
https://doi.org/10.1007/s10664-022-10207-5

Test smells 20 years later: detectability, validity,
and reliability

Annibale Panichella1 · Sebastiano Panichella2 ·Gordon Fraser3 ·
Anand Ashok Sawant4 ·Vincent J. Hellendoorn5

© The Author(s) 2022

Abstract
Test smells aim to capture design issues in test code that reduces its maintainability. These
have been extensively studied and generally found quite prevalent in both human-written
and automatically generated test-cases. However, most evidence of prevalence is based on
specific static detection rules. Although those are based on the original, conceptual defini-
tions of the various test smells, recent empirical studies indicate that developers perceive
warnings raised by detection tools as overly strict and non-representative of the main-
tainability and quality of test suites. This leads us to re-assess test smell detection tools’
detection accuracy and investigate the prevalence and detectability of test smells more
broadly. Specifically, we construct a hand-annotated dataset spanning hundreds of test suites
both written by developers and generated by two test generation tools (EVOSUITE and
JTEXPERT) and performed a multi-stage, cross-validated manual analysis to identify the
presence of six types of test smells in these. We then use this manual labeling to benchmark
the performance and external validity of two test smell detection tools—one widely used in
prior work and one recently introduced with the express goal to match developer perceptions
of test smells. Our results primarily show that the current vocabulary of test smells is highly
mismatched to real concerns: multiple smells were ubiquitous on developer-written tests
but virtually never correlated with semantic or maintainability flaws; machine-generated
tests actually often scored better, but in reality, suffered from a host of problems not well-
captured by current test smells. Current test smell detection strategies poorly characterized
the issues in these automatically generated test suites; in particular, the older tool’s detection
strategies misclassified over 70% of test smells, both missing real instances (false nega-
tives) and marking many smell-free tests as smelly (false positives). We identify common
patterns in these tests that can be used to improve the tools, refine and update the definition
of certain test smells, and highlight as of yet uncharacterized issues. Our findings suggest
the need for (i) more appropriate metrics to match development practice, (ii) more accurate
detection strategies to be evaluated primarily in industrial contexts.

Communicated by: Zhenchang Xing, Kelly Blincoe

This article belongs to the Topical Collection: Software Maintenance and Evolution (ICSME)

� Annibale Panichella
A.Panichella@tudelft.nl

Extended author information available on the last page of the article.

Empirical Software Engineering (2022) 27:170

Accepted: 2 July 2022 /Published online: 20 September 2022

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-022-10207-5&domain=pdf
http://orcid.org/0000-0002-7395-3588
mailto: A.Panichella@tudelft.nl

Keywords Test generation · Test smells · Software quality

1 Introduction

A core goal of software engineering research is automatically assessing the quality and
maintainability of software, including code used for testing. Doing so automatically is
challenging (Deursen et al. 2001; Spadini et al. 2020), as the notion of quality is both
context-sensitive and subject to change over time. A common approach is to focus on those
parts of a program that clearly violate certain well-established rules informed by practice;
e.g., that a single test method should not test multiple requirements (Bavota et al. 2012;
Tsantalis et al. 2018). Ideally, developers can be alerted to such issues automatically, and
they can resolve them through meaning-preserving refactorings. This is the goal of “test
smell” detection (Deursen et al. 2001).

The canonical catalog of test smells was proposed in 2001 by Deursen et al. (2001) and
consists of 11 smell types with the associated recommended refactorings. These smells are
well-defined and grounded in the definition of unit tests to reflect improper testing practice.
Research since has created tools that automatically mark these smells in test code (Bavota
et al. 2015; Grano et al. 2019). This is no small chore: many of these require complex infer-
ence about the code; e.g., detecting “indirect testing” requires knowing whether (unmocked)
calls to other classes constitute “testing” those classes. Present tools, therefore, rely on
heuristic, static, rule-based detection of test smells, which they tend to find ubiquitous.

As testing habits and tools continue to evolve, however, an over-reliance on both this
vocabulary of test smells risks our field becoming increasingly divorced from testing prac-
tice. Indeed, a recent empirical study showed that developers do not perceive test smells
as reflective of test suite quality and maintainability, finding them overly strict (Spadini
et al. 2020). The same applies to heuristic detection rules, especially when it comes to auto-
matically generated tests, which are often markedly different in structure and semantics.
Recent work based on heuristic detection suggests that test smells are especially preva-
lent among such tests (Grano et al. 2019). Yet, considering that most of the heuristics
used were crafted for manually-written test cases, some long before such tools prolifer-
ated, we may well expect that they are not directly transferable to automatically generated
test suites.

Considering this challenge of automatically detecting test smells, the non-trivial gap to
assessing automatically generated test suites, and the changes in testing practice since the
original categorization, we argue that a critical reassessment of test smells is due, with
specific attention to automatically generated test cases.

In our previous conference paper published at ICSME, 2020 (Panichella et al. 2020b),
we replicated and expanded over the empirical studies by Grano et al. (2019) and Palomba
et al. (2016). Both studies investigated the distribution of test smells in automatically gener-
ated tests and used warnings raised by static detection tools as the ground truth. Our study
focused on test cases generated by EVOSUITE and two different test smell detection tools—
the one used in those works and TSDETECT, a more recent tool tailored for manually written
tests. Our results were quite different from what was reported in the aforementioned stud-
ies: we showed that (1) test smell detection tools are highly inaccurate for automatically
generated test cases, and (2) test smells are present in generated tests but in a much smaller
portion than previously reported; rather (3) these tests are plagued by many other, obvi-

Empir Software Eng (2022) 27:170170 Page 2 of 40

ous concerns not captured by test smells. This discrepancy in findings was due to the many
false positives and false negatives produced by test smell detection tools compared to man-
ual inspection. This raises critical concerns about the validity of empirical studies that rely
on such tools without carefully and manually validating the raised warnings.

In this work, we extend our conference paper in several ways. We build a substantially
larger dataset of manually annotated test smells by expanding our annotations to tests gen-
erated by two tools and actual developers, leading to annotations for hundreds of test suites
spanning thousands of test cases. We provide the following contributions:

Internal Validity:Howwidespread are test smells in automatically generated test cases?
We consider two different test-case generation tools, namely EVOSUITE (Fraser and
Arcuri 2011) and JTEXPERT (Sakti et al. 2014, 2017). We find that both tools effec-
tively abstract away many resources (e.g., database and file access) and cannot produce
(by design) test smells related to external resources and files as they use mocks and
customized runners. Besides, the post-processing test optimization in EVOSUITE dramat-
ically minimizes the portion of test cases affected by test smells, which is much smaller
than reported in prior studies. Nevertheless, test generation tools still introduce a substan-
tial number of indirect tests and often generate tests that check a wide range of behaviors
simultaneously. However, these issues are poorly detected by smell detection tools. We
suggest that a notion of semantic objective is needed to refine its focus.
How widespread are test smells in manually written test cases?We compare the distri-

bution of test smells across manually written test cases with their automatically generated
counterparts. Our results indicate that manually written tests are affected by more test
smells. However, this effect is almost entirely artificial: current definitions of test smells
are far too strict and fail to capture design flaws in test code. Even though the test smell
detection tools capture many smelly tests, these instances are unlikely to affect future
test maintenance activities negatively.
Tool Validity: How accurate are automated tools in detecting test smells for both
manually-written and automatically generated tests? Comparing our manual annotations
against two popular detection tools, we find a substantial rate of misclassifications. Many
of these stem from discrepancies between the heuristics and the peculiarities of EVO-
SUITE’s tests. Notably, prior work did not detect most of these issues in their own manual
validation, raising concerns about self-evaluating the validity of heuristics –a common
practice in our field—as opposed to industry-based evaluations.
External Validity: How well do test smells reflect real problems in test suites?We high-
light how several smells rarely indicated issues, either because of advances in testing
frameworks (esp. “Assertion Roulette”) or because they encode a matter of preference
(e.g., “Eager Test”). These were ubiquitous in real, developer-written tests, even in
mature, well-engineered projects, but virtually never correlated with semantic coher-
ence or, anecdotally, readability. In turn, we highlight several issues not yet described
by any smells, particularly ones that reflect atypical patterns found in the tests produced
automatically.

2 Background

This section summarizes the background notions and the main related work related to test
smells, test-case generation, and the limitations of prior work.

Empir Software Eng (2022) 27:170 Page 3 of 40 170

2.1 Test Smells

The idea of code smells dates back to Fowler’s book (1999). Code that smells is not
necessarily faulty but may contain quality issues that inhibit maintenance or lead to intro-
ducing bugs in later development stages (Tufano et al. 2017). The notion of code smells
was later extended to test code by Deursen et al. (2001). To help developers pinpoint and
address such issues, several tools have been introduced to automatically flag smelly test
code (Bavota et al. 2012; Spadini et al. 2020). This has, in turn, enabled researchers to
empirically study the prevalence of test smells and their effects, confirming that test smells
are not only common in open source and industrial software but also have a strong negative
impact on program comprehension and maintenance (Spadini et al. 2020; Peruma 2018;
Bavota et al. 2015).

2.2 Test Case Generation

Writing test code can be tedious and methodical. To alleviate this burden, a longstanding
goal of researchers is to generate tests automatically. Automated test generation meth-
ods have been developed for many specific testing problems, most popularly generating
unit tests using either random sampling or search-based techniques. In random testing,
sequences of calls to constructors and methods are randomly assembled, and objects created
in these calls are used as parameters for successive calls. A primary application of random
testing is to find undeclared exceptions (Csallner and Smaragdakis 2004) or violations of
general object contracts (Pacheco et al. 2007), but the generated tests can also be used as
automated regression tests. The effectiveness of random test generators can be increased
by integrating heuristics (Ma et al. 2015; Sakti et al. 2014). In search-based testing, evolu-
tionary search algorithms are popular, which gradually improve random initial sequences of
calls to maximize code coverage (Tonella 2004; Baresi and Miraz 2010; Fraser and Arcuri
2012; Andrews et al. 2011).

Research studies have shown that test case generation techniques are effective at achiev-
ing high code coverage (Campos et al. 2018; Panichella et al. 2018b) and fault detection
(Fraser and Arcuri 2015a; Almasi et al. 2017). The generate tests can also help developers
reducing the time to complete debugging tasks (Panichella et al. 2016; Soltani et al. 2018)
and are useful in regression testing (Birchler et al. 2022a, b).

However, automatically generated tests do tend to be harder to read and interpret than
manually crafted ones, which negatively impacts their maintainability (Shamshiri et al.
2018). Research has focused on improving this maintainability primarily by addressing
the amount of code generated: RANDOOP (Pacheco et al. 2007) removes redundant tests
after-the-fact, while EVOSUITE (Fraser and Arcuri 2012) uses test suite size as a secondary
objective during its search and further post-processes individual tests to be “1-minimal”
with respect to coverage; i.e., leaving only statements (i.e., method calls and assertions) that
cannot be removed without reducing the achieved coverage and mutation score. JTEXPERT

(Sakti et al. 2017) generates bounded sequences of method calls based on the number of
attributes in the class under test. This strategy helps prevent the bloating effect, i.e., creating
test suites that grow increasingly large in every iteration.

Various other post-processing steps are common for automated test generators; for exam-
ple, most tools integrate some form of regression oracle generation (Xie 2006) such that
the tests contain assertions based on the current behavior of the code under test. To further
improve maintainability, these assertions can be minimized for their fault-finding potential

Empir Software Eng (2022) 27:170170 Page 4 of 40

(Fraser and Zeller 2011). Further optimizations for maintainability include applying spe-
cific heuristics from industrial application (Robinson et al. 2011), semantic simplification
(Zhang 2013), prioritizing using literals taken from the source code (Rojas et al. 2016), gen-
eration of meaningful test names tests (Daka et al. 2017) and variable names (Roy et al.
2020), measuring readability using prediction models (Daka et al. 2015), and adding textual
summaries (Panichella et al. 2016; Roy et al. 2020), to support newcomers understanding
and testing software systems (Panichella 2015).

2.3 Limitations of Prior Work

Grano et al. (2019) and Palomba et al. (2016) investigated test smells in automatically gen-
erated test cases and found them to be widespread. Specifically, the vast majority (81%) of
test suites generated by EVOSUITE and almost all test suites generated by JTEXPERT (92%)
contained at least one test smell. That rate is remarkably high, especially considering that in
the case of EVOSUITE the tool applies post-search test suite optimization to reduce the cost
of the oracle problem and the chance of generating failing and flaky tests (Panichella et al.
2020a). This is especially surprising given how widely EVOSUITE is used, which raises the
question of whether those smells are indeed indicative of quality and maintainability issues.
A careful manual analysis of such tests and their purported smells thus seems in order, espe-
cially in contrast to developer-written tests. We focus on five systematic concerns with the
established numbers:

1. Grano et al. and Palomba et al. used the warnings raised by an automated test smell
detection tool to build their gold standard. However, the tool is known to overestimate
the number of test smell instances (Grano et al. 2019; Bavota et al. 2015). Hence, the
extent of the reported test smell instances depends on the large number of warnings
raised by detection tools. This was not manually validated, so it is not clear if this
truly indicates fundamental design flaws in test case generation tools. In this paper,
we address this issue by building a gold standard with manually annotated classes, to
gain a more clear view of test smells occurrences in both automatically generated and
manually written tests.

