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Abstract—Simulation platforms facilitate the continuous de-
velopment of complex systems such as self-driving cars (SDCs).
However, previous results on testing SDCs using simulations have
shown that most of the automatically generated tests do not
strongly contribute to establishing confidence in the quality and
reliability of the SDC. Therefore, those tests can be characterized
as “uninformative”, and running them generally means wasting
precious computational resources. We address this issue with
SDC-Scissor, a framework that leverages Machine Learning to
identify simulation-based tests that are unlikely to detect faults in
the SDC software under test and skip them before their execution.
Consequently, by filtering out those tests, SDC-Scissor reduces the
number of long-running simulations to execute and drastically
increases the cost-effectiveness of simulation-based testing of
SDCs software. Our evaluation concerning two large datasets
and around 12’000 tests showed that SDC-Scissor achieved a
higher classification F1-score (between 47% and 90%) than a
randomized baseline in identifying tests that lead to a fault and
reduced the time spent running uninformative tests (speedup
between 107% and 170%).
Webpage & Video: https://github.com/ChristianBirchler/sdc-scissor

Index Terms—Self-driving cars, Software Simulation, Regres-
sion Testing, Test Case Selection, Continuous Integration

I. INTRODUCTION

Cyber-physical systems (CPSs) are complex systems that
leverage physical capabilities from hardware components [3]
and are expected to drastically improve the quality of life
of citizens and the economy [10]. CPSs find applications
in various domains including Robotics, Transportation and
Healthcare. For instance, in the transportation domain, they
take the form of self-driving cars (SDCs) and are expected to
impact our society profoundly. Indeed, human errors cause
more than 90% of driving accidents [17] and automated
driving systems have the potential to reduce such errors and
eliminate most accidents. However, the recent fatal crashes in-
volving SDCs suggest that the advertised large-scale adoption
of SDCs appears optimistic [3], [27].

Reducing the risk of releasing SDCs equipped with de-
fective software that might become erratic and lead to fatal
crashes is one of the main challenges concerning the usage
of autonomous vehicles. We argue that enabling cost-effective
testing automation in Continuous Integration (CI) pipelines
for SDCs is a paramount challenge to address for ensuring the
safety and reliability of SDCs [4], [17], [20]. However, current
SDC testing practices have several limitations: (i) difficulty

in testing SDCs using representative, safety-critical tests [16],
[27]; (ii) difficulty in assessing SDC’s behavior in different
environmental conditions [17].

The usage of simulation environments can potentially ad-
dress several of the aforementioned challenges [7], [11], [22]
because they enable more efficient test execution, reproducible
results, and testing under critical conditions [12]. Additionally,
simulation-based testing can be as effective as traditional field
operational testing [2], [11]. However, the testing space of
simulation environments is infinite, which poses the challenge
of exercising the SDC behaviors adequately [1], [13]. Given
the limited budget devoted to testing activities, it is paramount
that developers test SDCs in a cost-effective fashion: using
test suites optimized to reduce testing effort (time) without
affecting their ability to identify faults [1], [21], [28].

To increase SDC testing cost-effectiveness, we propose
SDC-Scissor (SDC coSt-effeCtIve teSt SelectOR), a frame-
work that leverages Machine Learning (ML) to enable cost-
effective simulation-based testing via test selection. SDC-
Scissor identifies (i.e., predicts) tests that are unlikely to detect
faults and skips them before their execution; hence, it reduces
the time spent in executing such tests. Specifically, we refer
to tests that do not expose a fault as safe and deem them
irrelevant. On the contrary, we consider tests that expose a
fault (e.g., an SDC drives out of the road) as relevant and refer
to them as unsafe. SDC-Scissor exploits ML models trained on
features of SDC simulation-based tests that can be computed
before the actual test execution (i.e., input features) to classify
whether SDC tests are safe or unsafe. We briefly discuss input
features in Section II-C and remand to our previous works on
test selection [19] and test prioritization [6] for more detailed
information about SDC test features.

