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A B S T R A C T

Airspace design is subject to a multitude of constraints, which are mainly driven by the concern to keep the
risk of mid-air collision below a target level of safety. For that purpose, Monte Carlo simulation methods can
be applied to estimate aircraft conflict probability but require the accurate generation of artificial trajectories.
Generative models allow to generate an infinite number of trajectories for air traffic procedures where only few
observations are available. The generated trajectories must not only resemble observed trajectories in terms
of statistical distributions but they should stay flyable and consider uncertainty due to weather, air traffic
control, aircraft performances, or human factors. This paper focuses on the generation problem, and its main
contribution lies in the adaptation of the Variational Autoencoder structure to the problem of 4-dimensional
aircraft trajectories modelling using Temporal Convolutional Networks and a prior distribution composed of
a Variational Mixture of Posteriors (VampPrior). The proposed model has been trained on trajectories in
the Terminal Manoeuvre Area of Zurich airport, which have a particularly high degree of variability as air
traffic controllers often take actions that deviate aircraft from the nominal approach procedure. The model has
demonstrated great abilities to take into account such amount of uncertainty. Regarding metrics that evaluate
the estimation of the statistical distribution of the observed trajectories, and the flyability of the generated
ones, the proposed method outperforms traditional statistical methods by being able to generate more complex
and realistic trajectories.
1. Introduction

Although the airspace over Switzerland is very busy because of its
entral location in Europe, it has been built up over many decades
hrough a series of ad-hoc and disparate modifications. This system of
odifications has reached its limits and is increasingly struggling to
ope with the current needs of air traffic. The Federal Office of Civil
viation set up in 2016 the AVISTRAT-CH program,1 which aims to
address the issue with a more modern design of the Swiss Airspace,
without compromising the safety level. Air traffic controllers have to
maintain specific horizontal and vertical separation distances between
aircraft. The violation of these minimum distances is called loss of
separation (LoS) and is considered safety critical. Consequently, it is
essential to have efficient collision risk models (CRM) to accurately
monitor the probability of LoS occurrences to ensure that they are

∗ Correspondence to: Technikumstrasse 71, 8400 Winterthur, Switzerland.
E-mail addresses: timothe.krauth@zhaw.ch (T. Krauth), adrien.lafage@ensta-paris.fr (A. Lafage), jerome.morio@onera.fr (J. Morio), xavier.olive@onera.fr

X. Olive), manuel.waltert@zhaw.ch (M. Waltert).
1 https://www.bazl.admin.ch/bazl/en/home/themen/luftfahrtpolitik/avistrat.html.

below the target level of safety, which specifies the socially accepted
level of safety.

The estimation of the probability of LoS events may be carried
out based on Monte Carlo methods. However, LoS occurrences are
extremely rare, and thus a large number of simulations of pairs of
trajectories must be conducted to observe only few of them. To be
consistent, the set of simulations must be conducted on a large set of
trajectories in order to be able to observe a sufficiently high number of
successes. But the number of observed trajectories for given conditions
is limited. For example, in order to collect 1 million landing trajectories
at Zurich airport, we would have to download about 10 years of
data. However, apart from the download and processing time, using
such old data to estimate the current probability of LoS events is not
relevant because air traffic procedures and aircraft types have changed.
Ideally, we would like to work on 1 million trajectories that have
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Abbreviations

ADS-B Automatic Dependent Surveillance
-Broadcast

AE Autoencoder
ASMA Arrival Sequencing and Metering Area
ATC Air Traffic Control
CNN Convolutional Neural Network
CRM Collision Risks Model
DGM Deep Generative Model
DTW Dynamic Time Wrapping
ELBO Evidence Lower BOund
FCN Fully Connected Network
FCVAE Fully Connected Variational Autoencoder
ft feet
GAN Generative Adversarial Network
GMM Gaussian Mixtures Models
KL-divergence Kullback–Leibler Divergence
kts knots
LoS Loss of separation
LSZH Identifier for Zurich airport
MFA Mean Field Assumption
nm nautical miles
PCA Principal Component Analysis
RNN Recurrent Neural Network
SSPD Symmetric Segment-Path Distance
STAR Standard Terminal Arrival Route
TCN Temporal Convolutional Network
TMA Terminal Maneuvering Area
TCVAE Temporal Convolutional Variational Au-

toencoder
VAE Variational Autoencoder
VampPrior Variational Mixture of Posteriors

been observed recently, under similar conditions. Generative models
allow generating an arbitrary large amount of trajectories based on
the most recent observations, or even procedures that are rarely used,
but potentially dangerous. Consequently, previous research such as
Eckstein (2010), Henry, Schmitz, Revenko, and Kelbaugh (2013) and
Jacquemart and Morio (2013) developed different analytic generators
of random aircraft trajectories to be used in conjunction with Monte
Carlo simulations. Nevertheless, the generation methods in the litera-
ture are often limited as they only generate simple or one-dimensional
trajectories, which confines the collision risk analysis to sub-problems.
For instance, Jacquemart and Morio (2013) generate trajectories to
estimate collisions between en-route trajectories with constant altitude
and heading. Henry et al. (2013) create 1-dimensional altitude profiles
for the study of airborne collisions between intersecting runways. The
objective of this paper is to produce a more general approach by
developing a generative process for synthetic 4-dimensional complex
trajectories for Terminal Maneuvering Area (TMA), i.e. the controlled
airspace surrounding a major airport where there is a high volume
of traffic. Traffic in TMA is particularly complex and diversified, as
air traffic controllers often take actions that deviate aircraft from the
nominal approach procedure. We have defined four requirements that
the proposed method must meet: (i) real and synthetic trajectories
should share the same statistical distribution, (ii) synthetic trajectories
should look realistic regarding the law of physics, (iii) the generation
should provide a wide diversity of trajectories, including some that
might never be observed from an operational point of view, (iv) the
user should be able to select the general shape of the generated random
2

synthetic trajectories. We hope to be able to orient the generation pro-
cess towards specific types of trajectories (e.g. the random generation
of approaches from the South with holding patterns).

To generate aircraft trajectories, the literature mentions both model-
driven and data-driven approaches. Model-driven methods are based
on flight mechanic equations and emphasize the physical reality of the
generated trajectories (requirement ii) (Delahaye, Puechmorel, Tsio-
tras, & Féron, 2014). However, introducing randomness into these
deterministic models is complicated, and it is difficult to capture the full
amount of variability present in complex flight patterns (requirements
i and iii). Data-driven models (Krauth, Morio, Olive, Figuet, & Mon-
stein, 2021) mimic the distribution of observed trajectories to produce
synthetic trajectories that are identically distributed (requirement i).
Therefore, they are very effective in capturing the high uncertainty
present in the trajectories (iii), but generation may lack physical realism
(requirement ii). In the context of Monte Carlo simulations, where syn-
thetic trajectories must render the uncertainty contained in observed
trajectories, generative data-driven models appear the most suitable.
They allow drawing an arbitrary large amount of random synthetic tra-
jectories, without having to specify initial conditions, flight parameters,
or atmospheric scenarios. To the best of the authors’ knowledge, pre-
vious research on data-driven trajectory generation focuses exclusively
on basic statistical density estimation methods (Murça & de Oliveira,
2020), and/or confines itself to rather simple case studies (Eckstein,
2010; Henry et al., 2013). Currently, existing generative data-driven
methods struggle to produce 4-dimensional synthetic trajectories (lat-
itude, longitude, altitude, time) for complex flight operations, such
as full approach procedures taking into account air traffic controller
actions. While Murça and de Oliveira (2020) address the issue with
a similar approach, they model approach trajectories focusing more
on their general shape than the specificity of each (shortcuts, loops,
additional heading changes, etc.). We take the idea further by better
taking into account trajectories that do not follow standard approach
procedures, which guarantees a greater diversity in the generated
trajectories.

The main contribution of this paper lies in the adaptation of the
Variational Autoencoder (VAE) by Kingma and Welling (2013) to the
modelling of multivariate time-series with high temporal dependencies.
Unlike model-driven approaches, the proposed data-driven method
estimate the distribution of the underlying data and then automatically
takes into account sources of uncertainty as it mimics the variability
observed in approaching trajectories (requirements i and iii). It can
generate random trajectories for different aircraft types, incoming from
all possible standard terminal arrival routes (STARs), and influenced
by controllers’ actions which deviate flights from the standard pro-
cedure. Additionally, this paper shows that the use of VAE improves
significantly the estimation of the distribution of aircraft trajectories
over classical multivariate density estimation methods such as Gaussian
Mixtures (requirement i). The generated trajectories are then statisti-
cally closer to the observed ones (requirement ii). Similar to Murça
and de Oliveira (2020) who generate random trajectories around what
the algorithm identifies as the main approach routes, our method
generates random trajectories around pseudo-inputs: artificially created
trajectories that cover the distribution of observed trajectories, which
allow selecting the form of trajectories to be generated (requirement
iv). Finally, once the VAE trained, the generation of new trajectories is
instantaneous. The implementation can be found on GitHub.2

The remainder of this paper is structured as follows: the literature
review in Section 2 highlights the main generation methods for aircraft
trajectories. Section 3 presents the case study in which the generation
method has been developed. Section 4 describes the VAE framework
and improvements that have been made to deal with multivariate time
series. The results of Section 5 are divided into three parts. Section 5.1
highlights how the proposed VAE architecture improves the learning

2 https://github.com/kruuZHAW/deep-traffic-generation-paper.
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efficiency for the problem of trajectory generation over classical VAE
architectures. Then, Section 5.2 analyses the quality of the generated
trajectories in the light of the goodness-of-fit with the underlying
distribution of observed trajectories, and the realistic nature of the
trajectories generated. It compares the proposed VAE architecture with
the data-driven generation method from Murça and de Oliveira (2020).
inally, Section 5.3 exposes the generation process of the proposed
ethod. To conclude, a conclusion and future works are given in
ection 6.

