developed. This DMA
has the capability to transfer the data directly into the memory
that is accessible from the GPU. The tests revealed that all
developed features perform as intended, verifying the proper
implementation. The various tools provided by the ISP are a solid
basis for any video application. In addition, the modular design of
the video pipeline and the used Xilinx AXI-Stream video interface
allows adding future features with minimal effort.

I. CONCEPT

A. General Concept
The ISP should be capable to process an incoming video

stream in real-time. Each element of the ISP must therefore have
a constant delay and a throughput that matches the data rate of
the input video stream. To fulfill the real-time requirement, the
data stream through the ISP never leaves the FPGA fabric until
it is completely processed.

The ISP is divided into two parts. One part is the video
pipeline in the FPGA fabric which is responsible for the actual
video processing. The other part controls the pipeline by
applying the current user settings and calculates the algorithmic
tasks needed by some of the pipeline elements. Because of this
division, each element of the SoC is used regarding its strength.
Furthermore, offloading some of the algorithms to the processor
allows to quickly improve them or adapt to different situations.

A camera application not always needs the complete feature
set of the ISP. Additionally, available resources are often
limited. That’s why, the ISP has a modular design that allows to
exclude unused features. The reduced number of elements in the
pipeline additionally comes with a reduced latency. The
modularity is achieved by packing the features in blocks which
are connected using the industry standard AXI-Stream interface
[1]. Using this interface further allows to use other IPs that are
for example developed by Xilinx itself.

An ISP is never the end consumer of a video pipeline. That’s
why it must be easy to include in a new or existing design. The
most time-consuming part of including an IP into a design is to
understand how it works and how it must be configured.
Features, such as the automatic white balancing or automatic
gain control further need an algorithm that updates camera
setting according to statistics that were extracted from the video
stream. It can be seen, that as a consumer it is unpractical and
unnecessary to control each register of the pipeline. For that
reason, an abstraction layer is provided to reduce the amount of
interaction between the consumer and the ISP.

II. FEATURES
There are many features that could have been included into

the ISP. The following ones were selected for implementation,
as they are most used and provide a significant benefit.
However, due to the modularity, further features could be later
added.

A. Convolution Filter
The convolutional filter is often used in classical video

processing. It allows to manipulate the pixels while also taking
their surrounding pixels into account. The application of such a
filter could be blurring the image or detecting edges.

B. Sharpening
Sharpening is used to enhance brightness transitions in a

video or image. This technique can be found in TVs, cameras,
or image manipulation software such as Photoshop. As every
classic image processing tool, it cannot create details that were
not present in the original image. However, existing details are
enhanced in a way that results in a sharper image.

C. Automatic white balancing
White balancing is used to adapt to the current lighting.

Various light sources do have different color temperatures.
Human eyes are constantly adapting to the lighting such that a
white object (completely reflect the incoming light of all
frequencies) appears white. This adaptation can for example be
observed while a colored ski goggle is worn. First, the white
snow has the color of the goggle which then slowly changes into
a perfect white. Camera sensors, however, don’t adapt to the
lighting leading to a color shift that can look odd for somebody
that looks at the image because the eyes are not necessarily
adapted to the same lighting conditions.

Compensating for the color temperature is a simple task that
can be achieved with a separate gain for each color channel.
However, the exact values for the gains and therefore the profile
of the lighting must be known. An automatic white balancing
algorithm uses the recorded frames to estimate the color
temperature of the lighting. For an observer it is under certain
circumstances impossible to determine the color characteristics
of the light source. If a white wall illuminated with a certain
color is filmed, no algorithm can tell the difference to a filmed
wall with the said color illuminated with a white light source.

D. Automatic gain control
The gain of a camera determines how bright the recorded

image gets given a specific brightness of the scene. In many
video applications, the scene has various brightness. If the gain
of the camera is not adapted to the current brightness of the
scene, the captured video would be either too dark or too bright
with clipping. The correct gain can be determined by analyzing
the recorded frames regarding the mean brightness and the
number of clipping pixels.

E. Histogram equalization
This technique is used to rearrange the brightness values in

an image to utilize the whole available value range and increase
the contrast.

F. Lookup tables
Lookup tables map an incoming value to a predefined output

value. This allows to correct non linearities of the camera, cut
off a black floor, performing gamma correction, or adjust the
contrast in certain brightness ranges.

G. Demosaicing
The RAW data from a camera sensor has only one color

channel per pixel. In each patch of 2x2 pixels, there are two
green, one red and one blue pixels. Video applications, however,
most of the time use the color formats RGB or YCbCr.
Furthermore, image processing algorithms often need the
complete color information for every pixel. That’s why the
mosaic pattern has to be transformed into the RGB color format
by interpolating the color information of the surounding pixels.
This transformation is called demosaicing.

III. OVERVIEW OF THE FINAL PIPELINE
Figure 1 provides a conceptual overview of the ISP

implemented entirely in the FPGA. The video stream busses are
complaint with the AXI-Stream Video interface. Additionally,
the ISP is separated into a processor part and programmable
logic part.

A. Controling
The processor controls the programmable logic via the AXI-

Lite interface that the AXI Interconnect distributes to every
block in the pipeline. The reverse information flow from the
programmable logic to the processor occurs via interrupts.

The Control Register Bank, located in the programmable
logic, stores the basic configuration of the ISP. It also serves as
an abstraction layer to the consumer of the video stream, denoted
as External Control Unit. The control application running on the
processor constantly polls the current status of the Control
Register Bank. If the configuration has been updated, the control
application reconfigures the pipeline. The control application
stops and resets the pipeline before it reconfigures and restarts
it, for example, when switching the video source or changing the
video dimensions.