Through a large study on two datasets containing over
12’000 SDC simulation-based tests, we assessed the perfor-
mance of SDC-Scissor in optimizing simulation-based testing.
Our evaluation shows that SDC-Scissor accurately identified
more unsafe tests and reduced the time spent in running safe
tests than a random baseline.

II. THE SDC-SCISSOR TOOL

In this section, we overview SDC-Scissor’s software archi-
tecture and its main usage scenarios (Fig. 1); we describe
the simulation environment it uses (i.e., BeamNG.tech); and,
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Fig. 1. The SDC-Scissor’s architecture.

finally, we discuss in detail the components, the approach and
the technologies behind SDC-Scissor.

A. SDC-Scissor Architecture Overview & Main Scenarios

SDC-Scissor supports two main usage scenarios: Bench-
marking and Prediction. In the Benchmarking scenario, devel-
opers leverage SDC-Scissor to determine the best ML model(s)
to classify SDC simulation-based tests as safe or unsafe. In the
Prediction scenario, instead, developers use those model(s) to
classify and select newly generated test cases.

SDC-Scissor Software Architecture implements these sce-
narios by means of five main software components: (i)
SDC-Test Generator generates random SDC simulation-
based tests, and (ii) SDC-Test Executor executes them.
The test results produced by SDC-Test Executor are
recorded and used to label tests as safe or unsafe; (iii)
SDC-Features Extractor extracts input features of the
executed SDC tests, while (iv) SDC-Benchmarker uses
these features and corresponding labels as input to train the
ML models and determine which model best predicts the
tests that are more likely to detect faults in SDCs; finally,
(v) SDC-Predictor uses the ML models to classify newly
generated test cases and enables test selection.

B. BeamNG.tech’s Simulation Environment

SDC-Scissor uses BeamNG.tech to execute SDC tests as
physically accurate and photo-realistic driving simulations.
BeamNG.tech can procedurally generate tests [13] and was
recently adopted in the ninth edition of the Search-Based
Software Testing (SBST) tool competition [23].

BeamNG.tech is organized around a central game engine
that communicates with the physics simulation, the UI, and the
BeamNGpy API1. The UI can be used for game control and
manual content creation (e.g., assets, scenarios). For example,
developers can use the world editor to create or modify the
virtual environments that are used in the simulations; testers,

1beamngpy is available on PyPI and Github (https://github.com/BeamNG/
BeamNGpy)

instead, can create test scripts implementing driving scenar-
ios (i.e., the tests). The API, instead, allows the automated
generation and execution of tests, the collection of simulation
data (e.g., camera images, LIDAR point clouds) for training,
testing, and validating SDCs. It also enables driving agents
to drive simulated vehicles and get programmatic control over
running simulations (e.g., pause/resume simulations, move ob-
jects around). The game engine manages the simulation setup,
camera, graphics, sounds, gameplay, and overall resource
management. The physics core, instead, handles resource-
intensive tasks such as collision detection and basic physics
simulation; it also orchestrates the concurrent execution of
the vehicle simulators. The vehicle simulators —one for each
of the simulated vehicles— simulate the high-level driving
functions and the vehicle sub-systems (e.g., drivetrain, ABS).

We employ the BeamNG.AI2 lane-keeping system as the
test subject for our evaluation: the driving agent is shipped
with BeamNG.tech and drives the car by computing an ideal
driving trajectory to stay in the center of the lane while
driving within a configurable speed limit. As explained by
BeamNG.tech developers, the risk factor (RF) is a parameter
that controls the driving style of BeamNG.AI: low-risk values
(e.g., 0.7) result in smooth driving, whereas high-risk values
(e.g., 1.7 and above) result in an edgy driving that may lead
the ego-car to cut corners [19].