2. Literature review

The literature presents a wide variety of trajectory generation meth-
ods, the efficiency of which depends on the objective to be achieved.
The bulk of the literature focuses on model-driven methods that often
consist of generating one aircraft trajectory that follows the flight
dynamic equations, while optimizing a given criterion, usually fuel
consumption or flight time. It can also be constrained to avoid colli-
sions with static or moving obstacles (Delahaye et al., 2014; Koyuncu,
Uzun, & Inalhan, 2016). However, each generated trajectory requires
precise knowledge of a multitude of input parameters, such as aircraft
performance, or flight and environmental conditions, which makes
model-driven methods badly designed to capture uncertainty, and to
generate large random sets of diverse artificial trajectories, as stated by
Henry et al. (2013, p.4). In model-driven methods, randomness can be
achieved by including variability in the inputs and/or the outputs. But
as sources of uncertainty are often not observed, the randomness intro-
duced may be significantly different from that observed in reality. This
literature review first presents existing data-driven generation methods
for aircraft trajectories. Then, it highlights what are the current state-
of-the-art generation methods in Deep Learning called Deep Generative
Models (DGM). Eventually, tools to evaluate the generated trajectories
are introduced.

Model-driven methods are well suited to determine trajectories
under specific constraints but rather inefficient to take into account
uncertainty, whereas data-driven models are to be preferred. The latter
are based on the estimation of complicated statistical distributions to
mimic the information contained in the observed data. Jacquemart and
Morio (2013) deduce from real observations a stochastic process for
en-route aircraft trajectories to be used with advanced Monte Carlo
simulation schemes. The stochasticity represents the deviation from
the initial line due to wind, tracking, navigation or control. How-
ever, it can only be applied to simple 2-dimensional scenarios of LoS
probability estimations (Jacquemart & Morio, 2016) between straight
trajectories with constant altitude and speed. Murça and de Oliveira
(2020) cluster the approaching trajectories in São Paulo Airport to
identify the main trajectory patterns. Each of them is then modelled
with a component from a Gaussian Mixture distribution. Sampling
in one of those components generates artificial trajectories with a
shape matching the corresponding operational pattern. Dimensional-
ity reduction is also a tool designed to improve the estimation of
complex statistical distributions and reduce the impact of the curse
of dimension. For instance, Eckstein (2010) reduces the dimension of
observed ground speed profiles with a Principal Component Analysis
(PCA) and generates synthetic profiles by sampling new points in the
latent space, before serving as input to the inverse linear operation.
The same idea is presented in Henry et al. (2013) and applied to
collision risk modelling for converging runways. However, both articles
only allow to consider one particular dimension (altitude or ground
speed) of straight trajectories. Moreover, PCA is a useful tool to project
observed trajectories in a smaller space of representation, but there are
no mathematical guarantees that a newly sampled point in the latent
space will correspond to a relevant trajectory once decoded. Jarry,
Hassoumi, Delahaye, and Hurter (2020) extend the dimensionality
reduction approach by considering trajectories as continuous objects
and using functional PCA, whereas the projection in the latent space
 i
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allows to better identify pattern similarities. The authors show that
resorting to dimensionality reduction is a promising idea to deal with 4-
dimensional trajectories, but the method only allows to modify existing
patterns, and not to perform a proper generation, as PCA is not designed
to decode points from the latent space that do not correspond to ob-
served trajectories. Krauth et al. (2021) apply dimensionality reduction
for the sole purpose of improving the probability density estimate
of the observed trajectories. The trajectories are not represented by
their latitude and longitude anymore, but by their projection on fixed
perpendicular lines. The operator is deterministic, but only allows
to consider 2-dimensional paths with simple patterns. Lazzara et al.
(2022) and Zhang, Hu, and Du (2022) use autoencoders as a non-linear
projection operator to extract information from high-dimensional time-
series in order to facilitate their analysis. Jarry, Couellan, and Delahaye
(2019) go further into the complexity of the generation method by
using Generative Adversarial Networks (GAN), which are capable of
reconstructing an aircraft trajectory from a random vector of a smaller
dimension. However, the latent space here does not give any insights
into the organization of the observed trajectories, and the method was
only tested on very simple trajectory patterns.

Each method outlined above contains promising ideas in terms of
dimensionality reduction and probability density estimation. However,
most trajectory generation models use classical methods of estimation,
which do not seem sufficiently developed to handle distributions of
complex 4-dimensional trajectories, with patterns as complex as those
found in TMAs. Finding ways to improve the goodness-of-fit is a core
question, and more powerful density estimation models seem to be
required. Deep Generative Models (DGM) are neural networks that are
trained to approximate complicated and high-dimensional probability
distributions to describe the way the underlying data has been gen-
erated. They represent currently one of the most important field of
research in deep learning, and consequently benefit from active and
recent studies; whether it is for the generation of images, videos (Von-
drick, Pirsiavash, & Torralba, 2016) or even sensitive data such as
medical data (Lenz, Hess, & Binder, 2021). Different frameworks exist,
and Jarry et al. (2019) already explored the use of Generative Adversar-
ial Networks (GAN) (Goodfellow et al., 2014). In this paper, we focus
on Variational Autoencoders (VAE) (Kingma & Welling, 2013). VAE
are directly in line with the trajectory generation methods presented
previously. They perform dimensionality reduction thanks to their en-
coder/decoder architecture, but also provide a mathematically justified
framework for the generation. Moreover, compared to the GAN from
Jarry et al. (2019), VAE are more stable to train, and benefit from a
better explainability.

Evaluating the quality of the generated trajectories is of utmost
importance, but the criterion of evaluation may depend on the ob-
jective of the generation model. For instance, model-driven methods
are designed to generate trajectories that follow the flight dynamic
equations. It is therefore relevant to evaluate them on their ability to
follow the distribution of observed trajectories. It is the opposite for
data-driven methods, and it will be more suitable to evaluate them
on their ability to produce physically realistic trajectories. Olive, Sun,
Murca, and Krauth (2021) tackle the problem of the evaluation of
generated trajectories and propose suitable metrics for each type of
generation method. In particular, the authors have developed a method
for evaluating data-driven models, based on a trajectory simulator, here
BlueSky (Hoekstra & Ellerbroek, 2016).

3. Problem and data

In this paper, we focus on air traffic in the TMA of Zurich airport.
To guarantee optimal smooth operations throughout the year and in all
climatic conditions, while respecting the political and environmental
constraints of the surrounding areas, the airport employs three operat-
ing concepts.3 described in Fig. 1 The choice of the concept depends

3 https://www.flughafen-zuerich.ch/en/company/media-policy-and-
nvestors/politics-and-business/operating-concepts.
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Fig. 1. Operating concepts at Zurich Airport.
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mainly on the time of day. As such, the North Operating Concept is
applied most, as it is usually active during the day. In this operating
concept, aircraft land on runway 14. Landing trajectories are signifi-
cantly more complex than take-off trajectories, as they can approach
from all directions, and air traffic controllers heavily influence traffic
to achieve an appropriate landing sequence. Consequently, approaching
trajectories might contain complex procedures that cannot be observed
in other situations, such as holding patterns, i.e. racetrack shapes for
stacking aircraft, or a significant number of heading changes in a short
time (see Fig. 2). Approach procedures in Zurich Airport are very
representative of the pool of scenarios observable at most of the world’s
major airports, with operational constraints due to the surrounding ter-
rain, noise abatement, or emission mitigation. The efficiency of a given
algorithm to generate synthetic trajectories based on data observed at
Zurich airport is then expected to be representative of its performance
on other airport data. Moreover, it is also expected to give satisfying
results for simpler patterns, such as en-route trajectories or departures.

A total of 14,000 landing trajectories on runway 14 in Zurich
Airport (LSZH) were collected through Automatic Dependent
Surveillance-Broadcast (ADS-B) data from the OpenSky Network
(Schäfer, Strohmeier, Lenders, Martinovic, & Wilhelm, 2014) between
1 October and 30 November 2019. They are directly available in
the traffic library (Olive, 2019) in Python. Trajectories are trimmed
within 40 nautical miles from Zurich airport (Arrival Sequencing and
Metering Area, ASMA) and end 1.5 nm after the Final Approach Point
of runway 14. Each trajectory is then modified in such a way that they
contain exactly 200 data points by using linear interpolation in order
to have a representation of trajectories which is smooth enough. In
this way, trajectories have a consistent representation and data points
are close enough to prevent high gradients from one point to another.
Approaches leading to go-arounds were excluded because very few
were actually observed. The generation of go-arounds would require
to build a dedicated dataset on several years of observation. This was
done previously in Krauth et al. (2021). The sample used for the study
is represented on Fig. 2. For each point of the trajectory, values for the
track (angle), the ground speed, the altitude, and the cumulative time
from the entry point are kept. We have selected track instead of latitude
and longitude because it produces smoother trajectories. The model
does not have to learn complicated correlations between the latitude
and the longitude. As trajectories are processed in order to end at the
same point, it is possible to retrieve the latitude and longitude for each
timestamp thanks to the track and the ground speed. As a result, one
trajectory is described by a matrix in R4×200.

4. Methodology

Generative modelling involves the estimation of the joint distri-
bution over all the variables to mimic the generation process of ob-
served data. For aircraft trajectories described by (track𝑖, groundspeed𝑖,
altitude𝑖, time𝑖) for 𝑖 in [0,… 𝑛] with 𝑛 = 200 observations, the model

has to estimate a distribution in dimension 800, which cannot be t

4

Fig. 2. Historical landing trajectories downloaded with OpenSky Network between 1st
October and 30 November at Zurich Airport for runway 14.

done with classical statistical methods such as marginal-copula decom-
position, as applied in Krauth et al. (2021). When it comes to the
estimation of complex multivariate probability densities, resorting to
dimensionality reduction is often a good practice, as a high number
of features often leads to weaker goodness of fit due to the Curse
of Dimensionality. However, dimensionality reduction techniques such
as PCA (Eckstein, 2010; Henry et al., 2013) or Autoencoders (Olive,
asora, Viry, & Alligier, 2020) are used to represent observed data,
ut do not offer the guarantee that a randomly drawn point in the
atent space distribution will be meaningful when decoded. The latent
pace should be endowed with the required properties for generation,
amely continuity and completeness. The former means that two close
oints in the latent space should look alike once decoded, whereas the
atter states that a point sampled within the latent space distribution
hould be meaningful once decoded. Variational Autoencoders (VAE)
re directly based on these concepts, and have the advantage of: (i)
eing capable of estimating multivariate distributions that are far more
omplex than traditional statistical methods, (ii) being fairly stable to
rain compared to generative adversarial networks, and (iii) giving the
xplicit generative distribution in the latent space and thus enabling the
etup of Monte Carlo simulations. Overall, VAEs can be summarized by
wo main principles. First, they encode data into a smaller dimensional
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latent space, and second, they regularize the distribution in this latent
space to ensure new samples can be generated.