2. The authors used test case generation tools with default parameter values, ignoring
more recent studies on generating shorter and more maintainable test cases (e.g.,
Panichella et al. 2017; Daka et al. 2017). Indeed, tools like EVOSUITE are equipped
with tunable parameters, including the timeouts used for the minimization process,
which are critical for producing maintainable tests. Test cases are not minimized after
this timeout, which may leave many unnecessary statements and assertions, making
them more likely to contain certain smells (e.g., Assertion Roulette, discussed later).
Thus an incorrect setup, rather than a fundamental issue in test case generation, could
contribute to the higher numbers of smells observed by Grano et al. (2019) and Palomba
et al. (2016). We address this by tuning EVOSUITE’s parameters to ensure high-quality
test suite generation.

3. Modern test case generation tools use mocks to reduce the dependencies between gen-
erated tests and external resources (such as files). Modern tools also use execution
sandboxes and disable calls to the file system. However, this aspect was not considered
nor discussed by Grano et al. and Palomba et al.. Since some test smells are related
to using external resources, we investigate in-depth how the relation between mocking
and certain test smells manifests in both their annotations and the generated tests.

Empir Software Eng (2022) 27:170 Page 5 of 40 170

4. The prior studies by Grano et al. and Palomba et al. did not compare the distribution of
test smells between automatically generated tests and their manually-created counter-
parts. This comparison is necessary to better understand whether test case generation
tools are flawed by design (as claimed by Grano et al. 2019) or if they can generate tests
that are as maintainable as a developer’s, at least from a test smell perspective.

5. Even if a test suite contains test smell instances, this alone does not imply design flaws
or maintainability concerns. In this paper, we question the implicit equation “test smell
≡ design flaw” that is implicitly used in prior studies (Grano et al. 2019; Palomba et al.
2016). In fact, by definition, test smells are symptoms that could indicate potential
design problems in test code (Bavota et al. 2015; Deursen et al. 2001). Hence, a manual
analysis (or an assessment involving developers) of the test smell instances is needed
to verify whether they capture real design flaws in test code.

Finally, the general explanation given by Grano et al. for the results is unsatisfactory;
the argument is that generated tests are “scented since the beginning since crossover and
mutation operations performed though their evolution does not change the structure of the
tests.” However, tools like EVOSUITE and JTEXPERT do evolve test suites and their test
cases. Indeed, the mutation operator can add, remove, or insert statements in the test cases
(Fraser and Arcuri 2014; Panichella et al. 2017), thus, altering the test structure. If the
majority of the generated tests are indeed smelly, the root cause is to be found elsewhere.

3 Methodology

This section details the empirical evaluation we conduct to assess the performance of test
smell detection tools when applied to automatically generated tests. A complete replication
package is available at the link: https://figshare.com/s/7b8bf9a7580001929f63.

3.1 Research Questions

The following research questions guide our empirical study:

– RQ1: How widespread are test smells in automatically generated test cases?
– RQ2: How accurate are automated tools in detecting test smells in automatically

generated tests?
– RQ3: How well do test smells reflect real problems in automatically generated test

suites?
– RQ4: How does test smell diffusion in manually written tests compare to automatically

generated tests?
– RQ5: How well do test smells capture real problems in manually written tests?

We first determine the spread and distribution of test smells in automatically gener-
ated tests based on manual analysis. Previous work (Grano et al. 2019) answered a similar
research question, proposing a test smell detection tool as the gold standard with the
assumption that this tool is 100% precise for four types of test smells and over 65% pre-
cise for three other smells (Grano et al. 2019). In this study, we answer RQ1 by building
a curated dataset of automatically generated test cases (further described in Section 3.3)
and manually identifying the presence of six types of test smells (see Section 3.5). Our
approach addresses an important threat to construct validity of the previous work, as our
gold standard does not depend on detection tools. We next compare the detected extent of

Empir Software Eng (2022) 27:170170 Page 6 of 40

https://figshare.com/s/7b8bf9a7580001929f63

test smells with that predicted by two automatic smell detection tools in RQ2 to establish
their accuracy. This aims to (in)validate the findings of previous work, which suggest that
automatically generated test suites are highly prone to test smells. RQ3 reflects on these
test smells, asking whether and how often they relate to actual problems in the test suites,
which is illustrated through a series of examples.

Both the previous study by Grano et al. and this study (RQ1-RQ3) so far focused on
quantifying issues in automatically generated tests, to what extent they are hard to maintain.
The quantitative study is done by means of manual validation (our study) and running test
smell detection tools (Grano et al. 2019). However, test smell detection tools have been
designed and assessed for manually-written tests. Hence, one could argue that their accuracy
might be different when applied to test cases produced in different ways. To the best of
our knowledge, no prior study investigated whether test cases written by developers and
their automatically generated counterparts (for the same Java classes) manifest the same
maintainability issues and are affected by the same types of test smells. Finally, it is worth
re-assess the accuracy of test smell detection tools considering both types of test cases.

Hence, we formulated two additional research questions with regards to manually written
tests as well. RQ4 first asks how the diffusion of smells compares to that in the automati-
cally generated test suites. RQ5 then investigates the natural question of whether test smell
definitions appropriately capture issues in these, developer-written tests, for which they
were originally designed. In other words, we investigate the extent to which the test smell
catalog is up to date with the current testing framework and practices.

3.2 Test Class Selection

To build a set of test suites for manual analysis, we consider the same 100 Java classes
used by Grano et al. (2019). These classes are extracted from the SF110 dataset (Fraser and
Arcuri 2014), which contains 110 projects from SourceForge.net. The selected classes
are non-trivial as identified using a well-established triviality test (Panichella et al. 2017),
which filters out classes whose methods have a McCabe’s Cyclomatic complexity lower
than three. This helps ignore classes that can be fully covered by simple method invocations.
As a consequence of this selection criteria, there are no precisely equivalent hand-written
test suites for the classes that were selected in the original study (Grano et al. 2019), for us
to use in answering RQ4 and RQ5. In particular, only eight out of 100 classes selected by
Grano et al. have a manually-written test suite. Hence, we extended the benchmark used to
answer RQ4 and RQ5 by selecting other 41 test suites from the top 10 most popular Java
projects (Fraser and Arcuri 2014) in the SF110 dataset and that meet similar complexity cri-
teria. We manually validated the suites in this extended benchmark to validate the (eventual)
test smells.

3.3 Test Case Generation

Once we selected the classes for which to generate test suites, we next generated JUnit test
cases for the selected classes using two tools: EVOSUITE (Fraser and Arcuri 2011) ver-
sion 1.0.7 and JTExpert (Sakti et al. 2014, 2017). EVOSUITE is a state-of-the-art unit-test
generator for Java programs that has won several editions of the SBST tool competition
(Panichella and Molina 2017; Kifetew et al. 2019; Devroey et al. 2020), including the edi-
tion of 2021 (Panichella et al. 2021), against competing random and search-based unit test
generation tools; it produces test suites with high code coverage (Fraser and Arcuri 2014),
has documented fault detection capability (Fraser and Arcuri 2015a; Almasi et al. 2017),

Empir Software Eng (2022) 27:170 Page 7 of 40 170

and is publicly available on GitHub.1 EVOSUITE also applies several post-processing opti-
mizations to reduce the size of the test cases, identify and remove flaky tests, as well as
minimizing the number of generated assertions (see Section 2.2). JTEXPERT is a well-
known testing framework for Java programs that was ranked second in the 2017 SBST tool
competition (Sakti et al. 2017). JTEXPERT utilizes a random strategy with static analyses
to automatically generate a complete test suite based on a branch coverage criterion, and
is publicly available online.2,3 Differently from EVOSUITE, JTEXPERT does not apply any
post-processing optimizations. A limitation of JTEXPERT is that it does not always generate
test cases. For instance, in the SBST tool competition of 2017, it did not generate test cases
for 415 out of 1450 runs (27%).

We decided to extend our conference work (Panichella et al. 2020b) by considering two
different test case generation tools, as they differ on many technical details, including (1)
encoding schema for test cases/suites, (2) the search algorithm, (3) the test criteria they
optimize for, (4) the mocking mechanisms, and (5) post-process test optimization. We detail
the core differences in the following subsections.

3.3.1 EvoSuite

The default search algorithm in EVOSUITE is DynaMOSA (Panichella et al. 2017, 2018a),
a many-objective genetic algorithm that iteratively evolves test cases. In DynaMOSA, a test
case t is encoded as a sequence of statements, whose length is variable; t is evaluated against
all uncovered coverage targets (e.g., branches). There are six types of statements that can
compose a test case: (i) primitive statement, (ii) constructor statement, (iii) field statement,
(iv) method statement, (v) assignment statement, and (vi) mock statement.

Since DynaMOSA works at the test-case level, the genetic operators (i.e., mutation and
crossover) are also defined and implemented at that granularity level. In particular, the
single-point crossover recombines pairs of test cases (called parents) by exchanging state-
ments between the two parent test cases. The uniform mutation randomly deletes, changes,
or adds statements in a given test case. Each generated test case is evaluated only w.r.t the
yet uncovered coverage targets (e.g., branches). Generated tests that reach uncovered targets
are added to an archive, which keeps track of the shortest test case satisfying each target.
The final test suite is obtained by post-processing the test cases stored in the archive.

EVOSUITE optimizes multiple test adequacy criteria (or coverage criteria) simultane-
ously using multi-objective optimization algorithms (Panichella et al. 2018a; Rojas et al.
2015; Canfora et al. 2013, 2015). The tool includes the following criteria: (1) branch cov-
erage, (2) line coverage, (3) weak mutation, (4) input coverage, (5) output coverage, (6)
exception coverage, and (7) method coverage. Branch, line, and method coverage are tradi-
tional white-box criteria that measure howmany code elements are covered by the generated
test cases (Ammann and Offutt 2016). Indeed, these criteria count the number of coverage
targets (either branches, lines, or methods) that are covered. Method coverage measures the
number of methods directly or indirectly invoked by the tests. Weak mutation counts the
number of mutants (artificial faults) that a test case weakly kills. A test case t weakly kills a
mutant if the internal execution state differs when executing t against the mutant compared
to the original program (Just et al. 2014). Input and output coverage are black-box criteria

1https://github.com/EvoSuite/evosuite
2https://sites.google.com/site/saktiabdel/JTExpert
3https://github.com/dldbb/Automate-Testing-Tools-Test

Empir Software Eng (2022) 27:170170 Page 8 of 40

https://github.com/EvoSuite/evosuite
https://sites.google.com/site/saktiabdel/JTExpert
https://github.com/dldbb/Automate-Testing-Tools-Test

and measure the diversity in the input and output space of the program under test (Ammann
and Offutt 2016). Finally, exception coverage measures the number of exceptions triggered
when executing the generated test cases. This criterion allows storing test cases that likely
lead to crashes into the final test suite.

Another important feature in EVOSUITE is the post-process optimization. Once the
search process ends, the produced test suite (collected in the archive) undergoes a sequence
of optimization steps aiming to minimize the oracle cost and address potential flaky
behaviors. The optimization steps are:

– Test minimization: the test cases are first minimized by removing spurious statements
that do not contribute to any coverage criteria. In fact, crossover and mutation may
add statements to a test case that do not lead to covering any additional coverage tar-
gets (e.g., branches). Removing these unnecessary statements can potentially reduce
the oracle cost (i.e., the time for manually inspecting the test) and address test smells.

– Assertion minimization: the generated test cases are first enriched with assertions, that
assert the output values returned by method calls, get methods, as well as the values
of public and protected attributes. The assertions are then filtered based on their ability
to strongly kill mutants. A mutant is strongly killed by a test case t if t passes on the
original program but fails when executed against the mutant. Assertions that do not
contribute to killing new mutants are removed during this phase.

– Flakiness detection and removal: the final test suite is re-executed to detect potential
flaky tests, i.e., tests with non-deterministic behaviors. Flaky test cases are removed in
this step.

These post-process steps have their timeouts. Hence, carefully tuning these timeouts is
critical to guarantee enough time for these steps to produce concise and effective test suites.
Proper post-processing is critical in our context as one would argue that, at the same cover-
age, larger tests are less maintainable than smaller ones (Fraser and Arcuri 2014; Panichella
et al. 2017).

3.3.2 JTEXPERT

JTEXPERT generates whole-suites that maximize branch coverage criterion for Java classes
(Sakti et al. 2014). While EVOSUITE relies on evolutionary algorithms (and DynaMOSA in
particular) to generate test cases, JTEXPERT uses a specialized random search that targets
every uncovered branch at the same time (Sakti et al. 2014). Test cases are randomly gener-
ated using a Source Code Analyzer (SCA) and the Test Case Candidates Builder (TDCB).
SCA statically analyzes the source code of the Java class under test and identifies two types
of methods: (1) methods that are likely to change the internal states of the class, and (2)
methods that can lead to reaching a given branch. The data collected by the analyzer are used
by TDCB to generate test cases. A test case is encoded as a vector of means-of-instantiation
of the target class (i.e., a constructor, a method factory) and a sequence of method calls
(Sakti et al. 2017). The length of the method sequence is bounded by the number of declared
data members in the target Java class.

When generating new test cases, JTEXPERT focuses only on the uncovered branches.
This means that newly generated tests will invoke only methods that, according to TDCB,
can likely reach an uncovered branch or can change the state of the objects for the class
under test. Hence, this strategy prevents generating test cases with “arid” method calls tar-
geting already covered or infeasible branches. To further speed up the search, input data

Empir Software Eng (2022) 27:170 Page 9 of 40 170

(e.g., input parameters) are generated using both dynamic and stating seeding. The SCA
collects all constants for each primitive data type (e.g., int) and strings that appear in
the source code and store them in a seeding pool. Then, with a given probability, input
data are generated at random or selected from the seeding pool. Besides, JTEXPERT also
seeds the null value with a constant probability while generating instances of classes
(Sakti et al. 2017).