C. The SDC-Scissor’s Approach and Technology Overview

SDC-Scissor integrates the extensible testing pipeline de-
fined by the SBST tool competition3 in its SDC-Test
Executor. We use the SBST tool competition infrastruc-
ture since it allows to (i) seamlessly execute the tests in
BeamNG.tech and (ii) distinguish between safe and unsafe
tests based on whether the self-driving car keeps its lane
(non-faulty tests) or depart from it (faulty tests) [13]. Conse-
quently, SDC-Scissor can accommodate various SDC-Test
Generators for generating SDC simulation-based tests. In

2https://wiki.beamng.com/Enabling AI Controlled Vehicles#AI Modes
3https://github.com/se2p/tool-competition-av
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TABLE I
FULL ROAD ATTRIBUTES EXTRACTED BY THE SDC-Features Extractor

Feature Description Range
Direct
Distance

Euclidean dist. between start and end
(m)

[0 – 490]

Length Tot. length of the driving path (m) [50.6–3,317]

Num L Turns Nr. of left turns on the driving path [0 – 18]

Num R Turns Nr. of right turns on the driving path [0 – 17]

Num Straight Nr. of straight segments on the driv-
ing path

[0 – 11]

Total Angle Cumulative turn angle on the driving
path

[105 – 6,420]

this paper, we demonstrate SDC-Scissor by using the Frenetic
test generation [9], one of the most effective tool submitted to
the SBST tool competition.

SDC-Scissor predicts whether the tests are likely to be
safe or unsafe before their execution using input features ex-
tracted by SDC-Features Extractor. Specifically, this
component extracts Full Road Features (FRFs), i.e., a set
of SDC features that describe global characteristics of the
tests. Those features include the main road attributes (see
Table I) and road statistics concerning the road composition
(see Table II). Road statistics are calculated in three steps: (i)
extraction of the reference driving path that the ego-car has
to follow during the test execution (e.g., the road segments
that the car needs to traverse to reach the target position); (ii)
extraction of metrics available for each road segment (e.g.,
length of road segments); and (iii) computation of standard
aggregation functions on the collected road segments metrics
(e.g., minimum and maximum).

SDC-Scissor relies on the SDC-Benchmarker to deter-
mine the ML model that best classifies the SDC tests that
are likely to detect faults. It follows an empirical approach
to do so: given a set of labeled tests and corresponding
input features, SDC-Benchmarker trains and evaluates an
ensemble of standard ML models using the well-established
sklearn4 library. Next, it assesses ML models’ quality using
either 10-fold cross-validation or a testing dataset; and, finally,
selects the best performing ML models according to Precision,
Recall, and F1-score metrics [19]. Noticeably, SDC-Scissor
can use many different ML models; however, in this work, we
consider only Naive Bayes [8], Logistic Regression [25], and
Random Forests [15]. We do so because these ML models
have been successfully used for defect prediction or other
classification problems in Software Engineering [5], [18],
[24], [26].

Finally, the SDC-Predictor uses the ML models to
predict the likelihood that newly generated SDC tests are safe
or not. Specifically, developers have the possibility to select
the ML models recommended by the SDC-Benchmarker
(considered most accurate), or they can select other models of
their choice.

4https://scikit-learn.org/

TABLE II
FULL ROAD STATISTICS EXTRACTED BY THE SDC-Features Extractor

Feature Description Range
Median Angle Median turn angle on the driving

path (DP)
[30 – 330]

Std Angle Std. Dev of turn angles on the DP [0 – 150]
Max Angle Max. turn angle on the DP [60 – 345]
Min Angle Min. turn angle on the DP [15 – 285]
Mean Angle Average turn angle on the DP [52.5–307.5]

Median
Radius

Median turn radius on the DP [7 – 47]

Std Radius Std. Dev of turn radius on the DP [0 – 22.5]
Max Radius Max. turn radius on the DP [7 – 47]
Min Radius Min. turn radius on the DP [2 – 47]
Mean Radius Average turn radius on the DP [5.3 – 47]

III. USING SDC-SCISSOR

SDC-Scissor tool is openly available and can be used as a
Python command-line utility via poetry5 as follows:

poetry install
poetry run python sdc-scissor.py [COMMAND] [OPTIONS]

To simplify SDC-Scissor’s usage, we also enable to execute
it as a Docker6 container:

docker build --tag sdc-scissor .
docker run --volume "$(pwd)/results:/out" --rm

sdc-scissor [COMMAND] [OPTIONS]

As we detail below, SDC-Scissor’s command-line supports
the execution of the main usage scenarios described in Sec-
tion II-B by taking appropriate commands and inputs (see
Fig. 2).