4.1. Variational autoencoder framework

VAE was first introduced by Kingma and Welling (2013) and exten-
sively explained in Kingma and Welling (2019). As the name suggests,
it has been built upon the framework of Bayesian Variational Inference,
which uses a set of unobserved latent variables 𝑧 to facilitate the
estimation of the distribution of the initial data 𝑝∗(𝑥). We will use 𝜃
as a notation for the parameters of the models (such as neural network
weights). 𝑝𝜃 is then the model parametrized by 𝜃 to estimate the real
distribution 𝑝∗.

𝑝𝜃(𝑥) = ∫ 𝑝𝜃(𝑥, 𝑧) 𝑑𝑧 (1)

The marginalization over an unknown set of variables makes the
computation of the integral intractable (the search space of 𝑧 can be
combinatorially large for instance). Nevertheless, the Bayes theorem
yields to:

𝑝𝜃(𝑧 ∣ 𝑥) =
𝑝𝜃(𝑥, 𝑧)
𝑝𝜃(𝑥)

=
𝑝(𝑧)𝑝𝜃(𝑥 ∣ 𝑧)
∫ 𝑝𝜃(𝑥, 𝑧) 𝑑𝑧

(2)

Indeed, 𝑝𝜃(𝑥, 𝑧) is efficient to compute. Therefore, being able to infer
𝑝𝜃(𝑧 ∣ 𝑥) enables the computation of 𝑝𝜃(𝑥). Variational Inference is the
statistical method that estimates 𝑝𝜃(𝑧 ∣ 𝑥) by using an approximate
𝑞𝜙(𝑧 ∣ 𝑥) selected within a chosen family of distributions. The density
𝑞𝜙(𝑧 ∣ 𝑥) is called the variational posterior distribution, 𝑝𝜃(𝑧 ∣ 𝑥) the
true posterior, and 𝑝(𝑧) the prior. As the Gaussian distribution family
are often considered in VAEs, the density of a Gaussian distribution
 (𝜇𝑥, 𝛤𝑥) of mean 𝜇𝑥 and covariance matrix 𝛤𝑥 is denoted 𝑓 (⋅ ∣ 𝜇𝑥, 𝛤𝑥)
in the following. VAEs leverage the use of a Gaussian variational
posterior distribution to find a good estimate of 𝑝𝜃(𝑥) through three
components:

• the probabilistic encoder (or inference network) performs dimension-
ality reduction by mapping an input trajectory 𝑥 into parameters
for the posterior distribution in smaller dimension 𝑀 . Most of
the time, a Gaussian distribution  (𝜇𝑥, 𝛤𝑥) is considered for
the posterior distribution. Thus, (𝜇𝑥, 𝛤𝑥) = 𝐸𝜙(𝑥), where 𝐸𝜙 is
the encoder neural network, and 𝑞𝜙(𝑧|𝑥) = 𝑓 (𝑧 ∣ 𝜇𝑥, 𝛤𝑥). One
has to be aware that each input data 𝑥 is associated with a
Gaussian distribution with a different set of parameters (𝜇𝑥, 𝛤𝑥).
Variational Inference frameworks often rely on the Mean Field
Assumption (MFA) that states that the posterior distribution can
be factorized. Even it is not mandatory, it accelerates training by
reducing the estimation of the covariance matrix of the posterior
to its diagonal. It also makes the dimensions of the latent space
independent, which enables the detection of the most important
dimensions in the latent representation (Asperti & Trentin, 2020).

• the latent space represents the space in smaller dimension in
which inputs are projected, and is distributed according to the
aggregated approximate posterior distribution:

1
Card(X)

∑

𝑥∈X
𝑞𝜙(𝑧 ∣ 𝑥), (3)

where X is the training dataset and Card(X) its cardinality. The
training loss of the VAE encourages all approximate posteriors
𝑞𝜙(𝑧 ∣ 𝑥) to be close to the prior 𝑝(𝑧). In a perfect world, the
approximate posterior 𝑞𝜙(𝑧 ∣ 𝑥) matches both the real posterior
𝑝(𝑧 ∣ 𝑥) and the prior 𝑝(𝑧). In this case, the Bayes’ rule states
that 𝑝𝜃(𝑥) = 𝑝𝜃(𝑥 ∣ 𝑧), which is exactly what is expected from
a generative model, namely being able to deduce exactly the
unknown distribution of 𝑥 from the one of 𝑧. Sampling a point
from the aggregated posterior leads to the reconstruction of an
existing trajectory. Alternatively, sampling a point from the prior
leads to generating a new trajectory. The larger the dimension 𝑀
5

of the latent space is, the less information is lost during encoding,
but also, the more difficult it is to match the aggregated posterior
and the prior.

• the probabilistic decoder (or generative network) maps one point
sampled from 𝑓 (𝑧 ∣ 𝜇𝑥, 𝛤𝑥) for a given 𝑥 into parameters for the
likelihood 𝑝𝜃(𝑥 ∣ 𝑧). The type of likelihood depends on the type
of the initial data. For binary input data, a Bernoulli distribution
is often used. For continuous data, the likelihood is a Gaussian
distribution with a spherical covariance: 𝐷𝜃(𝑧) = (𝜇𝑧, 𝑐𝐼), where
𝐷𝜃 is a neural network, and 𝑝𝜃(𝑥 ∣ 𝑧) = 𝑓 (𝑥 ∣ 𝜇𝑧, 𝑐𝐼), with 𝐼
the identity matrix. The scalar 𝑐 can be tuned to balance the
VAE reconstruction and generation abilities according to Dai and
Wipf (2019). If the decoder is well-trained, a point sampled from
𝑝𝜃(𝑥 ∣ 𝑧) should look like the input that constructed the posterior
which 𝑧 has been drawn. To allow for the back-propagation of
the gradient despite the random draw of 𝑧 ∼  (𝜇𝑥, 𝛤𝑥), the
reparametrization trick is used. A [id = r1]random vector 𝜁 is
sampled from a standard Gaussian 𝜁 ∼  (0, 𝐼), and 𝑧 is formed
with 𝑧 = 𝜇𝑥 + 𝛤 1∕2

𝑥 × 𝜁 using the Cholesky decomposition. As a
result, the use of a Gaussian posterior distribution is mandatory.
The full architecture of the VAE is summarized on Fig. 3.

The VAE objective: Evidence lower bound (ELBO). The VAE framework
relies on the Variational Inference, which seeks to find the best ap-
proximate 𝑞𝜙(𝑧 ∣ 𝑥) of 𝑝𝜃(𝑧 ∣ 𝑥). In other words, the VAE aims to
minimize the Kullback–Leibler divergence 𝐷𝐾𝐿

[

𝑞𝜙(𝑧 ∣ 𝑥) ∥ 𝑝𝜃(𝑧 ∣ 𝑥)
]

=
E𝑧∼𝑞𝜙

[

log 𝑞𝜙(𝑧∣𝑥)
𝑝𝜃 (𝑧∣𝑥)

]

. One can show that this equality implies a lower

ound on the desired log-likelihood log 𝑝𝜃(𝑥):

log 𝑝𝜃(𝑥) ≥ E𝑧∼𝑞𝜙

[

log 𝑝𝜃(𝑥 ∣ 𝑧)
]

−𝐷𝐾𝐿
[

𝑞𝜙(𝑧 ∣ 𝑥) ∥ 𝑝(𝑧)
]

= 𝐸𝐿𝐵𝑂 (4)

Optimizing ELBO takes into account two phenomena:

• maximizing the decoder log-likelihood E𝑧∼𝑞𝜙

[

log 𝑝𝜃(𝑥 ∣ 𝑧)
]

over the
observed data 𝑥, which ensures a reliable reconstruction.

• minimizing the divergence between the latent distributions and the
prior 𝐷𝐾𝐿

[

𝑞𝜙(𝑧 ∣ 𝑥) ∥ 𝑝(𝑧)
]

to be sure that the latent space dis-
tribution given by the encoder is as close as possible to the
prior.

4.2. Model improvements

As it will be exposed in Section 5.2, the sole use of a VAE architec-
ture is not sufficient to provide an efficient estimation method for the
distribution of observed aircraft trajectories. Each structural component
of the VAE has to be adapted to the generation of multivariate time-
series with strong correlations from one data point to another. First,
we present how information embedding through the dimensionality
reduction has been improved with Temporal Convolutional Networks,
and then how to adapt the generation process to these modifications
with a Variational Mixture of posteriors.

4.2.1. Temporal convolutional networks
In the VAE architecture, dimensionality reduction is carried out

thanks to the encoder and the decoder. The challenge is to find the
best encoder/decoder functions that both reduce the dimension while
keeping the loss of information minimal; i.e, being able to accurately
reconstruct a sample from its embedding. In the context of aircraft
trajectories, it is essential to be able to take into account the time
dependency. Sequence modelling refers to the analysis of time series
in Deep Learning. Suppose 𝑋 = (𝑥0, 𝑥1,… , 𝑥𝑡,… , 𝑥𝑇 ) ∈ R𝑑𝑥×𝑇 a
𝑑𝑥-dimensional time-dependent input sequence of length 𝑇 , such as
the 3-dimensional position of an aircraft. Sequence modelling aims
to capture the temporal dependencies within data in order to predict
features 𝑌 = (𝑦0, 𝑦1,… , 𝑦𝑡,… , 𝑦𝑇 ) ∈ R𝑑𝑦×𝑇 , where 𝑦𝑡 only depends
on previous observations 𝑥 ,… , 𝑥 . The vector 𝑦 is here the latent
0 𝑡 𝑡
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Fig. 3. Basic architecture of a Variational Autoencoder.
4