Another critical difference between EVOSUITE and JTEXPERT is that the latter does
not post-process the final test suite. Therefore, the test cases and the assertions are not
minimized, which might lead to longer test cases. Finally, JTEXPERT does not use/generate
mocks.

3.3.3 Parameter Setting

Grano et al. used the default values for EVOSUITE parameters with the motivation that
“the use of default values does not impact the performance of automated test case genera-
tion tools” (Grano et al. 2019). However, there are several problems with this assumption:
first, the default values are optimized for code coverage (Arcuri and Fraser 2013), but these
parameters affect other test suite properties of practical relevance, such as length or num-
ber of assertions. Second, the claim only holds for hyper-parameters of the meta-heuristic
search parameters for a given algorithm over multiple classes, but not necessarily for gen-
eral parameters of EVOSUITE, such as post-processing options, search budget, or the choice
of algorithm. Indeed, a large body of research has shown that changing the evolutionary
algorithm can have a dramatic impact on the overall performance as well as on the size of
the generated tests (Panichella et al. 2017, 2018b, Rojas et al. 2017; Campos et al. 2018).
Finally, the search budget has a substantial impact on the overall performance of both EVO-
SUITE and JTEXPERT, as shown in the SBST tool competitions, e.g., Devroey et al. (2020).
Running these tools with a longer search budget will lead to higher/better coverage but
potentially larger test suites. As shown by a recent study (Böhme et al. 2022), there is
a strong correlation between coverage and fault detection capability of the generated test
suites; hence, larger coverage is preferred.

Parameter Settings for JTEXPERT For JTEXPERT, we use the same settings used by Grano
et al. (2019). Specifically, we used the tool with its default configuration parameters to
ensure a fair comparison; we did not tune its parameters, in contrast to EVOSUITE, since it
does not include post-processing optimizations after the generation.

Parameter Settings for EVOSUITE The default setting in EVOSUITE uses the whole-suite
approach and optimizes eight different coverage criteria simultaneously. For the post-
processing steps, the EVOSUITE default settings use 60 s for test case minimization and a
further 60 s for assertions generation/minimization. These parameter values can be derived
from the EVOSUITE code and the replication package by Grano et al.4 If the test case mini-
mization and the assertion generation reach their respective timeouts, EVOSUITE terminates
the post-processing and returns the original, non-minimized, test suites. To ensure that this
phase completes successfully, we increase the timeouts from 60 s—used in Grano et al.
(2019)—to 10 min per test suite (or equivalently per class under test). Note that 10 min is

4https://zenodo.org/record/3337892#.XswWby-w3yU

Empir Software Eng (2022) 27:170170 Page 10 of 40

https://zenodo.org/record/3337892#.XswWby-w3yU

the upper bound to the time given for the post-process and, for small/medium classes, the
actual post-process time is below 2 min.

In this work, we use more suitable settings for the considered task: we use DynaMOSA
as the core evolutionary algorithm following the recommendations from more recent work
(Campos et al. 2018). DynaMOSA uses a many-objective genetic algorithm to evolve a pop-
ulation of 50 test cases. Test cases are evolved using single-point crossover with probability
pc = 0.75, uniform mutation with probability pm = 1/n (n being the length of the test
cases), and tournament selection. DynaMOSA is also configured to optimize for eight cov-
erage criteria, namely branch, line,method, exception, input, and output coverage plus weak
mutation score (Panichella et al. 2018a; Rojas et al. 2015). We select DynaMOSA over the
whole-suite approach as the former can achieve higher coverage with shorter tests.

Coverage Results Table 1 lists summary statistics of the test suites generated using EVO-
SUITE with our settings and compares them to the test suites obtained using the settings
from the prior work. The reported numbers are the averages (median values plus interquar-
tile ranges) over 50 independent runs. We run EVOSUITE multiple times on each class to
address the randomized nature of evolutionary algorithms used to synthesize test suites. As
a consequence, our test suites have slightly higher coverage (5%, significant in 45 out of 100
classes, as confirmed by Wilcoxon test p < 0.05) and are a bit shorter than in prior work
(Grano et al. 2019). The larger coverage is due to both using DynaMOSA as the underlying
search algorithm and extending the search budget to 10 min. On average, the generated test
suites have more test cases with our setting (see the number of test cases in Table 1) but the
corresponding test cases are shorter (see the total test length in Table 1). This result is due
to the extended time given to the post-process optimization.

3.4 Detection Tool Selection

We select two test smell detection tools. The first tool, proposed by Bavota et al. (2015),
uses hand-crafted, static detection rules; they report that it achieves 100% recall and 88%
precision when detecting test smells in test cases written by developers. It has since been
widely used in previous work (Bavota et al. 2015; Tufano et al. 2016; Spadini et al. 2018)
to study the distribution of test smells in manually-written tests from open-source projects.
Grano et al. (2019) use this same tool to detect smells in automatically generated test suites.
On those, they report an average precision of 75%, with 100% precision on four test smell
types, namely Assertion Roulette, Mystery Guest, Sensitive Equality, and For Tester Only.

Table 1 Comparison between the test suites generated with our setting vs. Grano et al. (2019) setting. We
report the median values, the interquartile range (IQR), and confidence intervals (CI) using bootstrapping at
95% significance level

Criterion Settings by Grano et al. (2019) Our settings

M IQR CI M IQR CI

Branch Coverage 0.69 0.71 [0.66, 0.72] 0.74 0.70 [0.71, 0.76]

Overall Coverage 0.67 0.66 [0.65, 0.70] 0.74 0.65 [0.71, 0.76]

of Test Cases 14 23 [13.86, 14.13] 15 26 [14.83, 15.17]

Total Test Length 50 135 [47.25, 52.60] 46 110 [43.63, 48.24]

The boldface highlights the best values for both coverage (larger is better) and test size (smaller is better)

Empir Software Eng (2022) 27:170 Page 11 of 40 170

Table 2 Test smells considered in this paper

Test Definition by Deursen et al. (2001) Rules for interpretation

smell

Mystery Test case that accesses external Discarded for automatically generated

Guest resources such as files and databases, tests, since tools like EVOSUITE

so that it is no longer self-contained. use runners that by definition mocks

out all accesses to external resources.

Eager A test that checks multiple (1) The test must have more than one

Test different functionalities in one case, which assertion and (2) at least one

makes it hard to read or understand. assertions is not on the result of a get

method.

Assertion A test that has multiple assertion A test must have two or more

Roulette statements that do not provide any assertions and neither has any explanatory

description of why they failed message accompanying them

Indirect Tests the class under test using methods The presence of any assert that uses

Testing from other classes. a method that is not part of the class

under test.

Sensitive When a test checks for equality Any assert that checks the exact value

Equality through the use of the toString of a String that is returned through a

method. toString call is said to be sensitive

Resource A test that makes optimistic assumptions Discarded for automatically

Optimism about the state/existence of external generated tests, since tools like EVOSUITE

resources use runners that by definition mocks

out all accesses to external resources.

The second detection tool we study is TSDETECT (Peruma 2018), which is publicly avail-
able on GitHub.5 Recently, Spadini et al. (2020) calibrated the detection rules in TSDETECT

based on developers’ perception and classification of test smell severity, resulting in thresholds
that are better aligned with what developers consider actual bad test design choices.

While TSDETECT can detect 21 test smell types, the tool used by Grano et al. (2019)
detects just seven; in our analysis, we focus on these seven, five of which overlap between
both tools: Assertion Roulette, Eager Tests, Sensitive Equality, Mystery Guest, Resource
Optimism. The Indirect Testing test smell is only supported by the tool used by Grano et
al.; we discard the For Tester Only smell as it does not apply to automatically generated test
suites, which, by design, are linked only to the class they were generated to test. Comparing
the results from two automated detection tools reduces the risk of drawing conclusions
specific to one tool alone, helping us focus on identifying common limitations instead. An
overview of the shortlisted smells can be found in Table 2.

3.5 Manual Validation

To create a golden set of test smells in automatically generated test suites, we manually
evaluated a large number of test suites—100 each for EVOSUITE and JTEXPERT, and 49

5The tool can be found at: https://github.com/TestSmells/TestSmellDetector

Empir Software Eng (2022) 27:170170 Page 12 of 40

https://github.com/TestSmells/TestSmellDetector

manually written test suites. For each test suite, we analyze whether any of the test cases in
the test suite suffers from one of the six smells specified in Table 2. Out of these six smells,
we do not explicitly annotate Mystery Guest and Resource Optimism for the automatically
generated tests, as those tools cannot generate tests that suffer from these issues by construc-
tion, i.e., by using mocks, dedicated runners, or disabling file manipulation rights. Instead,
we manually annotate the remaining four types of test smells since EVOSUITE and JTEX-
PERT do not have mechanisms that prevent them by constructions. We conduct this manual
analysis in a multi-stage cross-validated manner:

Step 1. Each test suite was independently inspected by two authors of this paper. For each
test suite, the analysis is done across the dimensions corresponding to the selected
test smells (5 for generated tests, 7 for manually written ones). Since we only look
for the presence of a smell, for each dimension, we use a binary marker. For our
analysis, as a guideline, each author adheres to the detection rules listed in Table 2.
We note that the EVOSUITE analysis involved four authors annotating 50 suites
each; this annotation was part of our original conference paper (Panichella et al.
2020b) and served to calibrate our annotation protocol. The other two sets were
annotated in full by two authors.

Step 2. For each set of test suites, the two authors responsible for the analysis discuss their
findings and any disputed cases to come to a resolution. We generally encoun-
tered disagreement levels between 10% and 20%, which could mostly be resolved
through discussion with reference to the guidelines.

Step 3. Any remaining controversial cases that could not be resolved between two annota-
tors were discussed by all authors to come to a final agreement and improvement
in the protocol. This discussion involved ten cases in total (of which seven on
the first dataset, from EVOSUITE), and led to slight refinements in the guidelines
for corner-cases, as test smells manifest in many complex ways. Furthermore,
during this phase, test cases that are not smelly but still demonstrate interesting
anomalies were also discussed. At the end of this phase, the classification of all
test suites is set.

4 Empirical Results

This section discusses the results of our empirical study, addressing in turn each research
question.

4.1 RQ1: HowWidespread are Test Smells in Automatically Generated Test Cases?

To evaluate the accuracy of automated test smell annotation tools (RQ2) and to study the
gaps in test smell coverage (RQ3), we need to understand whether and the extent to which
generated tests are characterized by the presently used test smells. This necessarily requires
manual annotation, which we conducted as described in Section 3.5. To be consistent with
prior work (Grano et al. 2019), we annotated each smell at the level of the entire test suite.
If any one test in said suite contained that smell, the entire suite was annotated accordingly.
It is worth noting that this leads to a considerable overestimation of the incidence of test
smells at a test case level due to coarse-grain analysis.

Table 3 shows the resulting general incidence rate of each smell across all test suites,
grouped by their sources. Overall, test smells are commonly present in a non-trivial portion

Empir Software Eng (2022) 27:170 Page 13 of 40 170

Table 3 Distribution statistics of the selected test smells in 100 test suites spanning all collected systems

Smell Manually validated Reported by Grano et al. (2019)

EVOSUITE JTEXPERT EVOSUITE JTEXPERT

Eager Test 21% 61% 57% 62%

Assertion Roulette 17% 64% 74% 74%

Indirect Testing 32% 47% – –

Sensitive Equality 19% 53% 7% 66%

Mystery Guesta 0% 0% 11% 15%

Resource Optimisma 0% 0% 3% –

aEVOSUITE and JTEXPERT never generate tests requiring external resources

of automatically generated test suites, with JTEXPERT incurring significantly more than
EVOSUITE. The respective incidence rates are all quite similar between different smells, but
their distributions vary. For both test generation tools, the percentage of test suites affected
by test smells is remarkably different from what has been reported in prior studies that did
not manually validate the warnings raised from test smell detection tools.

For EVOSUITE, about half the test suites contained no smells at all; another five contained
every possible smell; the remainder involved certain especially frequent pairings. This is a
remarkable difference with the incidence of 81% reported by Grano et al. for this test case
generation tool. Eager tests and assertion roulette often co-occurred (appearing together in
12 out of their respective 20 and 16 occurrences); these both describe tests that involve
“too much” testing, either in terms of methods tested or in terms of (non-trivial) properties
asserted. While eager tests and assertion roulette are present in a non-negligible portion of
the generated suites, these percentages (obtained after manually validating the test cases) are
three-fold smaller than previously reported. Remarkable are also the differences for other
test smells. 32% of the generated suite contains at least one test method with indirect testing,
while the original studies never reported any indirect test. Finally, our manual validation
indicates that EVOSUITE and JTEXPERT never produce test suites with resource optimism
or mystery guest instances, which is in contrast with the percentages reported in prior studies
for the same set of classes under test. These differences in the results are due to limitations
of test smell detection tools, as we will elaborate in Section 4.2.

We noticed that test methods in a test suite were often very similar to each other, with
typically just a few archetypes repeated with a slightly different setup and conclusion. As a
consequence, suites that we marked with a test smell also tended to contain it in many of its
test methods. Conversely, ca. half of the suites contained no test smells at all for the same
reason, although we caution that a few of these were empty (as in, no tests were generated).
This suggests that generating diverse tests for a given class is still an open challenge, at least
with respect to common smell-related pitfalls.

The incidence rate of the test smells is much larger for the test suites generated with
JTEXPERT compared to the ones generated with EVOSUITE. In particular, 61% of the suites
generated by JTEXPERT contain at least one eager test method. This percentage is very close
to 61% reported in prior studies (Palomba et al. 2016; Grano et al. 2019). Assertion roulette
is three times more frequent among the test suites generated by JTEXPERT than those pro-
duced with EVOSUITE. Despite being quite common, assertion roulette is remarkably less
frequent when manually validating the test cases compared to the incidence rate reported

Empir Software Eng (2022) 27:170170 Page 14 of 40

by test smell detection tools. For all other types of test smells, our results are very differ-
ent from what was reported by Grano et al. (2019). Indirect testing was never reported in
the original study; however, our manual validation revealed that almost 50% of the suites
contain indirect tests. This further highlights existing detection tools’ inability to correctly
identify indirect testing.