Test generation. To generate SDC tests by running the
Frenetic generator within a given time budget (e.g., 100
seconds) SDC-Scissor requires the following command:

generate-tests --out-path /path/to/store/tests
--time-budget 100

Automated test labeling. SDC-Scissor labels tests as
safe and unsafe by executing them in BeamNG.tech. Since
BeamNG.tech cannot be run as a Docker container, labelling
tests can be only run locally (i.e., outside Docker). This
labeling facility allows developers to create datasets that can
be used for the training and validation of ML models (e.g.,
ML-based prediction of unsafe tests). Generating a labeled
dataset, requires a set of already generated SDC tests and the
execution of the following command:

label-tests --road-scenarios /path/to/tests
--result-folder /path/to/store/labeled/tests

ML models evaluation. For identifying the models that
SDC-Scissor could use for the prediction, SDC-Scissor im-
plements a 10-fold cross-validation strategy on the input
labeled dataset. The following command tells SDC-Scissor to
benchmark all the configured ML models:

evaluate-models --tests /path/to/train/set --save

Note: the optional save flag forces SDC-Scissor to store the
ML models’ metadata for later inspection and usage.

5https://python-poetry.org/
6https://www.docker.com
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Fig. 2. The SDC-Scissor’s fine-grained view.

Train and test data generation. Evaluating the prediction
ability of SDC-Scissor requires separate training and testing
datasets. The following command lets developers to split the
available tests to achieve an 80/20 split:

split-train-test-data --tests /path/to/tests
--train-dir /path/for/train/data
--test-dir /path/for/test/data
--train-ratio 0.8

Test outcome prediction. SDC-Scissor classifies unlabeled
tests, i.e., it predicts their outcome, using a trained ML model
with the following command:

predict-tests --tests /path/to/tests
--predicted-tests /path/for/predicted/tests
--classifier /path/to/model

Random baseline evaluation. SDC-Scissor allows to select
tests using a random strategy that provides a baseline evalua-
tion with the following command:

evaluate-cost-effectiveness
--tests /path/to/tests

Prediction performance. SDC-Scissor allows to asses the
performance of a classifier with the following command:

evaluate --tests /path/to/tests
--classifier /path/to/model

IV. EVALUATION

We evaluated SDC-Scissor conducting a large study on two
datasets, referred as Dataset 1 and Dataset 2, that contain over
12, 000 SDC tests (see Table III). We adopted the following
experimental setup to obtain comprehensive and unbiased
training datasets. For Dataset 1, we randomly generated 3, 559
valid tests using Frenetic [9], collected input features and

TABLE III
DATASETS SUMMARY

Dataset Test Data Points
Subject Unsafe Safe Total

Dataset 1 BeamNG.AI
moderate

1’334 (37%) 2’225 (63%) 3’559

BeamNG.AI
cautious

312 (26%) 866 (74%) 1’178

Dataset 2 BeamNG.AI
moderate

2’543 (45%) 3’095 (55%) 5’638

BeamNG.AI
reckless

1’655 (96%) 74 (4%) 1’729

Total 5’844 (48%) 6’260 (52%) 12’104

executed them to collect labels. For the Dataset 2, instead, we
generated 8, 545 tests using AsFault [13].

It is important to note that in executing all those tests, we
experimented with different BeamNG.AI’s risk factor as it in-
fluences the ego-car driving style. Specifically, we considered
three configurations: cautious (RF 1.0), moderate (RF 1.5), and
reckless (RF 2.0) driver. Using different values for the risk
factor enabled us to study the effectiveness of SDC-Scissor
on various SDCs’ driving styles. We empirically validated our
expectations by running the moderate driver using Dataset 1
tests and running all the three configurations for Dataset 2
tests. From Table III we can observe that the number of unsafe
tests increased with increasing values of BeamNG.AI’s risk
factor. Hence, this result confirms that the risk factor indeed
strongly influences the safety of BeamNG.AI and the outcome
of tests.