a
e
t
i
N
t

d
a
p
w
p
a
J
b
a
t
t
m
p
b
c
s
a
i
t
i
i
f

epresentation features that embody the temporal component of the
equence. While the Recurrent Neural Network (RNN) architecture is
pplied for sequence modelling in most cases (Goodfellow, Bengio, &
ourville, 2016; Lazzara et al., 2022), Bai, Kolter, and Koltun (2018)
uggest that CNN should also be considered a legitimate option due to
any reasons: they are less complicated, less exposed to exploding or
anishing gradients, allow for parallel computation of outputs (unlike
NN), and can achieve cutting-edge performance. The authors exhibit a
amily of architectures called Temporal Convolutional Networks (TCN)
hat adapt general CNN for sequence modelling tasks.
TCNs are based on two fundamental principles: 𝑋 and 𝑌 should

ave the same lengths 𝑇 (but not necessarily the same number of
hannels 𝑑𝑥 and 𝑑𝑦), and no information from the future can be used to
redict the past. These principles are achieved through the use of causal
onvolutional layers with an adapted zero-padding. A convolutional
ayer is said to be causal if the output element of index 𝑡 is convolved
nly from input elements of time 𝑡 and earlier, as illustrated in Fig. 4(a).
The receptive field 𝑟 of a causal convolutional layer describes both

he memory of the layer and how far an output is affected by the
ast, and generally a full history coverage is desirable. Therefore, the
utput 𝑡 should depend on all previous inputs 0,… , 𝑡. Dilatation is then
equired to achieve a long effective history while keeping a reasonable
mount of layers. The basic block architecture of the TCN displayed in
ig. 4(b) consists of stacking several causal convolutional layers with an
ncreasing dilatation factor until the full history coverage is obtained.
ventually, Bai et al. (2018) combine the TCN block with the residual
rchitecture developed by He, Zhang, Ren, and Sun (2016) to reduce
he risk of exploding and vanishing gradients. This way, residual block
utputs 𝑜 = activation(𝑓 (𝑥) + 𝑥) instead of 𝑜 = activation(𝑓 (𝑥)), where
is the neural network. To be able to compare 𝑥 and 𝑓 (𝑥) which have
he same lengths, but not necessarily the same number of channels, an
ptional 1 × 1 convolution is added to the TCN block to ensure the final
lement-wise addition receives terms of the same shape. The usage of
residual architecture does not change the approach conceptually, but
hows significant performance gains for deep networks. The final TCN
esidual block is given by Fig. 4(c). Subsequently, the proposed VAE
ncoder and decoder are built with a superposition of TCN residual
locks.
TCN are a simple and efficient alternative to RNN to capture the

emporal dependencies of timeseries. As shown in Section 5.1, TCN re-
uce by far the loss of information during dimensionality reduction and
llow for a finer representation of trajectories in the latent space and
better reconstruction. However, the aggregated posterior distribution
n the latent space becomes significantly more complex. It is therefore
mperative to choose an adequate prior distribution in order to keep

he generation abilities for new samples acceptable.

6

.2.2. Variational mixtures of posteriors
It is common practice to use a standard Gaussian of dimension 𝑀

s the prior distribution of the VAE as it makes the calculation of ELBO
asier. However, such a simplistic prior might not be sufficient for
he generation of satisfying results, since complexity was introduced
n the latent space by using TCN encoders instead of Fully Connected
etworks (FCN). Moreover, according to Hoffman and Johnson (2016),
he training process is ruled by the following trade-off:

• the reconstruction term of ELBO forces the VAE to behave like
a regular autoencoder (AE) by over-fitting points in the latent
space. The variational posterior distributions 𝑞𝜙(𝑧 ∣ 𝑥) tend to
have well-separated means and small variances to avoid overlaps
from one distribution to another. Thus, it is easier for the decoder
to reconstruct inputs.

• the regularization term of ELBO encourages overlaps between vari-
ational posteriors 𝑞𝜙(𝑧 ∣ 𝑥) by forcing them to approach the
standard Gaussian prior. A regularization which is too weak forces
the VAE to tend towards a simple AE, where all distributions
of the latent space are practically point-like. Therefore, the gen-
eration with a continuous distribution is no longer relevant. In
contrast, a regularization which is too strong collapses all the
distributions to the same standard Gaussian prior, and thus no
distinction can be made between trajectories in the latent space.

Consequently, the VAE must construct a latent space that is both
iverse enough in the organization to allow for good reconstruction
nd also simple enough to be well covered by the prior. A Gaussian
rior is not sophisticated enough to draw points in a latent space
ith a complex shape induced by the TCN encoder. The generated
oints are too far away from real embedded data, which leads to
rather poor generation behaviour. As suggested in Hoffman and
ohnson (2016, p. 4), multimodal priors could ‘‘meet halfway’’ to satisfy
oth objectives of the trade-off. Subsequently, latent space can have
complex organization for reconstruction, while guaranteeing that

he prior can still generate points in the right areas. It appears then
hat building a multimodal prior based on outputs from the encoder
ight allow for better coverage of the latent space while ensuring that
oints sampled within the prior are decodable. This idea is developed
y Tomczak and Welling (2018) who present a new type of prior,
alled the Variational Mixture of Posteriors (VampPrior). It consists of
etting the prior distribution as a Gaussian Mixture whose components
re given by posterior distributions conditioned on learnable pseudo-
nputs. In other words, an additional fully connected network learns
he best inputs 𝑥𝑝𝑠𝑒𝑢𝑑𝑜𝑖 for 𝑖 = 1…𝐾, where 𝐾 is the number of pseudo-
nputs to feed the encoder. Their corresponding posterior distributions
n the latent space 𝑞𝜙(𝑧 ∣ 𝑥𝑝𝑠𝑒𝑢𝑑𝑜𝑖 ), 𝑖 = 1…𝐾, are used as components
or the prior. 𝐾 should be chosen so that it is large enough compared
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Fig. 4. Architectural elements of a TCN. (a) represents a 1-dimensional convolutional layer with a kernel size of 3. (b) represents 4 1-dimensional convolutional layers with a
kernel size of 3 and a dilatation factor of 2, called a TCN block. (c) represents the full structure of a TCN residual block, which is the base architectural element of a TCN.
to the size of the training dataset to cover the latent space efficiently,
but also reasonably small to avoid a long learning time. Then, the prior
probability distribution function is:

𝑝(𝑧) = 1
𝐾

𝐾
∑

𝑖=1
𝑞𝜙(𝑧 ∣ 𝑥𝑝𝑠𝑒𝑢𝑑𝑜𝑖 ) = 1

𝐾

𝐾
∑

𝑖=1
𝑓 (𝑧 ∣ 𝜇𝑉 𝑃 , 𝑖, 𝜎

2
𝑉 𝑃 , 𝑖) (5)

where 𝜇𝑉 𝑃 , 𝑖, 𝜎2𝑉 𝑃 , 𝑖 are the parameters of the 𝑖th Gaussian component
in VampPrior. The prior distribution is no longer specified before but
learned during the training of the VAE through the pseudo-inputs
generator, which is updated in such a way that the encoder will output
the best component parameters to minimize the regularization term in
ELBO.

4.3. VampPrior temporal convolutional variational autoencoder for trajec-
tory generation

The detailed architecture of the proposed temporal convolutional
variational autoencoder (TCVAE) is shown in Fig. 5, and can be found
on GitHub.4 The latent space dimension 𝑀 , which is the size of each
vector 𝜇𝑝𝑜𝑠𝑡, 𝑖, 𝜎𝑝𝑜𝑠𝑡, 𝑖 (corresponding to one posterior) and 𝜇𝑉 𝑃 , 𝑖, 𝜎𝑉 𝑃 , 𝑖
(corresponding to one VampPrior component) has been set to 𝑀 = 64.
The number of pseudo-inputs is set to 𝐾 = 1000. Despite 𝑀 and 𝐾

4 https://github.com/kruuZHAW/deep-traffic-generation-paper.
7

are hand-tuned parameters, those values might work for most airport
configurations as approach procedures at Zurich airport are rather
complex. If the training trajectories have simpler shapes, one might
want to reduce training time by setting a lower value of 𝑀 as a latent
space of smaller dimension could be sufficient. 𝐾 corresponds more
to the number of different procedures. For airports with less diverse
trajectories, one might want to set a lower value for 𝐾. The model has
been trained on 1000 epochs, using an Adam optimizer with a learning
rate of 0.001 that is being halved every 200 epochs. The batch size
has been set to 500. Data are normalized with a MinMax scaler to get
values between −1 and 1. The training on a computer without GPU
takes about 14 h. However, once the model is trained, the generation
is instantaneous.

In addition to improving VAE learning, VampPrior also allows
controlling the type of samples to be generated. Once decoded, the
pseudo-inputs represent synthetic trajectories whose shape is represen-
tative of the region in which they are located in the latent space. Thus,
by drawing new points around a particular pseudo-input, we obtain
resembling trajectories:

• the mean, 𝜇𝑉 𝑃 , 𝑖, defines the region of the latent space in which
the selected 𝑖th VampPrior component simulates points. Once
decoded, the mean represents a synthetic trajectory having the
shape of observed trajectories located in the same area of the

latent space.

https://github.com/kruuZHAW/deep-traffic-generation-paper
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• the variance, 𝜎2𝑉 𝑃 , 𝑖 (which is also diagonal here), defines how far
from 𝜇𝑉 𝑃 𝑖 the associated Gaussian component draws points. A
small variance leads to the simulation of points close to the mean
in the latent space, and their associated decoded trajectories will
be very similar to the decoding of 𝜇𝑉 𝑃 𝑖. Alternatively, a bigger
variance leads to a greater diversity of the synthetic trajectories
around the mean, sometimes at the cost of degradation in the
realism of the generated synthetic trajectories.

Therefore, the generation process of synthetic trajectories is done
n three steps: (i) the identification of the region of the latent space
here the trajectories have the characteristics we want to generate,
ii) the search in the selected region for a pseudo-input, (iii) the
andom draw of latent points in the corresponding component of Vamp-
rior, 

(

𝜇𝑉 𝑃 , 𝑖, 𝜎2𝑉 𝑃 , 𝑖

)

. Once decoded, they provide random synthetic
rajectories around the selected pseudo-input.

. Results and discussion

.1. VAE architecture improvements

This section highlights how the architecture modifications of the
AE have improved its learning phase for trajectory modelling task.
irst, results show that the TCVAE presents improved reconstruction
bilities compared to a FCVAE (Fully Connected Variational Autoen-
oder). Although not the main focus of the study, reconstruction is
n important component to consider. The reconstruction gives insight
bout how well the information is encoded from the initial trajectory
o its latent space representation. If the reconstruction is poor, the VAE
s not able to capture the characteristics of aircraft trajectories because
oo much information is lost during the reduction of dimension. We also
nalyse the organizational differences in the respective latent spaces.
hen, the examination of ELBO show the significant improvements
rovided by VampPrior TCVAE over basic VAE architectures.