The Camera Control block offers the hardware interface for
the communication between the FPGA and the connected
camera. An I2C interface and GPIOs are used to control the
cameras.

B. Hardware blocks in the pipeline
The pipeline selects from multiple video sources due to the

Receiver and Input Selection block at the beginning of the
pipeline. Additionally, this block includes the CSI hardware
receivers and the demosaicing functionality.

After the video stream is transformed into the RGB color
format, the Lookup Table block corrects non-linearities and
black offsets caused by the image sensor.

The convolution filter then convolves the video stream with
a user-defined filter. The processor can reconfigure the specific
coefficients of the filter. Therefore, the user can implement any
filter that he desires. The only limitation is the size of the applied
filter, which must be defined before compiling the hardware
design.

www.embedded-world.eu

The subsequent Color Space Converter transforms the RGB
video stream into the YCbCr color format to be able to
manipulate the luminance of the video stream.

The Statistics block collects information about the video
stream content. As soon as the block has analyzed a new frame,
it notifies the processor via an interrupt. The algorithmic
processes of the Automatic White Balancing, Automatic Gain
Control, and Histogram Equalization require information
collected with the Statistics block.

The subsequent Histogram Equalization block enhances the
contrast of the image if it is activated. However, histogram
equalization should only be used for grayscale videos.

The following Color Space Converter transforms the YCbCr
video back into the RGB color format. However, the video can
also bypass the converter such that the output video format is
YCbCr. The pipeline can, therefore, also provide a grayscale or
YCbCr video format at the output.

The Frame Synchronization block at the end of the pipeline
acts as an interface between the pipeline itself and the PCIe bus.
However, following video pipeline parts that fully support the
AXI-Stream Video protocol do not need this synchronization
block.

C. Algorithms to update the pipeline
The processor handles the algorithmic part of the Automatic

White Balance, the Automatic Gain Control, and the Histogram
Equalization. These algorithms do not require parallelization but
demand complicated calculations. Therefore, the processor is
better suited for this task. Offloading these algorithms to the
processor increases the system’s flexibility and reduces the
resource usage in the programmable logic.

The functional units implemented in the processor use the
collected data of the Statistics block and then control other parts
of the pipeline accordingly. First, the Automatic White Balance
algorithm uses the RGB Convolution Filter to apply the adjusted
channel gains. Next, the Automatic Gain Control updates the
configuration registers of the camera via the Camera Control
block. Finally, the Histogram Equalization is applied via the
block of the same name.

IV. FDMA

A. What is FDMA
The Frame Based Direct Memory Access (FDMA) IP is

designed by the Institue of Embedded Systems (InES) to
autonomically transfer data between an FPGA and the GPU of a
host PC over a PCIe interface. The IP is designed to work
independently without any interaction with the host processor
after the system has been initialized. Another central
characteristic of the FDMA IP is the ability to handle the
incoming data as frames by including a signaling interface. A
frame in this context can but doesn't have to be an image of a
video stream. It can be any data. The term frame is used because
this DMA engine is designed for repetitive transfers of the same
size. The framed data is then sent using the AXI to PCIe Bridge
IP from Xilinx [2]. FDMA can handle multiple buffers in each
direction, which allows a double or tripple buffer design.

Figure 2 gives a graphical overview of the FDMA based co-
design concept. In the GPU memory, there are multiple RX and
TX buffers and a flag buffer. The flags are for controlling the
access to the RX and TX buffers and mark the data as valid. The
FDMA IP has an input and an output AXI stream interfaces to
connect to the data source or sink.

Figure 2, FDMA concept

Figure 1, Conceptional overview of the ISP

B. Configuration
The FDMA IP has a register bank accessible through an AXI

lite interface which is for simplicity not shown in Figure 2.
Through this register bank, the IP can be configured and started.
This register bank has to be available to the host for the setup
process.

C. FPGA to GPU transfer
After enabling the FDMA IP, it starts polling the GPU flag

for the first TX buffer. As soon the flags indicate that the TX
buffer is accessible for the FPGA it starts writing the data
through the AXI PCIe bridge and the PCIe bus directly into the
GPU RAM. After the transfer, the FDMA IP sets the current TX
buffer flag to indicate that the GPU can access this buffer and
the data is valid. The FDMA IP starts immediately polling the
flag for the next TX buffer and starts the next transfer if the
buffer is ready. The sequence diagramm displayed in Figure 4
depicts this mechanism.

Figure 4, Sequence diagram of an FPGA to GPU transfer

V. FINAL SETUP
The combination of the proposed ISP and FDMA allows to

create a camera capture card that handles all the required
preprocessing while minimizing the workload for the host PC.

Figure 3 shows the concept of a complete pipeline that was
developed to demonstrate the capabilities of the combined ISP
and FDMA. The developed capture card features 6 FPD-Link
and 2 Camera Serial Interface (CSI [3]) ports to connect
cameras. Cameras send video streams to the FPGA via CSI.

In this configuration, the captured video is streamed through
the FPGA fabric with a constant delay. The delay only varies if
the video sink is too slow and stalls the pipeline. In this case, the
video sink is not apropriately dimensioned for the desired
application and there is no way to uphold a realtime pipeline.

VI. REFERENCES

[1] Amba AXI4 interface protocol.
https://www.xilinx.com/products/intellectual-property/axi.html.
Accessed: 2022-05-20.

[2] DMA for PCI Express (PCIe) Subsystem.
https://www.xilinx.com/products/intellectual-property/pcie-
dma.html#overview. Accessed: 2022-05-20

[3] MIPI CSI interface. https://www.mipi.org/specifications/csi-2.
Accessed: 2022-05-20.

Figure 3, Complete glass to glass example design