Very remarkable are also the results for mystery guests. Grano et al. (2019) reported that
15% of the suites generated by JTEXPERT use external resources such as files and databases.
However, after manually validating and analyzing the test suites, we found that this test
smell cannot occur with JTEXPERT. JTEXPERT does not create files and databases for secu-
rity reasons. Doing so to improve code coverage is neither allowed nor recommended as
this can compromise the hosting machine used to run the test-case generation tools, e.g., by
deleting files systems or saturating the hard drive.

Are automatically generated tests “scented since the beginning” as suggested by Grano
et al. (2019)?. Our manual analysis indicates that it is not the case. Both EVOSUITE and
JTEXPERT create a non-negligible ratio of test suites with at least one test smell instance.
However, the incidence rate is much lower than previously reported. There is a very large
difference between the test suite produced by EVOSUITE compared to those by JTEXPERT.
This indicates that not all tools are the same, and certain implementation and algorithmic
choices matter when looking at the maintainability of the generated test suite.

In particular, we observe that EVOSUITE produces test suites with much fewer test smells
than JTEXPERT. This lower incidence of test smell is due to the different choices w.r.t. the
search algorithms used by the two tools. EVOSUITE uses DynaMOSA (Panichella et al.
2017), which minimizes the length of the test cases as a secondary objective in addition to
the main objectives, i.e., the distances to the test coverage targets (e.g., branches and lines).
Instead, JTEXPERT uses the whole-suite approach, which does not optimize for test length
(Panichella et al. 2017). Another critical factor is the post-process test suite optimization
implemented in EVOSUITE, as already explained in Section 3.3. EVOSUITE minimizes the
test suites by removing redundant test cases; it reduces the size of the test cases by removing
spurious statements that do not contribute to the final code coverage, and it also filters out
assertions that do not contribute to killing mutants in (strong) mutation testing. These test
suite optimization heuristics are widely known in the literature for controlling the size of
the test suites (Yoo and Harman 2012), the number of assertions (Fraser and Arcuri 2015b),
and improving fault localization (Xuan and Monperrus 2014).

Finding 1. Test smells are commonly present in a non-trivial portion of automati-
cally generated test suites. However, they occur substantially less often than previously
reported. The incidence rate of the test smells also differs remarkably between test case
generating tools; the use of test suite optimization heuristics plays a major role.

4.2 RQ2: How Accurate are Automated Tools in Detecting Test Smells in
Automatically Generated Tests?

Tables 4 and 5 report the false-positive rates (FPR), false-negative rates (FNR), precision,
recall, and F-measure that each test smell tool achieves. We were not able to compute all
performance metrics for certain smells because either (1) our gold standard does not include
instances of those smells (as in the case of Mystery guest and Resource optimism), or (2)
the detection tool was unable to detect any instances of them.

Empir Software Eng (2022) 27:170 Page 15 of 40 170

Table 4 Detection performance of different automated test smell detection tools for test cases generated by
EVOSUITE. FPR denotes the False Positive Rate and FNR is the False Negative Rate

Test smell Tool used by Grano et al. (2019) TSDETECT calibrated by Spadini et al. (2020)

FPR FNR Precision Recall F-measure FPR FNR Precision Recall F-measure

Assertion 0.72 0.00 0.22 1.00 0.36 0.05 0.50 0.67 0.5 0.57

Roulette

Eager Test 0.53 0.05 0.33 0.95 0.49 0.05 0.45 0.73 0.55 0.63

Mystery 0.12 – – – – 0.03 – – – –

Guest

Sensitive 0.00 0.67 1.00 0.33 0.50 0.00 0.67 1.00 0.33 0.50

Equality

Resource 0.02 – – – – 0.02 – – – –

Optimism

Indirect 0.00 1.00 – 0.00 – – – – – –

Testing

Assertion Roulette The tool used by Grano et al. largely overestimates the number of
instances for assertion roulette. The tool raises warnings for 76% of the test suites generated
by EVOSUITE, which is in line with the percentage (73.4%) reported in their work (Grano
et al. 2019). However, our analysis reveals a high rate of false-positives; although the tool
achieves 100% recall, its low precision results in an F-measure of just 0.36.

To better understand this high FPR, we manually inspected the warnings raised by the
tool. Most saliently, we observed that test methods with only a single assertion are common
among the false positives; Fig. 1 shows such an example, in which the test contains just one
assertion. Such cases by definition cannot be classified as an instance of assertion roulette,
as there is no cause for confusion in case of a failure.

Table 5 Detection performance of different automated test smell detection tools for test cases generated by
JTEXPERT. FPR denotes the False Positive Rate and FNR is the False Negative Rate

Test smell Tool used by Grano et al. (2019) TSDETECT calibrated by Spadini et al. (2020)

FPR FNR Prec. Rec. F-measure FPR FNR Prec. Rec. F-measure

Assertion 0.03 0.03 0.98 0.97 0.97 0.06 0.11 0.96 0.89 0.92

Roulette

Eager Test 0.00 0.34 1.00 0.66 0.79 0.05 0.38 0.95 0.62 0.75

Mystery 0.11 – – – – 0.01 – – – –

Guest

Sensitive 0.00 0.00 1.00 1.00 1.00 0.04 0.04 0.96 0.96 0.96

Equality

Resource 0.01 – – – – 0.01 – – – –

Optimism

Indirect 0.00 1.00 – 0.00 – – – – – –

Testing

Empir Software Eng (2022) 27:170170 Page 16 of 40

Fig. 1 Example of a false positive for the tool used by Grano et al. for Assertion Roulette

Tables 4 and 5 suggest that TSDETECT works fairly well on this test smell, reaching a
higher precision: 67% for EVOSUITE and 96% for JTEXPERT. For the test suites generated
by EVOSUITE, TSDETECT achieves a lower recall compared to the tool used by Grano et
al., giving it a 21% higher F-measure. This is mainly due to the higher threshold value
(three assertions) used by Spadini et al.. However, this simple heuristic also causes the tool
to miss some instances with fewer assertions; an example is shown in Fig. 5, in which a test
case checks (asserts) two different properties: object equality and the value of its attributes.
At the same time, we acknowledge that tests with few assertions are questionable instances
of assertion roulette. As pointed out by Spadini et al. (2018), “the test method name accu-
rately reflects the reason for the test to fail” even when no further comments are provided
in the tests.

For JTEXPERT, both detection tools achieve a very high F-measure (0.97 for the tool used
by Grano et al. and 0.92 for TSDETECT) with very low false positive and false negative rates.
These results are mostly due to how JTEXPERT adds assertions (compared to EVOSUITE):
it adds as many assertions as possible (using getters and return values) without any post-
process minimization (such as is implemented in EVOSUITE). We manually analyzed the
tests generated by JTEXPERT and found that these tests often either have zero assertions (if
the tool could not find public getters to use) or many (using all possible getters). Test cases
with one single assertion are rare for JTEXPERT, which are the most common instances of
false positives for the tool used by Grano et al..

Eager Test The tool used by Grano et al. achieves high recall (95%) but low precision for
EVOSUITE. The tool raises warnings for 62% of the test suites generated by EVOSUITE,
which corresponds to a false-positive rate of 53%; i.e., the majority of warnings raised are
not actual test smell instances. For the test suites generated with JTEXPERT, the detection
tool achieves a precision of 100%; however, the recall is much lower (66%) compared to
the value achieved for EVOSUITE (95%). Therefore, the performance of this tool varies
depending on the test generation tool under analysis.

This test-smell detection tool uses the number of method calls (not including construc-
tors) in a test method to determine whether it is eager or not. However, eagerness is properly
concerned with functionality—whether more than one requirement is tested —and not with
the number of invoked methods. As an example of false positive (e.g., test method incor-
rectly classified as eager), let us consider the test depicted in Fig. 2 and that invokes two
methods on the object s1. The first method sets the private attribute markedForMunging
of the class to false (it is true by default). The method munge manipulates symbols
in the global scope of the class if and only if the attribute markedForMunging is set

Empir Software Eng (2022) 27:170 Page 17 of 40 170

to true. Testing this scenario requires both method invocations, otherwise, one of the
branches inside the method munge cannot be tested.

TSDETECT achieves a higher precision (73%), again by using a higher threshold (Spa-
dini et al. 2018) for the same metric (the number of method invocations). This also causes
it to again miss some instances, resulting in a lower recall (55%). For example, TSDETECT

correctly annotates the test in Fig. 2 as non-smelly, but misses the case in Fig. 4. The result-
ing F-measure is again higher for TSDETECT, reinforcing that research with developers and
human participants is critical to calibrating test smell detection tools properly.

Once again, both test smell detection tools achieve higher accuracy in detecting Eager
Tests in the suites generated by JTEXPERT. The F-measure is quite similar, with 0.79 for
the tool used by Grano et al. and 0.75 for TSDETECT. The former detection tool has both a
better precision and a better recall than the latter. It is worth noting that the better accuracy
of the test smell detection tools for JTEXPERT compared to EVOSUITE is because JTEX-
PERT generates large test cases, which are not minimized during post-processing. Hence,
JTEXPERT rarely generates test cases on the edge of thresholds used by the test smell detec-
tion tools. In other words, the (non-minimized) tests generated by JTEXPERT are trivially
detectable due to their large sizes.

Mystery Guest and Resource Optimism For these two types of smells, both detection tools
raise several warnings. However, they are all false positives by definition, as our gold stan-
dard does not contain any instances of such smells. The detection tools both annotate test
methods that contain specific strings or objects, such as: “File”, “FileOutputStream”
“DB”, “HttpClient” as smelly; however, EVOSUITE separates the test code from
environmental dependencies (e.g., external files) in a fully automated fashion through
bytecode instrumentation (Arcuri et al. 2014). In particular, it uses two mechanisms:
(1) mocking, and (2) customized test runners. For one, classes that access the filesys-
tem (e.g., java.io.File) have all their methods (and constructors) mocked (Arcuri
et al. 2014). EVOSUITE also replaces general calls to the Java Virtual Machine (e.g.,
System.currentTimeMillis) with mock classes/methods with deterministic behav-
iors. Finally, the test runner used by EVOSUITE replaces occurrences of console inputs (e.g.,
java.io.InputStream) in all instrumented classes with a customized console. Notice
that EVOSUITE resets all mock objects before every test execution.

The application of static rules based on string patterns is thus insufficient to identify
instances of these smells. Grano et al.’s tool, especially, does not identify mocks, thus raising
a warning every time a test contains the string “File”. Figure 3 shows an example of such a
false positive. While TSDETECT avoids misclassification of mocked file access by checking

Fig. 2 Example of false positive for the tool used by Grano et al. for Eager Test

Empir Software Eng (2022) 27:170170 Page 18 of 40

Fig. 3 Example of false positive for Mystery Guest

for the string “Mock”, it does not inspect whether a customized test runner is used, which
helps it achieve a lower FPR.

Unlike EVOSUITE, JTEXPERT does not use mocks or customized runners. Instead, it
simply does not create databases or external resources for security reasons. Creating ran-
dom databases is not recommended as it risks saturating the hard disk, removing operating
system files, or dropping existing databases. For file systems, JTEXPERT could instead cre-
ate temporary files as it does not use mocks; however, the README file of the original
repository6 explicitly recommends not to use JTEXPERT for classes that may manipulate
files systems. In our case, we run the JTEXPERT without file manipulation permissions.
Therefore, test cases that include statements to create and manipulate files (e.g., File f
= new File();) were not executed, triggering run-time errors. Even if a few test cases
created with JTEXPERT statically include file manipulation statements, they must be consid-
ered false positives since no file was created dynamically at run-time. This scenario further
highlights the limitations of static-based test smell detection tools.

Indirect Testing 32% of the test suites by EVOSUITE and 47% of test suites by JTEXPERT

contain test cases affected by indirect testing, according to our gold standard (see Table 3).
This makes it the most widespread smell in automatically generated tests. However, the tool
used in prior work (Grano et al. 2019) fails to detect any instances of this smell. Further-
more, TSDETECT does not detect indirect testing. Therefore, further research is needed to
capture indirect testing with automated tools effectively.

Sensitive Equality Based on its definition, this smell is particularly easy to detect with
static rules, as it just requires checking whether the toString method is used for
(equality-related) assertions. Surprisingly, both test smell detection tools detect only a small
portion of this test smell’s instances for EVOSUITE. Through manual analysis, we dis-
covered that these tools successfully detect sensitive equality if and only if the method
toString directly appears within an assertion. However, both detection tools can be easily
fooled by using first storing the result of toString in a local variable and then asserting
its value against the target—a common pattern with EVOSUITE.

On the other hand, both test smells detection tools achieve a very high F-measure for
the test suites generated by JTEXPERT. This is because, unlike EVOSUITE, JTEXPERT does
not use local variables to store the results of toString. When the toString method is

6https://github.com/dldbb/Automate-Testing-Tools-Test/blob/master/README.md

Empir Software Eng (2022) 27:170 Page 19 of 40 170

https://github.com/dldbb/Automate-Testing-Tools-Test/blob/master/README.md

directly used inside the assertions, test smell detection tools correctly identify this type of
smell.