.1.1. Contribution of temporal convolutional networks
It is important to note that FCVAE and TCVAE are difficult to

ompare. As such, the two architectures are comparable neither in
heir number of parameters nor in their learning time. The comparison
resented hereafter is based on getting the best possible optimization
f ELBO in a reasonable learning time. The encoder of the FCVAE is
omposed of an FCN of three layers (218, 128, 64) and the TCVAE

ncoder has 4 residual blocks with 64 output channels each, which b

8

nsures that full history coverage is met. Both have a latent space
imension of 64, trained on 1000 epochs, and their decoders have
he same architectures as the encoders but are reversed. It is obvious
hat TCVAE has a much better reconstruction performance, and can
andle not only simple straight trajectories but also more complex ones
han FCVAE, as illustrated with an example in Fig. 6 (which will be
confirmed by the analysis of ELBO in Section 5.1.2).

The reconstruction abilities differences between TCVAE and FCVAE
are also highlighted in Figs. 7 and 8. They represent the latent space
lustering associated with the corresponding reconstructed trajectories
or FCVAE and TCVAE respectively. It is obvious that FCVAE in Fig. 7
trongly struggles to reconstruct accurately the observed flows of tra-
ectories compared to the TCVAE 8. Moreover, TCVAE seems to take
nto account more refined characteristics of trajectories whereas FCVAE
roups trajectories mostly on direction of arrival. For instance, purple
oints for TCVAE in Fig. 8 represent direct approaches from the east,
whereas green ones correspond to complex approaches from the same
direction. Moreover, the TCVAE latent space contains more clusters
than the one of FCVAE. It suggests that the projection axes provided
by the TCVAE are much more efficient to render non-obvious intrinsic
characteristics of trajectories, and contain way more information to
enable an accurate reconstruction.

5.1.2. Learning improvements of VampPrior TCVAE compared to basic VAE
architectures

Table 1 compares the training loss ELBO defined in Eq. (4) for dif-
erent VAE architectures. To this end, the resulting reconstruction term
which should be maximized) and the KL-divergence (which should
e minimized) are listed in the table. FCVAE is much less efficient
han TCVAE in terms of reconstruction, but shows a good match be-
ween the aggregated posterior and the Gaussian prior. This is because
CNs might not be able to render the complicated characteristics of
rajectories in their latent representations. Thus, the organization of
he latent space is more elementary, and a simple Gaussian prior distri-
ution is sufficient to have good coverage of the aggregated posterior
istribution. However, the loss of information during dimensionality
eduction is significant, and trajectories cannot be reconstructed prop-
rly. TCVAE significantly improves the reconstruction ability, but also
rovides a more complex latent space organization. Consequently, a
imple Gaussian prior is unable to cover the latent space properly
nymore, and points generated with the prior are not located in the
ame areas as points from the aggregated posterior. Thus, they cannot

e handled by the decoder. This results in the generation of syn-
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Fig. 6. Reconstruction of FCVAE and TCVAE for a complex trajectory with a holding pattern.
Fig. 7. Gaussian clustering made in the PCA projection of latent space of observed trajectories for the FCVAE.
Fig. 8. Gaussian clustering made in the PCA projection of the latent space of observed trajectories for the TCVAE.
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hetic trajectories which are not realistic. Using VampPrior overcomes
his difficulty; it keeps the reconstruction power of the TCVAE while
mproving the match between the latent space distribution and the
rior. Consequently, points generated in the latent space are closer to
he aggregated posterior and can be decoded efficiently through the
ecoder to give realistic trajectories.
 V

9

Table 1 clearly states that the use of a basic VAE architecture is not
ufficient to solve this generation problem. Moreover, only improving
he reconstruction ability with TCN encoder and decoder tends to
ignificantly impair VAE learning by increasing the KL-divergence. To
ounter this phenomenon, a more complex prior distribution such as
ampPrior must be used.
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Table 1
ELBO metrics comparison for VAE architectures after 1000 epochs.
VAE architecture Reconstruction term KL-divergence ELBO

Fully Connected encoder, Gaussian Prior 963 32 931
Temporal Convolutional encoder, Gaussian Prior 2413 217 2196
Temporal Convolutional encoder, VampPrior 2438 169 2269
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Table 2
e-distance between observed and synthetic trajectories.
Estimation method E-distance

Gaussian Mixture 24 components 0.0590
Fully connected encoder, Gaussian prior, VAE 0.9265
Temporal convolutional encoder, VampPrior VAE 0.0103

5.2. Evaluation of the generated trajectory quality

In Section 5.1, we demonstrated that the proposed VampPrior
TCVAE architecture significantly improves the learning performances
compared to a basic FCVAE architecture for the modelling of 4-
dimensional aircraft trajectories. We now analyse the quality of the
generated trajectories. The VampPrior TCVAE is compared with other
generative models, such as Gaussian Mixtures mentioned in Murça
nd de Oliveira (2020), on its ability to estimate the distribution of
bserved trajectories and to produce realistic synthetic trajectories.
e propose here to analyse the quality of the generated synthetic
rajectories regarding the two following criteria: the preservation of
he statistical properties of the observed trajectory dataset and the
lyability of the generated trajectories. For this purpose, we compute
he following metric for all trajectories, considering both criteria and
ll four trajectory generation methods.
Table 2 summarizes the e-distance between observed and synthetic

rajectory flows. Introduced in Székely, Rizzo, et al. (2004), the e-
istance provides a measure of the distance between the respective
istributions of two sets of random vectors. It tends towards a positive
onstant if the two samples are identically distributed, and tends to
nfinity otherwise. Therefore, e-distance can be used here to determine
which generation method produces the synthetic trajectories whose
distribution is closest to the observed one. It has been applied to two
sets of observed and synthetic trajectories. These sets each consist
of 3000 trajectories that are described with vectors of 800 features.
The results have been averaged over 100 retrials for each generation
method.

The Gaussian mixture model (GMM) presented in Murça and de Oli-
veira (2020) represents the baseline against which VAEs are compared.
The poor results shown by FCVAE are the direct consequences of the
shortcomings outlined in the analysis of Table 1. Despite a good match
between the aggregated posterior and the prior, it does not have the
necessary reconstruction power to produce realistic trajectories, and
thus to estimate accurately the target distribution. The use of a VAE
is only of significant interest if it has been specifically adapted for
the trajectory generation problem. VampPrior TCVAE overcomes this
difficulty, while guaranteeing satisfying generation performances. First,
its architecture can reconstruct trajectories very well, but its prior is
also complex enough to guarantee that synthetic points in the latent
space are similar to true points. Moreover, the VAE is based on a
significantly larger number of parameters to describe the distribution
to be estimated. Thus, it provides a much more complex and refined
parametric model than the one given by GMM. As a result, VampPrior
VAE is by far the most accurate method presented here to estimate
the statistical distribution of observed trajectories, by improving by
a factor of 6 the results obtained for the GMM. VAE constitutes real
improvements for the generation of multivariate trajectories only when
all model assumptions have been reviewed and adapted to the problems
encountered.

We have shown that the VampPrior TCVAE is the method that

produces synthetic trajectories whose statistical distribution is closest to

10
the observed trajectories. Even though the goodness-of-fit is satisfying,
we also have to ensure that the generated synthetic trajectories can
be flown by an actual aircraft. In this context, Olive et al. (2021)
present a framework to assess the quality of synthetic trajectories by
replaying them in a simulator, which takes flight mechanics equations
into account. We replayed our generated trajectories in the open-source
air traffic simulator BlueSky (Hoekstra & Ellerbroek, 2016). A given
synthetic trajectory is considered physically realistic if the distance
between a trajectory and its replayed counterpart is small. We com-
pute nine trajectory distances implemented in the traj-dist Python
ibrary.5 Fig. 9 shows the cumulative distribution of the Dynamic
Time Wrapping (DTW) (Besse, Guillouet, Loubes, & François, 2015)
and the Symmetric Segment-Path Distance (SSPD) (Berndt & Clifford,
1994) between synthetic trajectories, and their simulator-generated
version. More precisely, trajectories were divided into segments in
which the aircraft are aligned with existing navigational beacons as
well as flying at a constant speed and altitude. Then, BlueSky generates
the corresponding ATC instructions to recompute each trajectory. This
metric heavily relies on the assumption that BlueSky is efficient enough
to exactly recompute observed trajectories. That is not necessarily
the case, as Bluesky is not able to handle runway alignment or self-
intersecting trajectories. To compensate for this deficiency, a reference
metric is also calculated on observed samples. A generation method is
then considered realistic if its scores are close to those obtained on the
reference.

Fig. 9 illustrates that the VampPrior TCVAE is the generation
method that produces the most realistic trajectories, whereas the basic
FCVAE leads to the weakest results. This is consistent with the obser-
vations made on the e-distance. Indeed, the method that produces the
most statistically distant trajectories produces also the least realistic
ones. Moreover, as simulated trajectories have been recomputed based
on ATC instructions, Fig. 9 also shows that the VampPrior TCVAE
generates the most relevant trajectories from an operating point-of-
view. The GMM gives results slightly better than the FCVAE, but
significantly weaker than the TCVAE. In their analysis, Murça and
de Oliveira (2020) the generated trajectories were evaluated by experts
(ATC, pilots, etc.), and most of them could not tell the difference
between a true trajectory and a synthetic one. Mathematically speaking,
our VampPrior TCVAE produces trajectories that are even closer to
reality.

5.3. Air traffic modelling with VampPrior TCVAE

5.3.1. VampPrior within the latent space of the VampPrior TCVAE
Section 5.2 shows that the VampPrior TCVAE outperforms other

ensity estimation methods in terms of goodness-of-fit and quality of
he generated samples. Subsequently, this section provides an analysis
f how trajectories are encoded in the VampPrior TCVAE latent space.
ig. 8 depicts that clustering of the latent space organization is possible
o group trajectories by upcoming directions and shape. Thus, one can
elect the type of trajectories to generate by focusing on a specific
luster in the latent space. For instance, a point sampled in the green
egion of Fig. 8 will correspond to a synthetic trajectory approaching
unway 14 of Zurich Airport from the west with a non-direct approach,
hereas the purple region describes trajectories coming from the west
ith a rather straight-in approach.