To assess the performance of SDC-Scissor in optimizing
simulation-based SDCs testing via test selection (i.e., in select-
ing unsafe tests before executing them), for both Dataset 1 and
Dataset 2 we experimented with the ML models mentioned
in Section II-C trained and validated using an 80/20 split.

As reported in Table IV, on Dataset 1 SDC-Scissor accu-
rately identified unsafe tests, with F1-score ranging between
35.1% and 56.1%. On Dataset 2, instead, it identified unsafe
tests with F1-score ranging between 52.5% and 96.4%.

Complementary to the previous experiments, we investi-
gated, in the context of Dataset 2, SDC-Scissor’s ability to
be more cost-effective compared to a random-based baseline
that randomly selects from the dataset the tests to be executed

TABLE IV
PERFORMANCE OF THE ML MODELS WITH DATASET SPLIT 80/20. THE

BEST RESULTS ARE SHOWN IN BOLDFACE.

Dataset RF Model Prec. Recall F1-score

Logistic 45.8% 60.9% 52.3%
Dataset 1 RF 1.5 Naı̈ve Bayes 40.2% 92.5% 56.1%

Random Forest 41.3% 30.5% 35.1%
Logistic 43.3% 87.3% 57.9%

Dataset 2 RF 1 Naı̈ve Bayes 36.7% 92.1% 52.5%
Random Forest 40.7% 79.4% 53.8%

Logistic 78.1% 65.3% 71.1%
Dataset 2 RF 1.5 Naı̈ve Bayes 79.3% 53.2% 63.6%

Random Forest 75.8% 62.7% 68.6%

Logistic 99.6% 82.8% 90.4%
Dataset 2 RF 2 Naı̈ve Bayes 98.7% 94.3% 96.4%

Random Forest 99.7% 92.7% 96.1%



[19]. Specifically, SDC-Scissor was trained on 70% of tests
from Dataset 2 and tested on the remaining 30% of tests,
while the random-based baseline randomly selected the same
amount of tests directly from the remaining 30% of tests. Our
evaluation on Dataset 2 shows that for all RF values the best
performing ML model of SDC-Scissor (i.e., Logistic) reduced
the time spent in running safe/unnecessary tests than a random
baseline strategy with a speed-up of circa 170%. On Dataset
1, instead, SDC-Scissor speed up testing up to 158% for the
Naı̈ve Bayes and 107% for Logistic.

V. CONCLUSIONS

This paper presented SDC-Scissor, a ML-based test selec-
tion approach that classifies SDC simulation-based tests as
likely (or unlikely) to expose faults before executing them.
SDC-Scissor trains ML models using input features extracted
from driving scenarios, i.e., SDC tests, and uses them to
classify SDC tests before their execution. Consequently, it
selects only those tests that are predicted to likely expose
faults. Our evaluation shows that SDC-Scissor successfully
selected unsafe test cases across different driving styles and
drastically reduced the execution time dedicated to executing
safe tests compared to a random baseline approach.

As future work, we plan to replicate our study on fur-
ther SDC datasets, AI engines and SDC features to study
how the results generalize in the autonomous transporta-
tion domain. Additionally, given our close contacts with the
BeamNG.tech team, we plan the integration of SDC-Scissor
into BeamNG.tech environment to enable researchers and
SDC developers to use SDC-Scissor as a cost-effective testing
environment for SDCs. Finally, we plan to investigate the use
of SDC-Scissor in other CPS domains, such as drones, to
investigate how it performs when testing focuses on different
types of safety-critical faults. Specifically, important for this is
to investigate approaches that are more human-oriented or are
able to integrate humans into-the-loop [14], [24], [26], [27].
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