Our results for sensitive equality raise critical concerns about the validity and effective-
ness of using string matching to detect this type of test smells. First, small code tricks (e.g.,
using local variables) can easily fool test smell detection tools. Second, developers may
use slightly different names (e.g., toText(), prettyPrint()) for methods that prints
objects as String instances or implements string-based equality checks.

Finding 2. Test smell detection tools overestimate the occurrence of test smells, espe-
cially for test suites generated with EVOSUITE, sometimes by large margins. Accurate
automated detection of indirect testing, mystery guest, resource optimism, and sensi-
tive equality remains an open challenge. Involving human participants is likely critical
for improving the accuracy of test smell detection tools.

4.3 RQ3: HowWell do Test Smells Reflect Real Problems in Automatically Generated
Test Suites?

The goal of test smells is to reflect real, rectifiable issues in test cases. It is thus important
to ascertain that detected smells are indicative of problems in automatically generated test
cases. Our manual validation was based on the definition and interpretation of a test smell
provided by van Deursen et al. to ensure a fair comparison with previous work on test smell
detection, but these smells have not been reassessed for generated test suites. In this section,
we do so for the four test smells that EVOSUITE test suites can plausibly contain.

Eager Test We avoided mislabeling tests as eager when they check an object’s state
using multiple getter calls after some action (which is rarely avoidable). Even so, we
find that automatically generated tests are often eager in that they test (entirely) unrelated
functionalities. One such example can be seen in Fig. 4, where the entity under test is
SubstringLabeler. We observe that two of the asserts are checking the result of a get-
ter on the entity, whereas the other checks whether the object is busy. Cases such as these
were quite common (21% frequency as reported in Table 3), and reflect a lack of singular
purpose in test cases, which indeed risks maintainability issues.

Fig. 4 Example of eager test

Empir Software Eng (2022) 27:170170 Page 20 of 40

Assertion Roulette Assertions in the test code can add a text-based explanation that is
shown if it fails, which can help identify specifically which assert first triggered an error in
case there are multiple. In our analysis, we thus do not consider tests with just one assert
(with no accompanying message) as smelly, since it is trivial to trace failures for these; but,
EVOSUITE tends to generate many test cases with multiple, and often very many, assertions.
This is largely because it is prone to testing for multiple results of a series of method calls,
without a clear understanding of whether those results are related to a single “behavior”
(i.e., a single semantic action). We tend to find that when a test case has this smell, it is
often also classified as an eager test case. One example of this can be found in Fig. 5, which
contains an assertTrue on the result of a (tautological) equality test and an unrelated
assertEquals on an attribute of the same object.

Indirect Testing In our manually analyzed dataset, we found 30 test suites with cases of
indirect testing, in which the actual tested behavior (e.g., the final assert statement) relied on
an unmocked call to a method of some other class to confirm correct behavior. This clearly
violates the containment expected in unit testing. We specifically observed two kinds of
indirect testing: (1) those where the entity under test has nothing to do with the test case at
all, and (2) those where the test case asserts a property of a class that is related to the entity
under test after the entity has interacted with it.

An example of the former can be seen in Fig. 6a, where the class under test is
PhotoController, but the time set on the Camera class is being asserted. In this
test, the call to home0.setCamera leads to coverage on the class under test (the
PhotoController is an observer of home0) such that the statement survives EVO-
SUITE’s minimization. When EVOSUITE’s regular mutation-based assertion minimization
does not succeed in retaining any relevant assertions, as a last resort EVOSUITE adds an
assertion on the last return value produced in the test case. In this case, however, the time
value set on the Camera has nothing to do with the PhotoController. Support for
more advanced assertions could have avoided this problem.

A more clear-cut case of indirect testing can be seen in Fig. 6b. Here the class under test
is TeamFinderImpl, but the ultimate assert checks a LinkedHashMap for emptiness
to confirm some aspect of the behavior of setJoin (to which the LinkedHashMap is
passed). Although we marked this as smelly, in accordance with the pre-established defini-
tion, it is debatable whether this is actually an issue: there may not be a direct way to test
this map’s value through TeamFinderImpl (e.g., through a getter), so that the tester is
faced with the choice of either incurring this smell or not testing this property. This is not
endemic to automatically generated test suites either; questions regarding testing of hidden
(or ‘private’) properties are abundant on e.g., StackOverflow, and no consensus exists on
what is appropriate.

Fig. 5 Example of assertion roulette

Empir Software Eng (2022) 27:170 Page 21 of 40 170

Fig. 6 Examples of the indirect testing smell

Sensitive Equality Asserting the configuration of an object using its representation, as
returned by a toStringmethod, is non-robust: that representation is prone to changing in
trivial ways, like adding/removing punctuation, which would cause a spurious test failure.
We find that automated test cases do generate some tests (19% frequency for EVOSUITE as
reported in Table 3) that rely on the value returned by toString methods. Oddly enough,
the invocation of toString is rarely done directly in the assert; rather, its result is often
stored in a local variable which is then compared to the expected value in the assert (as seen
in Fig. 7). Whether these uses of toString constitute a real problem is debatable; for
any such test, EVOSUITE also generated many test cases that explicitly check for equality
(to equivalent objects) and/or the values returned by all ‘getter’ methods. Tests such as this
seemed to genuinely test the current implementation of the toString method—we very
rarely found cases where the string representation was used specifically to confirm program
state after some call or to test equality to another object.

Mystery Guest and Resource Optimism Mocking and bytecode instrumentation are
the core techniques used by EVOSUITE to handle environmental dependencies (Arcuri
et al. 2014). Originally, these techniques were introduced to solve other challenges,
such as removing non-determinism (the primary cause of flaky tests), avoiding the cre-
ation/deletion/modification of external files, and ultimately increasing code coverage. Our

Empir Software Eng (2022) 27:170170 Page 22 of 40

Fig. 7 Example of sensitive equality

analysis reveals that these strategies positively impact the maintainability of generated tests
by preventing these smells.

Finding 3. While EVOSUITE generates eager tests and ones with multiple asser-
tions, their severity is debatable. Mocks and bytecode instrumentation techniques
used in EVOSUITE effectively mitigate the concerns of mystery guests and resource
optimism.

4.4 RQ4: How does Test Smell Diffusion in Manually Written Tests Compare
to Automatically Generated Tests?

The previous results quantify the incidence of various test smells in automatically generated
tests and additionally suggest that many of these poorly encapsulate problems in those. It
is natural to ask, then, how these results relate to developer-written tests, both in terms of
distributional characteristics and in severity and detectability.

Table 6 reflects that we found a (sometimes very) high number of smelly test suites
in our manually annotated set of developer-written test suites. For instance, compared to
EVOSUITE, manually written tests were four times as likely to contain the Eager Test smell
and three times as likely to have the Assertion Roulette smell. Automatically generated test
suites, on the other hand, are much more likely to contain the sensitive equality smell, as
they frequently base assertions on invocations to a toString method. On the other hand,
EVOSUITE and JTEXPERT did not contain any instances of Resource Optimism test smell,
whereas we do observe some test suites that make optimistic assumptions about file system
availability and run time performance among developer-written ones.

We also study how the test smell detection tools perform on the manually written test
suites in Table 7. We see that just as in the case of the automatically generated test suites,

Table 6 Distribution of test
smells in manually-written test
suites

Smell Manual tests

Eager Test 80%

Assertion Roulette 82%

Indirect Testing 20%

Sensitive Equality 10%

Mystery Guest 0%

Resource Optimism 10%

Empir Software Eng (2022) 27:170 Page 23 of 40 170

Table 7 Detection performance of different automated test smell detection tools for manually-written test
cases. FPR denotes the False Positive Rate and FNR is the False Negative Rate

Test smell Tool used by Grano et al. (2019) TSDETECT calibrated by Spadini et al. (2020)

FPR FNR Prec. Rec. F1 FPR FNR Prec. Rec. F1

Assertion Roulette 0.74 0.23 0.62 0.76 0.68 0.00 0.20 1.00 0.80 0.89

Eager Test 0.60 0.31 0.81 0.69 0.75 0.10 0.61 0.94 0.39 0.55

Mystery Guest 0.11 – – – – 0.01 – – – –

Sensitive Equality 0.09 0.80 0.20 0.20 0.20 0.00 0.00 1.00 1.00 1.00

Resource Optimism 0.05 0.80 0.33 0.20 0.25 0.05 0.80 0.33 0.20 0.25

Indirect Testing 0.00 1.00 – 0.00 – – – – – –

TSDETECT implemented with the new thresholds introduced by Spadini et al. (2020) out-
performs the tool used by Grano et al. (2019) in terms of both precision and recall. When
compared to the automatically generated test suites by EvoSuite, the tool used by Grano et
al. performs better on manually written test suites, which appears to reflect that this tool
was developed with human-written tests in mind. Surprisingly, we observe that the tool suf-
fers in precision when detecting Sensitive Equality. This might be because the toString
method is almost never directly invoked in an Assert method, which the Grano et al. tool
cannot handle. We also note that both tools, which each claim to be able to detect Resource
Optimism, perform poorly in detecting actual cases of this smell. This may be because their
definitions and detecting strategies for this smell are overly narrow. Finally, the tool used by
Grano et al. performs very poorly at detecting Indirect Testing, finding 0 instances of it. This
is identical to this tool’s performance on the automatically generated test suites—indeed, to
the best of our knowledge, it is incapable of detecting this smell, despite claiming to.

Finding 4. Human-written test suites differ markedly from automatically generated
ones in some smells (sensitive equality, indirect testing), while yielding comparable
or higher rates on others (eager testing, assertion roulette). The performance of the test
smell detection tools is better for some of the basic smells such as assertion roulette,
however, for smells such as resource optimism and indirect testing we see very poor
performance.

4.5 RQ5: HowWell do Test Smells Capture Real Problems in Manually Written Tests?

Our previous research questions focused on the distributions of test smells among manually-
written and automatically generated test cases and the accuracy of existing automated tools
in detecting such smells. However, the existing catalog of test smells was introduced two
decades ago but never updated despite the progress made in unit testing frameworks. In
this section, we investigate whether test smells still adequately capture flaws in real-world
tests. This investigation is very critical since it potentially impacts the practical usefulness
of existing test smell detection tools.

Eager Testing The results in Section 4.3 indicate that eager tests are ubiquitous in automat-
ically generated test-suites, but that their detection criterion is overly restrictive and reflects
poorly actual concerns found in these tests. Eager tests are defined as testing more than one

Empir Software Eng (2022) 27:170170 Page 24 of 40

Fig. 8 Example of a semantically coherent test from the freemind project, that is nevertheless “eager”
according to traditional test smell detection standards

feature and are detected by tools based on whether more than one method invocation are
made to the class under test. In a unit test, this occurs commonly, either in an assert state-
ment or outside, due to the different setups needed for an object or a variety of intermediate
results that need to be tested. This is especially true for tests that are designed to exercise
more complex scenarios (integration tests).

Present analyzers failed to separate genuinely problematic cases from common testing
conventions due to the rigid standards associated with both the definition and, even more so,
detection of eager tests. In other words, its criterion is a poor discriminator. We now inves-
tigate this phenomenon more deeply on this human-authored set of test cases. In particular,
we include a new criterion - Semantic Coherence - which challenges the notion of an eager
test. We consider a test Semantically Coherent if it asserts only (transitive) properties and
attributes of the class under test that all relate to a single testing scenario. To detect sce-
nario(s) tested, we analyze the set of properties asserted within a test case and then compare
this to the stated purpose of the test, per its nomenclature and comments. Two annotators
annotated the same 49 samples and resolved differences in discussion. This proved to be
a straightforward exercise with little ambiguity: the method name and structure typically
made its purpose very clear. If the asserts relate to more than one distinct testing scenario,
the test is marked as incoherent for the purposes of unit testing, whose guidelines state that
such a test should be refactored into multiple independent test cases. Compared to the com-
mon detectors for eager tests, this label is more permissive of multiple asserts and transitive
properties and attributes, which includes asserts on fields, or parameters passed to construc-
tors, as in Fig. 8. Such properties all concern the full scope of the expected state of the class
under test following a singular scenario (here: create a ‘Counter’) and are frequently tested
together in test cases in practice.

In our manual analysis, we marked 39 out of the 49 manually written test suites stud-
ied7 as Eager (ca. 80%). Yet, out of these 39, all but 4 were entirely semantically coherent.
Meanwhile, among the remaining 10 non-eager suites we found one other non-coherent test
case. These results indicate several key findings: for one, Eager Tests are so abundant in
what were largely well-written test cases as to render the label irrelevant; secondly, eager-
ness correlated with semantic incoherence in just 10% of the cases, making it a very poor
predictor for such problems in modern-day unit tests. In fact, that rate is no different than
what we found among the 10 non-eager test suites (albeit with a caveat on the small sample
size). We thus found no evidence that the Eager Test smell is a useful discriminator.

An example of a test case that was marked eager, but we consider to be coherent can
be seen in Fig. 8, which involves on method invocation to the Counter class (the class
under test) and one that creates an initial state for the class by invoking a method on
ServiceTestUtil. These method invocations have to co-occur for the purpose of the

7One test suite was disregarded as it contained no test cases.

Empir Software Eng (2022) 27:170 Page 25 of 40 170

test scenario and cannot be refactored into separate tests; as such, this test should not be
considered smelly.

An example of a test case that can be considered to be eager, as well as semantically
incoherent is shown in Fig. 9. Here we observe that the same scenario is being tested twice;
i.e., two distinct inputs to the tokenize method are being tested with no object state
relation between them. In this case, the test would be better off getting split into two distinct
tests, or into a parameterized test. We see similar aspects in the other three test suites that are
both eager and incoherent. This might be due to the developers not deeming it worthwhile
to split tests into multiple tests, for fear of introducing clones; or, these test suites may still
be using JUnit 3 (as in the case of Fig. 9), where test parameterization is hard.