5 https://github.com/bguillouet/traj-dist.

https://github.com/bguillouet/traj-dist
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Fig. 9. Cumulative distribution for DTW and SSPD between synthetic trajectories and their simulated versions in Bluesky.
To ensure a realistic generation behaviour, the points drawn in
the prior must be located close to the points drawn in the aggregated
posterior, representing the observed trajectories. In Fig. 10, generated
points from the prior seem to be distributed identically to points from
the posterior distribution. In Fig. 11, we detail how the VampPrior
components cover the latent space. The left part of Fig. 11 displays the
location of each mean 𝜇𝑉 𝑃 , 𝑖, 𝑖 = 1…𝐾 of the VampPrior components
(equivalently called pseudo-inputs) in the latent space. The colour of
the points indicates the variance of the components. A yellow point
represents a VampPrior component with high variance, whereas a dark
blue point represents a small variance. The right part of Fig. 11 depicts
the decoding of the VampPrior means. The VampPrior covers well the
whole latent space and respects the densities of the regions, as there
are more pseudo-inputs in denser areas. Furthermore, it seems that the
pseudo-inputs can be classified according to their variance. The ones
in denser areas, such as the orange pseudo-input, have lower variances
and are mostly associated with simple types of trajectories, just as
suggested by the analysis of the latent space in Fig. 8. As a result,
points sampled in these components are close to the mean, and then
should look very similar to the decoded pseudo-input. On the contrary,
in sparser regions, the variance is usually larger to cover a wider area.
Points can be sampled far away from the mean, and thus can lead to
the generation of trajectories significantly different from the pseudo-
input.

5.3.2. Generation with VampPrior TCVAE
Fig. 12 displays the generation of synthetic points in two specific

VampPrior components. The orange flow corresponds to a component
located in a dense area, whereas the blue flow corresponds to a com-
ponent in a sparser area. The former is associated with an arrival
trajectory which is flown in a rather straightforward way, i.e. without
holding patterns and with very limited influence of air traffic control.
In this region of the latent space, the VampPrior component does
not cover any empty area. Consequently, generated synthetic trajec-

tories are realistic, even though a wide diversity is observed. It is

11
conceivable that this generated flow corresponds to a type of approach,
where the pseudo-input describes the ideal path, and other trajectories
contain high levels of uncertainties such as aircraft type or weather.
The blue flow is associated with an arrival trajectory which is flown
both with a holding pattern and with a substantial influence of air
traffic control. The considered region of the latent space is less dense,
and the VampPrior component covers some empty areas. Generated
points can be isolated, and the closest observed points can corre-
spond to very different types of trajectories. As a result, these kinds
of VampPrior components generally generate complex trajectories with
self-intersecting points, that can be very disparate. This great diversity
may lead to certain trajectories being less realistic from an operational
point of view. Loops or turns can be located at different locations
with varying sizes and curvatures, which means that certain of these
configurations are very unlikely to be observable in reality, but still
interesting to generate.

Trajectories with complex shapes are relatively rare and different
from most other trajectories. As the dimension of the latent space is
large, points located in sparse regions are very distant. Thus, the Vamp-
Prior components that cover these locations must have high variances,
at the risk of producing points in deserted parts of the latent space
where no posterior distribution is close. Consequently, once decoded,
these points give unusual trajectories, which often look physically
realistic, but can be far from the actual aircraft operations observed
in reality. Indeed, as the region is sparse, a generated point can be
found between very different observed trajectories. Subsequently, as
the latent space is continuous, it inherits the characteristics of its
nearest neighbours, even if the result is operationally very unlikely.
Reducing the size of the latent space can decrease the effect of the
spacing between points. However, it will also reduce the ability of the
decoder to reconstruct trajectories well.

Nevertheless, both blue and orange generations presented in Fig. 12
seem to have realistic altitude and ground speed profiles, as displayed
in Fig. 13. The VampPrior TCVAE can take into account non-trivial
behaviours, such as non-monotonic ground speed and altitude profiles,
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Fig. 10. Point sampled in the aggregated posterior (grey) and in the prior (blue) in the latent space.
Fig. 11. Left: Pseudo-inputs representing the Gaussian mixture components of VampPrior. The location of the point represents the mean, and the colour the variance. Right:
Decoding of the VampPrior pseudo-inputs.
which is one of the limitations of the GAN suggested by Jarry et al.
(2019). The model even learns by itself that there is a speed limit of
250 kts under 10,000 ft. Besides that, ground speeds for the orange
generation are even divided into two different types of approaches at
the beginning of the profile, which might be associated with different
aircraft types. Finally, the TCVAE is also capable of generating tra-
jectories with different durations and lengths, making it very suitable
to render observed approaches in various environmental conditions.
In summary, Figs. 12 and 13 show that the VampPrior TCVAE can
generate a wide diversity of physically realistic trajectories that can
have complex behaviour patterns. However, this great diversity might
be sometimes associated with a lack of operational realism, for example
by generating holdings in unlikely places.

The quality of the generated synthetic trajectories heavily relies on
the quality of the considered pseudo-input. As such, pseudo-inputs can
be classified into three groups. The first one, observed on Fig. 12 is
composed of pseudo-inputs located in the denser areas of the latent
space. They are by far the most numerous and are surrounded by ob-
served trajectories with simple patterns. In these regions, the posterior
distributions are largely overlapping, which results in a compact latent
space. VampPrior components can cover the area more easily, and
points drawn within these components are very similar to points sam-
pled in the aggregated posterior. The corresponding decoded synthetic
trajectories are then very realistic from a physical and operational
12
point of view, while still maintaining a fair amount of variability. The
second group is composed of pseudo-inputs located in sparser areas of
the latent space, where complex trajectories with loops and holding
patterns are observed. An example is given with the orange flow on
Fig. 14. The size of this group is way smaller than the first one, but
it still represents a significant part of the pseudo-inputs. In the dataset
of observed trajectories, self-intersecting trajectories are rare and can
take many forms. Consequently, the corresponding regions of the latent
space are way sparser. Additionally, the distance from one point to
another can be substantially larger (especially in high dimensions
because distances are dilated). Corresponding VampPrior components
have more difficulties to cover properly these areas. Moreover, they
might generate points rather far away from the aggregated posterior.
As a result, pseudo-inputs have the characteristics of surrounding points
but might present defects. Some corresponding synthetic trajectories
might be unlikely from an operational point of view, even though
most of them stay physically relevant. However, this is not necessarily
a drawback, especially when we study the influence of an unusual
trajectory on how traffic is organized in the airspace. Finally, the
third group is composed of non-realistic pseudo inputs. And example
is the blue flow on Fig. 14. It is located in a very sparse area, and
the corresponding VampPrior component has a very large variance.
They are the consequences of the optimization of the VAE objective,
since they are created to have the best match between the aggregated
posterior and the prior according to the KL-divergence. Even though the
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Fig. 12. Generation of synthetic trajectories within two pseudo-input components.
Fig. 13. Altitude and ground speed profiles of the generated trajectories from pseudo-input 1 (blue) and pseudo-input 2 (orange).
hird group of pseudo-inputs is mathematically relevant, it generates
on-realistic trajectories both from a physical and from an operational
erspective, because of the missing constraints on their shapes.

. Conclusion and outlook

We deconstructed the structural elements of the VAE to come up
ith a novel data-driven approach to generate synthetic trajectories.
uch generative model is of great interest as it allows creating an ar-
itrarily large trajectory dataset from procedures where only a limited
mount of observations is available. The TCVAE architecture is pow-
rful enough to synthesize the temporal information from trajectories
ith complex characteristics in a latent space of smaller dimension.
oupled with VampPrior that enhances the generation abilities of
he VAE by providing a more accurate prior distribution, the model
an mimic the distribution of observed 4-dimensional trajectories to
enerate synthetic ones. The model fulfils all expectations mentioned
n the introduction:
13
• Real and synthetic trajectories share the same statistical distribu-
tion, as suggested by the e-distance evaluation.

• Synthetic trajectories look realistic from a physical point of view
according to the metric developed in Olive et al. (2021).

• We show that the generation process can provide a wide diversity
of trajectories, including some that might never be observed from
an operational point of view. This reflects the ability of the VAE to
account for the uncertainty present in trajectories due to weather,
aircraft performance, ATC actions or human factors. The means of
each component of VampPrior represent the nominal behaviour of
the route, whereas covariance matrices represent deviations due
to uncertainty. The greater the covariance of a pseudo-input is,
the more uncertainty we can expect from this router, and thus, the
more diversified are the generated trajectories. On the contrary,
a pseudo-input with a small covariance correspond to routes
with few uncertainty. Although uncertainty is well rendered, we
cannot identify its origin. It is possible to generate trajectories
with unusual behaviour, but impossible to attribute it to a specific
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Fig. 14. Generation of synthetic trajectories from low quality pseudo-inputs.
source such as weather or ATC. An important limitation of our
model is that we cannot generate two trajectories that we know
are subject to the same sources of uncertainty.

• By selecting the appropriate VampPrior component of the Gaus-
sian mixture prior, it is possible to control the type of synthetic
trajectories to be generated, i.e. their direction, shape, etc., and
to filter unrealistic generated trajectories.

Unlike most previous methods that focus on simple one or two-
imensional patterns (Eckstein, 2010; Henry et al., 2013; Jacquemart
Morio, 2013), the proposed model is capable of providing fully

escribed trajectories in 4 dimensions. Moreover, it outperforms the
MM estimation from Murça and de Oliveira (2020). The model has

been trained on a particularly complex set of approaching procedures
at Zurich airport, and it makes no doubt that the VampPrior TCVAE
will perform equally well on other airports by changing the training
dataset. It can also be directly applied to other types of trajectories such
as departures, en-route or even missed-approaches. However, missed-
approaches studies might require a special treatment as they are rarely
observed. Krauth et al. (2021) treated the problem by specifically con-
structing a dataset of go-around trajectories. One might also want to use
the dataset provided by Monstein, Figuet, Krauth, Waltert, and Dettling
(2022). A limitation of our method is that it is probably not able to
randomly generate go-arounds among regular approaches. Finally, the
distribution of observed trajectories is explicitly described in the latent
space by the aggregated posterior. As a result, it is possible to evaluate
the likelihood of a newly generated point. This information can be
useful when using Monte Carlo methods for collision risk estimation
such as Importance Sampling (Tokdar & Kass, 2010) or Subset Simulation
(Au & Beck, 2001).

