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Volume-averaged Macroscopic Model

Abstract

Macroscopic homogenized descriptions of reactive electrolyte transport through porous elec- The macroscopic species transport is governed by

trodes capture important sub-scale effects by the use of effective parameters, such as the ! = _ _ e of Qv o

dispersion tensor or the effective reaction ratey. ey (<COX>B<V>6) =V (D7 V<COX>5) — R (<COX>B B <CO§>5) !

We apply the volume averaging method (VAM) [2] to upscale the transport of electrolyte where € is the porosity and a, denotes a dimensionless specific surface area.

through periodic unit cells and evaluate the dependency and sensitivity of macroscopic effective The effective dispersion tensor and kinetic number are given by

parameters on pore-scale properties. ) N ) ) e(s}ﬁ

The effective parameters can be applied in macroscopic cell models of redox flow batteries DY =1+ <lf157f>g7 — Pej(fv)?,  Kif" = Kj, (6(1_53)77 + 6_53") 1 4 - &l
v

to study the effect of different pore-scale geometries within porous electrodes on the mass
transfer rate or homogeneity of the electric current density.

with the intrinsic volume and surface averages, and the equilibrium concentration
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The periodic field variables f and s are determined by closure problems [1] for the local
concentration deviation, Cox = Cox — (Cox)” = 8{Cox)” + £ - V{Coy)”.

Pore-scale Geometry

The porous medium is assumed to be spatially periodic. Within each periodic unit cell, the
electrode geometry is modelled as a collection of straight fibers:

Periodic Unit Cell Results

Ag., V3 = Electrolyte Domain We verify the up-scaled macroscopic description with a direct numerical solution for a
| | 1D advection-diffusion-reaction transport problem using the SCd pore-scale geometry:
0 V., = Solid Electrode Domain | |
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e | ¢ = Parameters: Ki; = 1, n = 0.5, e = 0.9, Pe; = ¢(v,)"Pej = 20.1.
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® creeping flow conditions e local electroneutrality Transport by diffusion-reaction for varying kinetic numbers and n = 0.5.
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The transport of the electro-active species in oxidized and reduced form is governed by the _ 2 < 087
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where [ is the unit cell size and (p}ﬁ denotes the intrinsic volume average of the pressure. Transport by advection-diffusion-reaction for varying Peclet numbers and Ki, = 1,1 = 0.5,

Electrochemical Reactions Conclusions and Applications

We consider the heterogeneous one-electron transfer redox reaction

Ox + e~ = Red

e [ he developed framework based on the method of volume averaging allows studying
the dependency and sensitivity of the effective parameters in terms of different pore-

at the electrode surface, which is modelled with the Butler-Volmer type reaction equation scale geometries and dimensionless transport parameters.

—véox : H57|Am = Ki?ET — (Ki? + Kllc) * Cox,

e \We are developing reduced surrogate models for the effective parameters, which can
be used in place of common simplified analytical or empirical relations to efficiently
simulate the effect of different pore-scale geometries within porous electrodes in
macroscopic redox flow battery cell models.

where ¢ = C.eq + Cox = const. is the total constant electrolyte concentration and
Kif = Kiyell=8n Kij = Kije 7

where Ki; = kyl'/D is a dimensionless kinetic number, kj is a reaction constant, j3; is the
symmetry factor and n = (E—EJ?)/VO with V' = RT'/F is a spatially constant overpotential.

D
Acknowledgements

)

References

[1] F. J. Valdés-Parada, C. G. Aguilar-Madera, and J. AIvarez—Raml'rez, “On diffusion, dispersion and reaction in porous
media,” Chemical Engineering Science, vol. 66, no. 10, pp. 2177-2190, May 2011.

The authors gratefully appreciate the financial support from the European Union's Horizon
2020 research and innovation programme under Grant Agreement no. 875489 (SONAR).

[2] S. Whitaker, The Method of Volume Averaging, vol. 13. Dordrecht: Springer Netherlands, 1999.