Assertion Roulette We found that 30 out of the 49 test suites contain the assertion roulette
smell (ca. 60%). Out of these, 10 test suites are based on JUnit 3. For these test suites/cases,
it is important that the failure reason behind an assert is documented, as JUnit 3 will not
relate the exact failing assert to the developer. A significant caveat, even there, is that many
asserts that were undocumented were of the kind assertNull or assertNotNull,
whose failure is rather self explanatory. Meanwhile, the other 20 test suites are based on
JUnit 4 where an assert failure is explained by the JUnit runtime, and the very notion of the
lack of documentation as a “smell” is thus rather doubtful.

Indirect Testing We found 10 test suites that contained the indirect testing smell (ca. 20%).
In contrast to the previous two smells, this is sharply lower than the figures for automatically
generated tests. This is evidently a concern that developers do seek to avoid, lending more
credence to its definition and usefulness. However, even 20% is somewhat inflated by an
overly zealous definition: in many of these cases, the indirect feature being tested belonged
to the Java language API, e.g., using List.size().

Figure 10 shows one such case: we see that the first assert checks that the iterator has
an element before the loop is executed. The hasNext invocation is on the iterator and

Fig. 9 Example of a semantically incoherent test from the Weka project

Empir Software Eng (2022) 27:170170 Page 26 of 40

Fig. 10 Example of a test with the indirect testing smell from the JVCI Java commons project

indirectly tests it. In the context of this test case, we see that the assert on this invocation is
required and tests to ensure that a part of the parser works correctly. Under the strictest def-
inition of indirect testing, this would be considered problematic. However, the usefulness
of such a standard is dubious; the Java core API is surely the most thoroughly vetted Java
code in existence so that requiring mocking of basic List or Iterator methods is vir-
tually pointless. The developers who wrote these tests evidently agree on this front; so, our
findings suggest that invocation of a Java API should be exempt.

Sensitive Equality We found five test suites that contain the sensitive equality test smell
(ca. 10%). This is again vastly lower than the rate of incidence in automatically generated
tests, suggesting that this too is a pattern developers try to avoid. What is more, in two
of these five test suites we observe that the toString method is invoked as part of a
test that explicitly means to test the toString method, immediately rendering the smell
incorrect. In the other three cases, a cursory investigation suggested that the only way to get
the value of the object under test was through its string representation. While this is arguably
indicative of poor implementation of the underlying object, that should hardly qualify as a
smell in the testing code.

Resource Optimism Five out of the 49 test suites contain the resource optimism test smell.
In all four cases, the test suite makes assumptions about the presence of a file system with
a certain structure and containing one or more files. Such tests will fail in the event that
(1) the file system is unavailable to the test, (2) the folder structure (along with its naming
convention e.g., base path starts with tmp) is incorrect or, (3) the operating system on
which the test is being executed is non-Unix based. One especially strange case, shown in
Fig. 11, encodes the strong assumption that enough processing power is available to generate
100,000 passwords in 2 s.

Finding 5. In most manually-written test cases that contain a test smell (based on
strict adherence to the test smell definition), real concerns were exceedingly rare and
test smells indicated those very poorly.

5 Qualitative Reflection

In the previous section, we presented quantitative results grounded in a thorough investiga-
tion of test smell prevalence. In the process of this annotation effort, one cannot help but

Empir Software Eng (2022) 27:170 Page 27 of 40 170

Fig. 11 Example of a test case from the life ray project that is optimistic of the resources it has at it disposal

observe many recurring patterns, both in the way test smells manifest, are (mis-)detected,
and miss other issues entirely. This section discusses such observations qualitatively, with
examples from our dataset, discussing each smell separately.

5.1 Manually Written Tests: are Smells a Problem?

We investigate how the “smelliness” of tests written by actual developers compares to auto-
matically generated test suites. Overall, if we adhere to the strictest definitions of these
test smells, then the manually written tests in our dataset are highly smelly—often more so
than automatically generated ones—and therefore low in maintainability. However, diving
deeper into the nature of the smells themselves, we found that those smelly human-written
tests were rarely problematic; instead, the detected smells were often just an artifact of the
feature being tested, e.g., as in Fig. 8, where the test is eager but semantically coherent.
These tests cannot be easily refactored or altered to mitigate their test smells, nor would
doing so improve their quality or coherence.

This prevalence of smelly-yet-decent tests stands in contrast to the automatically gener-
ated tests. For example, toString-based comparisons were far more rampant and nearly
always problematic there, whereas we found them to be both rare and essentially harmless
in developer-written tests. In contrast, the bulk of these test suites contained eager tests,
more so than in generated ones; yet, nearly none of the former were semantically incoherent,
whereas poorly related assertions were abundant in the latter. Anecdotally, the test smells
were simply less useful on human-written test suites.

In fact, this was a pattern across the board on human-written tests: the vast majority of
each category of test smell detected based on rule-based heuristics (whether ours or a tool’s)
held up just fine to manual inspection. Highly prevalent test smells virtually never correlated
with issues of semantic incoherence, and rarer ones often had a justifiable explanation. We
identified just a few test cases that could be refactored, such as the one in Fig. 9, where the
same feature is being tested twice with different inputs. Most of these were semantically
incoherent, as per our introduced definition (Section 4.5). Here parametric tests could be of
use to alleviate the test smell, although there may be technological limitations in place as the
project uses JUnit 3. In Fig. 11, we see a test that makes assumptions about the processing

Empir Software Eng (2022) 27:170170 Page 28 of 40

speed of the device on which the test is being executed. This test needs certain guards to
ensure that it is not flaky and does not fail in cases where insufficient processing power is
available.

All this calls into question the nuance with which current test smell detection operates.
Not only do current tools tend to be relatively inaccurate to our labeling (Table 4), this
labeling itself was based on the blind application of largely outdated and overly restrictive
rules that lead to an abundance of false positives when it comes to identifying real concerns.
Based on a deep dive into these smells and their relation to maintainability, only a very
small set of smelly tests could be considered to have real issues, and no single test smell
effectively separated those from the rest. Taking a step back, this dataset serves as a reality
check on the field of test smell detection: experienced developers wrote and maintained
these tests over many years—some of these test suites are more than 10 years old—and we
found the bulk to be highly readable and coherent; yet, test smells are apparently rampant
across this dataset. If the objective of test smells is indeed to identify maintainability issues,
then they have failed in both definition and implementation.

5.2 On Rule-Based Detection of Test Smells

Automatically detecting test smells requires explicitly encoding their most salient, reliable
characteristics. The previous section discussed the challenge of this problem in relation to
established definitions (Deursen et al. 2001), but these definitions are not exact; both Grano
et al. and Spadini et al. quote these definitions but interpret them differently in subtle ways.
We discuss issues with these definitions and their interpretation here.

Eager Test These tests evaluate the behavior of multiple methods in a single test method.
Both tools considered rely on the number of production method invocations to detect this,
but Spadini et al. (2020) set a higher threshold than Grano et al. (2019), who consider
any more than one invocation to be smelly. This definition does not necessarily capture
real “eagerness”, however; some tests necessarily invoke multiple methods to test more
complex behavior (e.g., a pair of encrypt and decrypt methods); as long as a separate test
case exists for its intermediate stages, this should not be a concern. It is highly non-trivial
to detect for this automatically and it is especially fault-prone to assume a threshold of just
one invocation. In our manual analysis, we excluded many common occurrences of this
pattern, such as multiple invocations of getters of the same class, which simply test various
aspects of its state after a single operation, or two equality checks that ascertain bidirectional
equality. Note that refactoring those would result in substantial code bloat, as also alluded
to by Deursen et al. (2001). As such, detecting this test smell requires much more semantic
awareness than is currently present.

Assertion Roulette When a test case has multiple asserts without explanations, pinpointing
why it failed was historically complicated: JUnit 2 was widely used at the time of this smell’s
definition, which had no traceability for the cause of failing test cases with multiple asserts.
Both Spadini et al. and Grano et al. annotate this smell when an assert statement has no
string message to explain a potential failure (Grano et al. 2019; Spadini et al. 2020), though
Spadini et al. require at least two such asserts. Currently, EVOSUITE only documents cases
where an exception is expected (using JUnit’s fail method)—automatically generating
failure-related messages is out of the scope of current tools. This results in automated tools
marking many of their tests as smelly, in many cases incorrectly so. For one, test cases with

Empir Software Eng (2022) 27:170 Page 29 of 40 170

just a single assert, even if not explained, should never involve this confusion. Furthermore,
it is debatable whether e.g., assertNull (in general) needs an explanatory message as
the expected behavior is encoded in its name reason. More generally, advances in the JUnit
framework have removed the traceability confound entirely. We still annotated some cases
with this smell based on a strict adherence to its definition, but suggest that this smell has
become obsolete, which is further reinforced by its high degree of overlap with Eager Test.

Indirect Testing Testing classes other than the specific entity under test is considered indi-
rect testing. Grano et al. interpret this as using any methods of another class (Grano et al.
2019); but, we found many such invocations that were necessary for setup, which were often
either Mocked, or not used in any assertions (i.e.,, only needed for setting up a scenario).
Even discarding such trivial distractors, we found indirect testing to be a widespread issue
with automated generated test suites in our manual analysis. Strangely, although we adhere
to a stricter definition than Grano et al., we still find 30 cases of test suites with this smell.
This is significantly more than Grano et al., whose detection approach did not even identify
a single instance.

Sensitive Equality When a test asserts that an object has a given value (or checks its
equality) using the result of its toString method, it is considered “sensitive”. Grano
et al. interpret this as the presence of a toString call specifically in an assert state-
ment (Grano et al. 2019). However, we found that EVOSUITE often stores the result of a
toString in a local variable before checking its value, so this detection rule has many
false negatives. This pattern suggests a disconnect between human-written and automati-
cally generated test suites; the proposed rule may work well on regular tests, but falls short
on those automatically generated by EVOSUITE.

Mystery Guest and Resource Optimism Mocking and bytecode instrumentation introduce
more challenges for test smell detection tools based on static rules. TSDETECT success-
fully reduces the false positive rate by checking for mocked objects. However, static rules
fall short for strategies that work at the instrumentation level. These strategies can be
fully detected via dynamic analysis (e.g., identifying which objects are in memory) or
using watchdogs to check whether the tests modify external files. Therefore, we foresee
more sophisticated rules to detect mystery guests and resource optimism in automatically
generated tests effectively.

5.3 On Issues in Automatically Generated Tests Not Included in Test Smells

During our manual analysis, we also uncovered issues that are not captured by the existing
test smells definitions. This is due in part to the unique nature of automatically generated
tests, but also reminiscent of more general problems with detecting only a closed vocabulary
of “issues”.

Absence of Assertions We find that many test cases contain (sometimes elaborate) setup
and invocations to the entity under test, but then do not assert the results of these method
invocations in any way. One example is shown in Fig. 12a, where the assert is commented
out by EVOSUITE due to instability concerns, which results in this test case having no
asserts. In Fig. 12b, EVOSUITE generates a test case with just a constructor invocation but

Empir Software Eng (2022) 27:170170 Page 30 of 40

Fig. 12 Example of tests with no assertions

does nothing with it at all. Such invocations will show up as providing code coverage for the
methods being inspected; however, with no assertions taking place, it tests nearly nothing
of semantic importance.8 This reflects a disconnect between the optimization metric of
“coverage” and real-world validity of test cases; addressing this could lead to more useful
support for developers.

Too Many Assertions A substantial number of test cases contained many asserts, often at
least five, but sometimes dozens—one peculiar suite had multiple test cases with nearly
80 assertions. This reflects an incredibly high assertion density. Although this certainly
overlaps with the definition of established smells such as Assertion Roulette and Eager Test,
the scope of this problem is vastly different, and thus likely requires differently targeted
solutions than what might plausibly occur in regular, developer-generated tests.

Failed Setup We found many tests that involved a substantial amount of setup, often
including entities set up via mock objects, but nevertheless resulting in exceptions that
suggest the setup was not successful. Figure 13 shows an example of such a test: all the
test code related to mocking ISession i0 helps to cover the elaborate initialization
code of the class ObjectTreeCellRenderer; yet eventually the constructor throws
a NullPointerException. This is again indicative of a mismatch between coverage
of code vs. actual requirements: while EVOSUITE succeeded in achieving high coverage
through this setup, the resulting test is unlikely to be helpful for finding faults, besides being
hard to maintain.

8Though, one might argue, that an invocation which does not trigger an exception is still a form of a test.

Empir Software Eng (2022) 27:170 Page 31 of 40 170

Fig. 13 Example of a test case with failed setup

6 Threats to Validity

The targeted focus of this work implies that the main threats to its validity are external.

Threats to External Validity In this study, we assess the presence of test smells in tests gen-
erated by EVOSUITE, JTEXPERT, and on a sample of manually written tests. The selective
nature of the sample set of tests can have an impact on the generalizability of our observa-
tions and results. Nonetheless, many of our observations concern problems caused by the
discrepancy between generated tests and those a human might write. The limited sample
size does not invalidate our specific findings for the six smells we study, but does imply
that further studies are needed to confirm whether similar conclusions apply to other test
smells. The broader results of this paper, which showed that current test smells are often
inappropriate indicators of issues with such test suites, is thus likely equally applicable to
such work.