As mentioned in Section 4, the Mean Field Assumption is more
than just a simplification to speed up the learning phase. It makes the
dimensions of the latent space orthogonal and allows the empirical
deduction of the role of each of the dimensions by modifying them
independently. For example, by varying only the first component of
the latent representation of a trajectory, it is possible to change the
direction of arrival. This can be viewed as a very primary form of
disentanglement, which focuses on controlling the decomposition of
trajectories in the latent space. However, the encoder acts as a black
box and one cannot choose in advance the linkage between the char-
acteristics of a trajectory and the digits of its latent representation.
To perform proper disentanglement, Chen, Li, Grosse, and Duvenaud
(2018) change the functional form of ELBO to force the algorithm to
focus on the Total-Correlation term that influences how dimensions
are correlated in the latent space. Karaletsos, Belongie, and Rätsch
(2015) introduce a similarity metric between inputs to identify what
the essential latent dimensions should be. Disentanglement learning is
nowadays a rather popular topic, and using it in future works could
allow us to have even stronger control over the type of synthetic
trajectories one wishes to generate.
14
CRediT authorship contribution statement

Timothé Krauth: Conceptualization, Methodology, Software, Vali-
dation, Formal analysis, Investigation, Resources, Data curation, Writ-
ing – original draft, Writing – review & editing, Visualization. Adrien
Lafage: Methodology, Software, Investigation, Resources, Data cura-
tion, Writing – review & editing. Jérôme Morio: Conceptualization,
Methodology, Formal analysis, Resources, Writing – review & editing,
Supervision. Xavier Olive: Conceptualization, Methodology, Formal
analysis, Investigation, Resources, Writing – review & editing, Visual-
ization, Supervision. Manuel Waltert: Resources, Writing – review &
editing, Supervision, Project administration, Funding acquisition.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgements

This work was supported by the Swiss Federal Office of Civil Avi-
ation, grant number BAZL SFLV 2018-037. All authors approved the
version of the manuscript to be published.

References

Asperti, A., & Trentin, M. (2020). Balancing reconstruction error and Kullback-Leibler
divergence in Variational Autoencoders. IEEE Access, 8.

Au, S.-K., & Beck, J. L. (2001). Estimation of small failure probabilities in
high dimensions by subset simulation. Probabilistic Engineering Mechanics, 16(4),
263–277.

Bai, S., Kolter, J. Z., & Koltun, V. (2018). An empirical evaluation of generic
convolutional and recurrent networks for sequence modeling. arXiv preprint arXiv:
1803.01271.

Berndt, D. J., & Clifford, J. (1994). Using dynamic time warping to find patterns in
time series. In KDD Workshop, Vol. 10 (pp. 359–370). (16).

Besse, P., Guillouet, B., Loubes, J.-M., & François, R. (2015). Review and perspective
for distance based trajectory clustering. arXiv preprint arXiv:1508.04904.

Chen, R. T., Li, X., Grosse, R. B., & Duvenaud, D. K. (2018). Isolating sources
of disentanglement in variational autoencoders. Advances in Neural Information
Processing Systems, 31.

Dai, B., & Wipf, D. (2019). Diagnosing and enhancing VAE models. arXiv preprint
arXiv:1903.05789.

Delahaye, D., Puechmorel, S., Tsiotras, P., & Féron, E. (2014). Mathematical models
for aircraft trajectory design: A survey. In Air traffic management and systems (pp.
205–247). Springer.

http://refhub.elsevier.com/S2666-8270(22)00121-9/sb1
http://refhub.elsevier.com/S2666-8270(22)00121-9/sb1
http://refhub.elsevier.com/S2666-8270(22)00121-9/sb1
http://refhub.elsevier.com/S2666-8270(22)00121-9/sb2
http://refhub.elsevier.com/S2666-8270(22)00121-9/sb2
http://refhub.elsevier.com/S2666-8270(22)00121-9/sb2
http://refhub.elsevier.com/S2666-8270(22)00121-9/sb2
http://refhub.elsevier.com/S2666-8270(22)00121-9/sb2
http://arxiv.org/abs/1803.01271
http://arxiv.org/abs/1803.01271
http://arxiv.org/abs/1803.01271
http://refhub.elsevier.com/S2666-8270(22)00121-9/sb4
http://refhub.elsevier.com/S2666-8270(22)00121-9/sb4
http://refhub.elsevier.com/S2666-8270(22)00121-9/sb4
http://arxiv.org/abs/1508.04904
http://refhub.elsevier.com/S2666-8270(22)00121-9/sb6
http://refhub.elsevier.com/S2666-8270(22)00121-9/sb6
http://refhub.elsevier.com/S2666-8270(22)00121-9/sb6
http://refhub.elsevier.com/S2666-8270(22)00121-9/sb6
http://refhub.elsevier.com/S2666-8270(22)00121-9/sb6
http://arxiv.org/abs/1903.05789
http://refhub.elsevier.com/S2666-8270(22)00121-9/sb8
http://refhub.elsevier.com/S2666-8270(22)00121-9/sb8
http://refhub.elsevier.com/S2666-8270(22)00121-9/sb8
http://refhub.elsevier.com/S2666-8270(22)00121-9/sb8
http://refhub.elsevier.com/S2666-8270(22)00121-9/sb8


T. Krauth, A. Lafage, J. Morio et al. Machine Learning with Applications 11 (2023) 100446

H

H

H

J

S

S

T

T

V

Z

Eckstein, A. (2010). Data driven modeling for the simulation of converging runway
operations. In Proceedings of the 4th international conference on research in air
transportation.

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT Press.
Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., et

al. (2014). Generative adversarial nets. Advances in Neural Information Processing
Systems, 27.

e, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern
recognition (pp. 770–778).

Henry, M., Schmitz, S., Revenko, N., & Kelbaugh, K. (2013). A Monte Carlo simulation
for evaluating airborne collision risk in intersecting runways. In Proceedings of the
AIAA modeling and simulation technologies (MST) conference (p. 4598).

oekstra, J. M., & Ellerbroek, J. (2016). Bluesky ATC simulator project: an open data
and open source approach. In Proceedings of the 7th international conference on
research in air transportation.

offman, M. D., & Johnson, M. J. (2016). ELBO surgery: yet another way to carve
up the variational evidence lower bound. In Workshop in advances in approximate
bayesian inference, NIPS, Vol. 1. (2).

acquemart, D., & Morio, J. (2013). Conflict probability estimation between aircraft
with dynamic importance splitting. Safety Science, 51(1), 94–100.

Jacquemart, D., & Morio, J. (2016). Adaptive interacting particle system algorithm
for aircraft conflict probability estimation. Aerospace Science and Technology, 55,
431–438.

Jarry, G., Couellan, N., & Delahaye, D. (2019). On the use of generative adversarial
networks for aircraft trajectory generation and atypical approach detection. In
Proceedings of the 6th ENRI International Workshop on ATM/CNS.

Jarry, G., Hassoumi, A., Delahaye, D., & Hurter, C. (2020). Interactive trajectory
modification and generation with FPCA. In Proceedings of the 9th international
conference for research in air transportation.

Karaletsos, T., Belongie, S., & Rätsch, G. (2015). Bayesian representation learning with
oracle constraints. arXiv preprint arXiv:1506.05011.

Kingma, D. P., & Welling, M. (2013). Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114.

Kingma, D. P., & Welling, M. (2019). An introduction to variational autoencoders. arXiv
preprint arXiv:1906.02691.

Koyuncu, E., Uzun, M., & Inalhan, G. (2016). Cross-entropy-based cost-efficient 4D
trajectory generation for airborne conflict resolution. Proceedings of the Institution of
Mechanical Engineers, Part G (Journal of Aerospace Engineering), 230(9), 1605–1631.
15
Krauth, T., Morio, J., Olive, X., Figuet, B., & Monstein, R. (2021). Synthetic aircraft
trajectories generated with multivariate density models. Engineering Proceedings,
13(1), 7.

Lazzara, M., Chevalier, M., Colombo, M., Garcia, J. G., Lapeyre, C., & Teste, O. (2022).
Surrogate modelling for an aircraft dynamic landing loads simulation using an
LSTM AutoEncoder-based dimensionality reduction approach. Aerospace Science and
Technology, 126, Article 107629.

Lenz, S., Hess, M., & Binder, H. (2021). Deep generative models in DataSHIELD. BMC
Medical Research Methodology, 21(1), 1–16.

Monstein, R., Figuet, B., Krauth, T., Waltert, M., & Dettling, M. (2022). Large landing
trajectory data set for go-around analysis. Zenodo, http://dx.doi.org/10.5281/zenodo.
7148117, [This research was funded by the Swiss Federal Office of Civil Aviation
grant number SFLV 2018-037].

Murça, M. C. R., & de Oliveira, M. (2020). A data-driven probabilistic trajectory model
for predicting and simulating terminal airspace operations. In Proceedings of the
39th IEEE/AIAA digital avionics systems conference (DASC).

Olive, X. (2019). Traffic, a toolbox for processing and analysing air traffic data. Journal
of Open Source Software, 4(39).

Olive, X., Basora, L., Viry, B., & Alligier, R. (2020). Deep trajectory clustering with
autoencoders. In Proceedings of the 9th international conference for research in air
transportation.