Threats to Construct Validity The main challenge in conducting this study was the inter-
pretation of the definitions of the various test smells, which were never defined precisely
and have been adopted in subtly different ways. We aimed to interpret them using a small
set of simple, but semantically reasonable rules, which we detailed carefully. Choosing
alternative interpretations may be appropriate for some purposes (e.g., when using an older
version of JUnit), and can certainly change a number of annotations. But, our experience

Empir Software Eng (2022) 27:170170 Page 32 of 40

while annotating was that no variation would eliminate a smell completely, or make it abun-
dant. Furthermore, two raters independently annotated each example and discussed any
discrepancies with respect to the established rules, adding clauses agreed on by all annota-
tors in case of any lingering ambiguity. As such, we are confident that our annotations are
internally consistent and highly traceable to our rules, which we believe are common-sense
interpretations of these smells.

Validating our annotations for the manual tests with the projects’ developers could have
potentially strengthened our observations and conclusions. However, this was not possible
for the projects in the SF110 dataset, which consists of projects collected from SourceForge
in 2014. These projects are not actively maintained, or their versions within the dataset are
outdated. Despite these limitations for the SF110 benchmark, we opted to use the same
dataset and the same classes selected by Grano et al. (2019) to ease the comparison with
their results and analysis. Extending our analysis with actively-maintained projects and
developers is part of our future agenda.

7 Discussion, Lessons Learned, and Future Directions

In this section, we first summarize our results and presents possible future research directions
in test smells and test case generation.

7.1 Lesson Learned

Lesson 1. A non-trivial portion of the generated test cases contains at least one test
smell. However, the occurrence is much less frequent than reported in prior
studies (Grano et al. 2019; Palomba et al. 2016). For example, mystery guest
and resource optimism have been reported in prior studies as being frequent
in automatically generated tests. However, these smells cannot occur due to
the mechanisms tools like EVOSUITE and JTEXPERT use to prevent creating
random files, potentially damaging the machine on which experiments are per-
formed. The substantial differences between our results and those reported in
prior studies are due to the different evaluation processes. Grano et al. (2019),
and Palomba et al. (2016) did not manually validate the warnings raised by test
smell detection tools. This was done under the very optimistic (and not realistic)
assumption that these tools are highly accurate.

Lesson 2. Test smell detection tools are very inaccurate in detecting test smells for auto-
matically generated test cases. First, the two state-of-the-art detection tools
largely overestimate the occurrences of assertion roulette, eager tests, resource
optimism, and mystery guest. The root causes for the low accuracy differ
depending on the type of test smell under analysis. We can summarize our
findings as follows:

– For assertion roulette and eager tests, existing tools simply rely on rule sets
that count the number of assertions and method calls in a test case as a
proxy for “the number of functionalities” under test and that are asserted.
Our results suggest that such simple heuristics are highly inaccurate.

– Test smells detection tools based on pure static rules cannot adequately
determine if test cases actually access external files and resources, leading
to a very large false-positive rate for mystery guests and resource optimism.

Empir Software Eng (2022) 27:170 Page 33 of 40 170

– None of the test smell detection tools could detect indirect testing
instances, which are the most frequent test smell in the test cases generated
by EVOSUITE.

– Many instances of sensitive equality were undetected due to incomplete
rule sets for covering (many) corner-case scenarios and patterns.

Lesson 3. Given the results of our first two research questions, in RQ3 we investigated
whether the existing catalog of test smells reflects real maintenance problems
in automatically generated test cases. Our results indicate that generated test
cases are affected by eager tests and multiple assertions, but their severity is
debatable. As shown by Spadini et al. (2018), developers consider these types
of smells as non-problematic with a very low severity or priority for test fixing
operations. Instead, mystery guest and resource optimism do not represent real
problems for modern test case generation tools that use mocks or bytecode
instrumentation techniques.

Lesson 4. Since test smell detection tools have been designed for manually-written tests,
one could argue that the low accuracy observed in RQ2 is due to the intrinsic
differences between test cases written by developers and those generated with
automated techniques. The results of RQ4 showed that the distribution of test
smells and their occurrences differ between manually-written and generated
tests. Eager tests, assertion roulette, mystery guests, and resource optimism are
more frequent among test cases written by developers compared to those auto-
matically generated. Vice versa, sensitive equality and indirect testing are more
common in test cases automatically generated.

Lesson 5. The accuracy of test smell detection tools is higher for manually-written test
cases compared to those generated in an automated fashion. This is partially
due to the fact that these tools have been designed and tuned for test cases
written by humans. However, the detection tools assessed in our study poorly
perform for indirect testing, resource optimism, and mystery guests.

Lesson 6. After carefully validating the test smells instances among manually written test
cases, we conclude that test smells do not reflect real concerns with respect
to test maintainability. Our results lead to similar conclusions by Spadini
et al. (2018), whose study reported a large misalignment between test smells
instances and what developers consider actual test maintainability concerns.
Tufano et al. (2016) reported that the developers did not recognize any problems
with the test code snippets they were presented with, although, in theory, those
tests were affected by test smells. While prior studies questioned the develop-
ers’ ability to recognize test smells, our results and analysis led to a completely
different conclusion: many test smells (as currently defined and detected) do
not reflect real concerns.

7.2 The Path Forward Concerning Test Smells

In contrast to previous work, which found that the test suites generated by EVOSUITE are
riddled with smells, we found the majority of generated test suites to be smell-free. Much
the same applies to developer-written tests. Having analyzed the main causes for these tools’
false positives, and failures of the test smell definitions themselves, it stands out that these
are all static in nature and use rather simple heuristics (e.g., relying on specific numerical
thresholds). To better reflect concerns in development practice (and dramatically reduce

Empir Software Eng (2022) 27:170170 Page 34 of 40

false-positive rates), we propose the following steps to review test smell definitions and
detection:

1. Smells such as Assertion Roulette (which has become generally obsolete), Resource
Optimism, For Testers Only, and Mystery Guest no longer apply to (well-calibrated)
automatic test generators. A root and branch review of test smells, and their detection
tools/strategies are warranted to ensure that developers and future work do not rely on
definitions that need substantial adaptation to this context.

2. The definition and interpretation of certain smells, such as Indirect Testing and Eager
Testing, appeared to be imprecise and incomplete. Currently, their definitions strongly
relate both to the presence of any invocation to a class besides the one under test. This
is incongruent with the practice for multiple reasons (e.g., using Java libraries, tests that
naturally involve two steps). There is thus a need for revising these, and indeed all test
smells’, definitions that are more precise and captures the notion of a semantic objec-
tive—a specific, coherent, realistic behavior. This objective need not be self-contained
and could span multiple methods, or even classes, as long as it has a well-defined
goal. Defining this, and automatically detecting it, is an ambitious, yet pressing open
challenge for this line of research.

3. Our study highlights the important internal validity of prior work. Current tools are
benchmarked on a false-positive prone “golden set” of manually validated data, which
resulted in obvious errors being left uncaught. This highlights the need for a global,
thoroughly verified dataset that can be used across studies as a reference benchmark.

4. While our study focuses on Java code and tests, our conclusions with regards to test
smells and their practical relevance also apply to other programming languages. Nowa-
days, all unit testing frameworks (e.g., unittest in Python) explicitly indicate which
assertion fail and the reason for it, making assertion roulette outdated as potential test
smell.

7.3 Research Opportunity in Test Case Generation

When manually validating the generated test cases, we also identified a number of research
opportunities for the test case generation (and fuzzing) community:

1. EVOSUITE already implements a greedy test minimization routine that removes unnec-
essary statements from test cases. However, the results test case might still be affected
by test smells, like semantic coherence and eager test. While most of the research
effort has been dedicated to reaching high coverage, more research is needed w.r.t.
post-process optimization. Techniques like test slicing (Messaoudi et al. 2021), carving
(Elbaum et al. 2006), and purification (Xuan and Monperrus 2014) have been applied
to manually-written tests and could be potentially included in test case generation tools.

2. Existing heuristics used to guide test case generation tools measure how far each test
case is from covering a given branch b independently of whether b is directly covered
or not. This explains why indirect testing is common (<50%) among the randomly
generated tests. The state-of-the-art heuristics used to give the search should differen-
tiate between direct and indirect coverage and promote (by giving better fitness values
to) test cases that directly cover branches in the code. This could be achieved by using
secondary objectives (Panichella et al. 2017) or changing how the archive is updated
during the search (Rojas et al. 2017)

3. As indicated in Section 5.3, test generation tools sometimes have problems in gener-
ating a proper setup for classes that are complex to instantiate. A possible research

Empir Software Eng (2022) 27:170 Page 35 of 40 170

direction to address these limitations is to focus on seeding strategy with particular
attention to complex object instantiation (e.g., Derakhshanfar et al. 2020). Besides,
researchers in the test case generation tools should also focus on generating test fixtures,
e.g., setup code shared among all test cases in a test suite.

4. Last but not least, a lot of research effort has been devoted to improving the readabil-
ity of the generated test cases, e.g., by generating more readable inputs (Afshan et al.
2013), better test names (Daka et al. 2017; Roy et al. 2020), and automated documen-
tation (Roy et al. 2020; Panichella et al. 2016). These studies proposed approaches that
make the generated test cases easier to understand and manually validate. To the best of
our knowledge, no study has been conducted to assess whether the generated tests are
equally/more/less difficult to maintain in the longer term than manually written ones.

8 Conclusions

This paper investigates test smell occurrence in automatically generated test cases and the
extent to which contemporary test smell detection tools can identify them. We built a dataset
spanning hundreds of automatically generated and human-written test cases for complex
Java classes and conducted multi-stage, manual cross-validation to identify six types of
test smells. Our results show that test smells are commonly present in a small but non-
trivial portion of the test suites generated by EVOSUITE. However, they occur far less often
than reported by the tool (and analysis) of Grano et al. (2019), while TSDETECT achieves
somewhat better results (Spadini et al. 2018). The incidence rate of test smells is much larger
for the test suites generated by JTEXPERT; this number could evidently be dramatically
reduced by using post-process test suite optimization heuristics well-known in the testing
literature (e.g., Xuan andMonperrus 2014; Fraser and Arcuri 2015b; Yoo and Harman 2012)
and implemented in EVOSUITE.

Test smell detection tools that rely on static rules are limited and inaccurate in detecting
certain types of more complex test smells in automatically-generated tests, e.g., indirect
testing and resource optimism. In addition, although EVOSUITE eager tests and tests with
multiple assertions, many heuristically detected cases are not problematic, while the severity
of others is debatable (as also argued in recent work Spadini et al. 2018).

On the other hand, tests written by developers were ostensibly riddled with test smells,
some much more so than tool-generated ones—although here, too, detection tools often
overestimate their incidence. However, upon detailed inspection, nearly all of these failed to
reflect genuine problems, which were rare and uncorrelated with any of the smells. As such,
the definition and detection of test smells is poorly matched to modern testing practice.

The discrepancies between tool quality, definition, and practical accuracy exposed by
our work suggest the need for further studies that involve human participants (preferably in
industrial contexts), which will be critical to ensure that the notion and design of test smells
and their detection tools better reflect developer practice.

Acknowledgements The authors thank Davide Spadini for providing the implementation of TSDETECT with
calibrated thresholds. This work is supported by EPSRC project EP/N023978/2. Annibale Panichella and
Sebastiano Panichella gratefully acknowledges the Horizon 2020 (EU Commission) support for the project
COSMOS (DevOps for Complex Cyber-physical Systems), Project No. 957254-COSMOS.

Declarations

Conflict of Interest The authors declared that they have no conflict of interest.

Empir Software Eng (2022) 27:170170 Page 36 of 40

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Afshan S, McMinn P, Stevenson M (2013) Evolving readable string test inputs using a natural language
model to reduce human oracle cost. In: 2013 IEEE Sixth international conference on software testing,
verification and validation. IEEE, pp 352–361

Almasi MM, Hemmati H, Fraser G, Arcuri A, Benefelds J (2017) An industrial evaluation of unit test
generation: finding real faults in a financial application. In: ICSE SEIP, pp 263–272

Ammann P, Offutt J (2016) Introduction to software testing. Cambridge University Press, Cambridge
Andrews JH, Menzies T, Li FC (2011) Genetic algorithms for randomized unit testing. IEEE Trans Softw

Eng 37(1):80–94
Arcuri A, Fraser G (2013) Parameter tuning or default values? An empirical investigation in search-based

software engineering. Empir Softw Eng 18(3):594–623
Arcuri A, Fraser G, Galeotti JP (2014) Automated unit test generation for classes with environment

dependencies. In: International conference on automated software engineering, pp 79–90
Baresi L, Miraz M (2010) Testful: automatic unit-test generation for java classes. In: International conference

on software engineering, vol 2, pp 281–284
Bavota G, Qusef A, Oliveto R, Lucia AD, Binkley DW (2012) An empirical analysis of the distribution of

unit test smells and their impact on software maintenance. In: ICSM, pp 56–65
Bavota G, Qusef A, Oliveto R, De Lucia A, Binkley D (2015) Are test smells really harmful? An empirical

study. Empir Softw Eng 20(4):1052–1094
Birchler C, Ganz N, Khatiri S, Gambi A, Panichella S (2022a) Cost-effective simulationbased test selection

in self-driving cars software with sdc-scissor. In: 2022 IEEE 29th international conference on software
analysis, evolution and reengineering (SANER). doi:to appear

Birchler C, Khatiri S, Derakhshanfar P, Panichella S, Panichella A (2022b) Single and multi-objective
test cases prioritization for self-driving cars in virtual environments. ACM Trans Softw Eng Methodol
(TOSEM). doi:to appear

Böhme M, Szekeres L, Metzman J (2022) On the reliability of coverage-based fuzzer benchmarking
Campos J, Ge Y, Albunian N, Fraser G, Eler M, Arcuri A (2018) An empirical evaluation of evolutionary

algorithms for unit test suite generation. Inf Softw Technol 104:207–235
Canfora G, Lucia AD, Penta MD, Oliveto R, Panichella A, Panichella S (2013) Multi-objective cross-project

defect prediction. In: Sixth IEEE international conference on software testing, verification and valida-
tion, ICST 2013, Luxembourg, Luxembourg, March 18–22, 2013. IEEE Computer Society, pp 252–261.
https://doi.org/10.1109/ICST.2013.38

Canfora G, Lucia AD, Penta MD, Oliveto R, Panichella A, Panichella S (2015) Defect pre-
diction as a multiobjective optimization problem. Softw Test Verific Reliab 25(4):426–459.
https://doi.org/10.1002/stvr.1570

Csallner C, Smaragdakis Y (2004) Jcrasher: an automatic robustness tester for java. Softw: Pract Exp
34(11):1025–1050

Daka E, Campos J, Fraser G, Dorn J, Weimer W (2015) Modeling readability to improve unit tests. In: Joint
meeting on foundations of software engineering, pp 107–118

Daka E, Rojas JM, Fraser G (2017) Generating unit tests with descriptive names or: would you name your
children thing1 and thing2? In: International symposium on software testing and analysis, pp 57–67

Derakhshanfar P, Devroey X, Perrouin G, Zaidman A, van Deursen A (2020) Search-based crash reproduc-
tion using behavioural model seeding. Softw Test Verific Reliab 30(3):e1733

Deursen A, Moonen L, Bergh A, Kok G (2001) Refactoring test code. In: Proceedings of the 2nd international
conference on extreme programming and flexible processes (XP2001), pp 92–95

Devroey X, Panichella S, Gambi A (2020) Java unit testing tool competition—eighth round, Seoul. https://
doi.org/10.1145/3387940.3392265

Empir Software Eng (2022) 27:170 Page 37 of 40 170

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/ICST.2013.38
https://doi.org/10.1002/stvr.1570
https://doi.org/10.1145/3387940.3392265
https://doi.org/10.1145/3387940.3392265

Elbaum S, Chin HN, Dwyer MB, Dokulil J (2006) Carving differential unit test cases from system test
cases. In: Proceedings of the 14th ACM SIGSOFT international symposium on foundations of software
engineering. Association for Computing Machinery, New York, pp 253–264

Fowler M (1999) Refactoring: improving the design of existing code. Addison-Wesley Professional
Fraser G, Arcuri A (2011) Evosuite: automatic test suite generation for object-oriented software. In: Pro-

ceedings of the 19th ACM SIGSOFT symposium and the 13th European conference on foundations of
software engineering, pp 416–419

Fraser G, Arcuri A (2012) Whole test suite generation. IEEE Trans Softw Eng 39(2):276–291
Fraser G, Arcuri A (2014) A large-scale evaluation of automated unit test generation using evosuite. Trans

Softw Eng Methodol 24(2):8:1–8:42. ISSN 1049-331X
Fraser G, Arcuri A (2015a) 1600 faults in 100 projects: automatically finding faults while achieving high

coverage with evosuite. Empir Softw Eng 20(3):611–639
Fraser G, Arcuri A (2015b) Achieving scalable mutation-based generation of whole test suites. Empir Softw

Eng 20(3):783–812
Fraser G, Zeller A (2011) Mutation-driven generation of unit tests and oracles. Trans Softw Eng 38(2):278–

292
Grano G, Palomba F, Di Nucci D, De Lucia A, Gall HC (2019) Scented since the beginning: on the

diffuseness of test smells in automatically generated test code. J Syst Softw 156:312–327
Just R, Ernst MD, Fraser G (2014) Efficient mutation analysis by propagating and partitioning infected

execution states. In: Proceedings of the 2014 international symposium on software testing and analysis,
pp 315–326

Kifetew F, Devroey X, Rueda U (2019) Java unit testing tool competition-seventh round. In: International
workshop on search-based software testing, pp 15–20

Ma L, Artho C, Zhang C, Sato H, Gmeiner J, Ramler R (2015) Grt: program-analysis-guided random testing
(t). In: 2015 30th IEEE/ACM international conference on automated software engineering (ASE). IEEE,
pp 212–223

Messaoudi S, Shin D, Panichella A, Bianculli D, Briand LC (2021) Log-based slicing for system-level test
cases. In: Proceedings of the 30th ACM SIGSOFT international symposium on software testing and
analysis, pp 517–528

Pacheco C, Lahiri SK, Ernst MD, Ball T (2007) Feedback-directed random test generation. In: International
conference on software engineering, pp 75–84

Palomba F, Di Nucci D, Panichella A, Oliveto R, De Lucia A (2016) On the diffusion of test smells in
automatically generated test code: an empirical study. In: 2016 IEEE/ACM 9th international workshop
on search-based software testing (SBST). IEEE, pp 5–14

Panichella S (2015) Supporting newcomers in software development projects. In: Koschke R, Krinke
J, Robillard MP (eds) 2015 IEEE International conference on software maintenance and evolution,
ICSME 2015, Bremen, Germany, September 29–October 1, 2015. IEEE Computer Society, pp 586–589.
https://doi.org/10.1109/ICSM.2015.7332519

Panichella A, Molina UR (2017) Java unit testing tool competition-fifth round. In: International workshop
on search-based software testing, pp 32–38

Panichella S, Panichella A, Beller M, Zaidman A, Gall HC (2016) The impact of test case summaries on bug
fixing performance: an empirical investigation. In: International conference on software engineering,
pp 547–558

Panichella A, Kifetew FM, Tonella P (2017) Automated test case generation as a many-objective optimisation
problem with dynamic selection of the targets. Trans Softw Eng 44(2):122–158

Panichella A, Kifetew FM, Tonella P (2018a) Incremental control dependency frontier exploration for many-
criteria test case generation. In: International symposium on search based software engineering. Springer,
pp 309–324

Panichella A, Kifetew FM, Tonella P (2018b) A large scale empirical comparison of state-of-the-art search-
based test case generators. Inf Softw Technol 104:236–256

Panichella A, Campos J, Fraser G (2020a) Evosuite at the sbst 2020 tool competition. In: Proceedings of the
IEEE/ACM 42nd international conference on software engineering workshops, pp 549–552

Panichella A, Panichella S, Fraser G, Sawant AA, Hellendoorn VJ (2020b) Revisiting test smells in automat-
ically generated tests: limitations, pitfalls, and opportunities. In: 2020 IEEE International conference on
software maintenance and evolution (ICSME). IEEE, pp 523–533

Panichella S, Gambi A, Zampetti F, Riccio V (2021) Sbst tool competition 2021. In: International conference
on software engineering, workshops, Madrid, Spain, 2021. ACM

Peruma ASA (2018) What the smell? An empirical investigation on the distribution and severity of test smells
in open source android applications

Empir Software Eng (2022) 27:170170 Page 38 of 40

https://doi.org/10.1109/ICSM.2015.7332519

Robinson B, Ernst MD, Perkins JH, Augustine V, Li N (2011) Scaling up automated test generation: auto-
matically generating maintainable regression unit tests for programs. In: International conference on
automated software engineering, pp 23–32

Rojas JM, Campos J, Vivanti M, Fraser G, Arcuri A (2015) Combining multiple coverage criteria in search-
based unit test generation. In: International symposium on search based software engineering. Springer,
pp 93–108

Rojas JM, Fraser G, Arcuri A (2016) Seeding strategies in search-based unit test generation. Softw Test Verif
Reliab 26(5):366–401

Rojas JM, Vivanti M, Arcuri A, Fraser G (2017) A detailed investigation of the effectiveness of whole test
suite generation. Empir Softw Eng 22(2):852–893

Roy D, Zhang Z, Ma M, Arnaoudova V, Panichella A, Panichella S, Gonzalez D, Mirakhorli M (2020)
Deeptc-enhancer: improving the readability of automatically generated tests. In: 2020 35th IEEE/ACM
international conference on automated software engineering (ASE). IEEE, pp 287–298

Sakti A, Pesant G, Guéhéneuc Y-G (2014) Instance generator and problem representation to improve object
oriented code coverage. Trans Softw Eng 41(3):294–313

Sakti A, Pesant G, Guéhéneuc Y (2017) Jtexpert at the SBST 2017 tool competition. In: 10th IEEE/ACM
international workshop on search-based software testing, SBST@ICSE 2017, Buenos Aires, Argentina,
May 22–23, 2017. IEEE, pp 43–46. https://doi.org/10.1109/SBST.2017.5

Shamshiri S, Rojas JM, Galeotti JP, Walkinshaw N, Fraser G (2018) How do automatically generated unit
tests influence software maintenance? In: International conference on software testing, verification and
validation, pp 250–261

Soltani M, Panichella A, Van Deursen A (2018) Search-based crash reproduction and its impact on
debugging. IEEE Trans Softw Eng 46(12):1294–1317

Spadini D, Palomba F, Zaidman A, Bruntink M, Bacchelli A (2018) On the relation of test smells to software
code quality. In: International conference on software maintenance and evolution, pp 1–12

Spadini D, Schvarcbacher M, Oprescu A-M, Bruntink M, Bacchelli A (2020) Investigating severity
thresholds for test smells

Tonella P (2004) Evolutionary testing of classes. ACM SIGSOFT Softw Eng Notes 29(4):119–128
Tsantalis N, Chaikalis T, Chatzigeorgiou A (2018) Ten years of jdeodorant: lessons learned from the hunt for

smells. In: Oliveto R, Penta MD, Shepherd DC (eds) 25th International conference on software analysis,
evolution and reengineering, SANER 2018, Campobasso, Italy, March 20–23, 2018. IEEE Computer
Society, pp 4–14

Tufano M, Palomba F, Bavota G, Di Penta M, Oliveto R, De Lucia A, Poshyvanyk D (2016) An empir-
ical investigation into the nature of test smells. In: International conference on automated software
engineering, pp 4–15

Tufano M, Palomba F, Bavota G, Oliveto R, Penta MD, Lucia AD, Poshyvanyk D (2017) When and why
your code starts to smell bad (and whether the smells go away). Trans Softw Eng 43(11):1063–1088

Xie T (2006) Augmenting automatically generated unit-test suites with regression oracle checking. In:
European conference on object-oriented programming. Springer, pp 380–403

Xuan J, Monperrus M (2014) Test case purification for improving fault localization. In: Proceedings of the
22nd ACM SIGSOFT international symposium on foundations of software engineering, pp 52–63

Yoo S, Harman M (2012) Regression testing minimization, selection and prioritization: a survey. Softw Test
Verif Reliab 22(2):67–120

Zhang S (2013) Practical semantic test simplification. In: International conference on software engineering,
pp 1173–1176

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Empir Software Eng (2022) 27:170 Page 39 of 40 170

https://doi.org/10.1109/SBST.2017.5

Affiliations

Annibale Panichella1 · Sebastiano Panichella2 ·Gordon Fraser3 ·
Anand Ashok Sawant4 ·Vincent J. Hellendoorn5

Sebastiano Panichella
sebastiano.panichella@zhaw.ch

Gordon Fraser
Gordon.Fraser@uni-passau.de

Anand Ashok Sawant
asawant@ucdavis.edu

Vincent J. Hellendoorn
vhellendoorn@cmu.edu

1 Delft University of Technology, Delft, The Netherlands
2 Zurich University of Applied Science, Zurich, Switzerland
3 University of Passau, Passau, Germany
4 University of California Davis, Davis, CA, USA
5 Carnegie Mellon University, Pittsburgh, PA, USA

Empir Software Eng (2022) 27:170170 Page 40 of 40

http://orcid.org/0000-0002-7395-3588
mailto: sebastiano.panichella@zhaw.ch
mailto: Gordon.Fraser@uni-passau.de
mailto: asawant@ucdavis.edu
mailto: vhellendoorn@cmu.edu

	Test smells 20 years later: detectability, validity, and reliability
	Abstract
	Introduction
	Background
	Test Smells
	Test Case Generation
	Limitations of Prior Work

	Methodology
	Research Questions
	Test Class Selection
	Test Case Generation
	EvoSuite
	JTExpert
	Parameter Setting
	Parameter Settings for JTExpert
	Parameter Settings for EvoSuite
	Coverage Results

	Detection Tool Selection
	Manual Validation

	Empirical Results
	RQ1: How Widespread are Test Smells in Automatically Generated Test Cases?
	RQ2: How Accurate are Automated Tools in Detecting Test Smells in Automatically Generated Tests?
	Assertion Roulette
	Eager Test
	Mystery Guest and Resource Optimism
	Indirect Testing
	Sensitive Equality

	RQ3: How Well do Test Smells Reflect Real Problems in Automatically Generated Test Suites?
	Eager Test
	Assertion Roulette
	Indirect Testing
	Sensitive Equality
	Mystery Guest and Resource Optimism

	RQ4: How does Test Smell Diffusion in Manually Written Tests Compare to Automatically Generated Tests?
	RQ5: How Well do Test Smells Capture Real Problems in Manually Written Tests?
	Eager Testing
	Assertion Roulette
	Indirect Testing
	Sensitive Equality
	Resource Optimism

	Qualitative Reflection
	Manually Written Tests: are Smells a Problem?
	On Rule-Based Detection of Test Smells
	Eager Test
	Assertion Roulette
	Indirect Testing
	Sensitive Equality
	Mystery Guest and Resource Optimism

	On Issues in Automatically Generated Tests Not Included in Test Smells
	Absence of Assertions
	Too Many Assertions
	Failed Setup

	Threats to Validity
	Threats to External Validity
	Threats to Construct Validity

	Discussion, Lessons Learned, and Future Directions
	Lesson Learned
	The Path Forward Concerning Test Smells
	Research Opportunity in Test Case Generation

	Conclusions
	References
	Affiliations