Olive, X., Sun, J., Murca, M. C. R., & Krauth, T. (2021). A framework to evaluate
aircraft trajectory generation methods. In Proceedings of the 14th USA/Europe air
traffic management research and development seminar.

chäfer, M., Strohmeier, M., Lenders, V., Martinovic, I., & Wilhelm, M. (2014).
Bringing up OpenSky: A large-scale ADS-B sensor network for research. In IPSN-14
proceedings of the 13th international symposium on information processing in sensor
networks (pp. 83–94). IEEE.

zékely, G. J., Rizzo, M. L., et al. (2004). Testing for equal distributions in high
dimension. InterStat, 5(16.10), 1249–1272.

okdar, S. T., & Kass, R. E. (2010). Importance sampling: a review. Wiley
Interdisciplinary Reviews: Computational Statistics, 2(1), 54–60.

omczak, J., & Welling, M. (2018). VAE with a VampPrior. In International conference
on artificial intelligence and statistics (pp. 1214–1223). PMLR.

ondrick, C., Pirsiavash, H., & Torralba, A. (2016). Generating videos with scene
dynamics. Advances in Neural Information Processing Systems, 29.

hang, W., Hu, M., & Du, J. (2022). An end-to-end framework for flight trajectory data
analysis based on deep autoencoder network. Aerospace Science and Technology, 127,
Article 107726.

http://refhub.elsevier.com/S2666-8270(22)00121-9/sb9
http://refhub.elsevier.com/S2666-8270(22)00121-9/sb9
http://refhub.elsevier.com/S2666-8270(22)00121-9/sb9
http://refhub.elsevier.com/S2666-8270(22)00121-9/sb9
http://refhub.elsevier.com/S2666-8270(22)00121-9/sb9
http://refhub.elsevier.com/S2666-8270(22)00121-9/sb10
http://refhub.elsevier.com/S2666-8270(22)00121-9/sb11
http://refhub.elsevier.com/S2666-8270(22)00121-9/sb11
http://refhub.elsevier.com/S2666-8270(22)00121-9/sb11
http://refhub.elsevier.com/S2666-8270(22)00121-9/sb11
http://refhub.elsevier.com/S2666-8270(22)00121-9/sb11
http://refhub.elsevier.com/S2666-8270(22)00121-9/sb12
http://refhub.elsevier.com/S2666-8270(22)00121-9/sb12
http://refhub.elsevier.com/S2666-8270(22)00121-9/sb12
http://refhub.elsevier.com/S2666-8270(22)00121-9/sb12
http://refhub.elsevier.com/S2666-8270(22)00121-9/sb12
http://refhub.elsevier.com/S2666-8270(22)00121-9/sb13
http://refhub.elsevier.com/S2666-8270(22)00121-9/sb13
http://refhub.elsevier.com/S2666-8270(22)00121-9/sb13
http://refhub.elsevier.com/S2666-8270(22)00121-9/sb13
http://refhub.elsevier.com/S2666-8270(22)00121-9/sb13
http://refhub.elsevier.com/S2666-8270(22)00121-9/sb14
http://refhub.elsevier.com/S2666-8270(22)00121-9/sb14
http://refhub.elsevier.com/S2666-8270(22)00121-9/sb14
http://refhub.elsevier.com/S2666-8270(22)00121-9/sb14
http://refhub.elsevier.com/S2666-8270(22)00121-9/sb14
http://refhub.elsevier.com/S2666-8270(22)00121-9/sb15
http://refhub.elsevier.com/S2666-8270(22)00121-9/sb15
http://refhub.elsevier.com/S2666-8270(22)00121-9/sb15
http://refhub.elsevier.com/S2666-8270(22)00121-9/sb15
http://refhub.elsevier.com/S2666-8270(22)00121-9/sb15
http://refhub.elsevier.com/S2666-8270(22)00121-9/sb16
http://refhub.elsevier.com/S2666-8270(22)00121-9/sb16
http://refhub.elsevier.com/S2666-8270(22)00121-9/sb16
http://refhub.elsevier.com/S2666-8270(22)00121-9/sb17
http://refhub.elsevier.com/S2666-8270(22)00121-9/sb17
http://refhub.elsevier.com/S2666-8270(22)00121-9/sb17
http://refhub.elsevier.com/S2666-8270(22)00121-9/sb17
http://refhub.elsevier.com/S2666-8270(22)00121-9/sb17
http://refhub.elsevier.com/S2666-8270(22)00121-9/sb18
http://refhub.elsevier.com/S2666-8270(22)00121-9/sb18
http://refhub.elsevier.com/S2666-8270(22)00121-9/sb18
http://refhub.elsevier.com/S2666-8270(22)00121-9/sb18
http://refhub.elsevier.com/S2666-8270(22)00121-9/sb18
http://refhub.elsevier.com/S2666-8270(22)00121-9/sb19
http://refhub.elsevier.com/S2666-8270(22)00121-9/sb19
http://refhub.elsevier.com/S2666-8270(22)00121-9/sb19
http://refhub.elsevier.com/S2666-8270(22)00121-9/sb19
http://refhub.elsevier.com/S2666-8270(22)00121-9/sb19
http://arxiv.org/abs/1506.05011
http://arxiv.org/abs/1312.6114
http://arxiv.org/abs/1906.02691
http://refhub.elsevier.com/S2666-8270(22)00121-9/sb23
http://refhub.elsevier.com/S2666-8270(22)00121-9/sb23
http://refhub.elsevier.com/S2666-8270(22)00121-9/sb23
http://refhub.elsevier.com/S2666-8270(22)00121-9/sb23
http://refhub.elsevier.com/S2666-8270(22)00121-9/sb23
http://refhub.elsevier.com/S2666-8270(22)00121-9/sb24
http://refhub.elsevier.com/S2666-8270(22)00121-9/sb24
http://refhub.elsevier.com/S2666-8270(22)00121-9/sb24
http://refhub.elsevier.com/S2666-8270(22)00121-9/sb24
http://refhub.elsevier.com/S2666-8270(22)00121-9/sb24
http://refhub.elsevier.com/S2666-8270(22)00121-9/sb25
http://refhub.elsevier.com/S2666-8270(22)00121-9/sb25
http://refhub.elsevier.com/S2666-8270(22)00121-9/sb25
http://refhub.elsevier.com/S2666-8270(22)00121-9/sb25
http://refhub.elsevier.com/S2666-8270(22)00121-9/sb25
http://refhub.elsevier.com/S2666-8270(22)00121-9/sb25
http://refhub.elsevier.com/S2666-8270(22)00121-9/sb25
http://refhub.elsevier.com/S2666-8270(22)00121-9/sb26
http://refhub.elsevier.com/S2666-8270(22)00121-9/sb26
http://refhub.elsevier.com/S2666-8270(22)00121-9/sb26
http://dx.doi.org/10.5281/zenodo.7148117
http://dx.doi.org/10.5281/zenodo.7148117
http://dx.doi.org/10.5281/zenodo.7148117
http://refhub.elsevier.com/S2666-8270(22)00121-9/sb28
http://refhub.elsevier.com/S2666-8270(22)00121-9/sb28
http://refhub.elsevier.com/S2666-8270(22)00121-9/sb28
http://refhub.elsevier.com/S2666-8270(22)00121-9/sb28
http://refhub.elsevier.com/S2666-8270(22)00121-9/sb28
http://refhub.elsevier.com/S2666-8270(22)00121-9/sb29
http://refhub.elsevier.com/S2666-8270(22)00121-9/sb29
http://refhub.elsevier.com/S2666-8270(22)00121-9/sb29
http://refhub.elsevier.com/S2666-8270(22)00121-9/sb30
http://refhub.elsevier.com/S2666-8270(22)00121-9/sb30
http://refhub.elsevier.com/S2666-8270(22)00121-9/sb30
http://refhub.elsevier.com/S2666-8270(22)00121-9/sb30
http://refhub.elsevier.com/S2666-8270(22)00121-9/sb30
http://refhub.elsevier.com/S2666-8270(22)00121-9/sb31
http://refhub.elsevier.com/S2666-8270(22)00121-9/sb31
http://refhub.elsevier.com/S2666-8270(22)00121-9/sb31
http://refhub.elsevier.com/S2666-8270(22)00121-9/sb31
http://refhub.elsevier.com/S2666-8270(22)00121-9/sb31
http://refhub.elsevier.com/S2666-8270(22)00121-9/sb32
http://refhub.elsevier.com/S2666-8270(22)00121-9/sb32
http://refhub.elsevier.com/S2666-8270(22)00121-9/sb32
http://refhub.elsevier.com/S2666-8270(22)00121-9/sb32
http://refhub.elsevier.com/S2666-8270(22)00121-9/sb32
http://refhub.elsevier.com/S2666-8270(22)00121-9/sb32
http://refhub.elsevier.com/S2666-8270(22)00121-9/sb32
http://refhub.elsevier.com/S2666-8270(22)00121-9/sb33
http://refhub.elsevier.com/S2666-8270(22)00121-9/sb33
http://refhub.elsevier.com/S2666-8270(22)00121-9/sb33
http://refhub.elsevier.com/S2666-8270(22)00121-9/sb34
http://refhub.elsevier.com/S2666-8270(22)00121-9/sb34
http://refhub.elsevier.com/S2666-8270(22)00121-9/sb34
http://refhub.elsevier.com/S2666-8270(22)00121-9/sb35
http://refhub.elsevier.com/S2666-8270(22)00121-9/sb35
http://refhub.elsevier.com/S2666-8270(22)00121-9/sb35
http://refhub.elsevier.com/S2666-8270(22)00121-9/sb36
http://refhub.elsevier.com/S2666-8270(22)00121-9/sb36
http://refhub.elsevier.com/S2666-8270(22)00121-9/sb36
http://refhub.elsevier.com/S2666-8270(22)00121-9/sb37
http://refhub.elsevier.com/S2666-8270(22)00121-9/sb37
http://refhub.elsevier.com/S2666-8270(22)00121-9/sb37
http://refhub.elsevier.com/S2666-8270(22)00121-9/sb37
http://refhub.elsevier.com/S2666-8270(22)00121-9/sb37

	Deep generative modelling of aircraft trajectories in terminal maneuvering areas
	Introduction
	Literature Review
	Problem and Data
	Methodology
	Variational Autoencoder Framework
	Model Improvements
	Temporal Convolutional Networks
	Variational Mixtures of Posteriors

	VampPrior Temporal Convolutional Variational Autoencoder for Trajectory Generation

	Results and Discussion
	VAE architecture improvements
	Contribution of Temporal Convolutional Networks
	Learning improvements of VampPrior TCVAE compared to basic VAE architectures

	Evaluation of the Generated Trajectory Quality
	Air traffic modelling with VampPrior TCVAE
	VampPrior within the latent space of the VampPrior TCVAE
	Generation with VampPrior TCVAE


	Conclusion and Outlook
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgements
	References


